Deux enlacements d’intervalles sont équivalents à -mouvements et homotopie près si et seulement si leurs invariants d’homotopie de Milnor sont congrus modulo . De plus, l’ensemble des classes d’équivalence forme un groupe fini engendré par des éléments d’ordre . Cette classification implique que si deux enlacements d’intervalles sont équivalents à -mouvements près pour tout , alors ils sont homotopes.
Two string links are equivalent up to -moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo . Moreover, the set of the equivalence classes forms a finite group generated by elements of order . The classification induces that if two string links are equivalent up to 2-moves for every , then they are link-homotopic.
Accepté le :
Première publication :
Publié le :
Keywords: Milnor invariant, link, string link, $2n$-move, link-homotopy, Fox’s congruence class, clasper
Mot clés : Invariants de Milnor, entrelacs, enlacements d’intervalles, $2n$-mouvements, homotopie, classes de congruence de Fox, claspers
Miyazawa, Haruko A. 1 ; Wada, Kodai 2 ; Yasuhara, Akira 3
@article{AIF_2021__71_3_889_0, author = {Miyazawa, Haruko A. and Wada, Kodai and Yasuhara, Akira}, title = {Classification of string links up to $2n$-moves and link-homotopy}, journal = {Annales de l'Institut Fourier}, pages = {889--911}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3407}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3407/} }
TY - JOUR AU - Miyazawa, Haruko A. AU - Wada, Kodai AU - Yasuhara, Akira TI - Classification of string links up to $2n$-moves and link-homotopy JO - Annales de l'Institut Fourier PY - 2021 SP - 889 EP - 911 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3407/ DO - 10.5802/aif.3407 LA - en ID - AIF_2021__71_3_889_0 ER -
%0 Journal Article %A Miyazawa, Haruko A. %A Wada, Kodai %A Yasuhara, Akira %T Classification of string links up to $2n$-moves and link-homotopy %J Annales de l'Institut Fourier %D 2021 %P 889-911 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3407/ %R 10.5802/aif.3407 %G en %F AIF_2021__71_3_889_0
Miyazawa, Haruko A.; Wada, Kodai; Yasuhara, Akira. Classification of string links up to $2n$-moves and link-homotopy. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 889-911. doi : 10.5802/aif.3407. https://aif.centre-mersenne.org/articles/10.5802/aif.3407/
[1] Homotopy classification of ribbon tubes and welded string links, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 2, pp. 713-761 | MR | Zbl
[2] On codimension two embeddings up to link-homotopy, J. Topol., Volume 10 (2017) no. 1, pp. 1107-1123 | DOI | MR | Zbl
[3] Link cobordism and Milnor’s invariant, Bull. Lond. Math. Soc., Volume 7 (1975), pp. 39-40 | DOI | MR | Zbl
[4] Commutator calculus and link invariants, Proc. Am. Math. Soc., Volume 3 (1952), pp. 44-55 | DOI | MR | Zbl
[5] Higher-order intersections in low-dimensional topology, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 20, pp. 8131-8138 | DOI | MR | Zbl
[6] Whitney tower concordance of classical links, Geom. Topol., Volume 16 (2012) no. 3, pp. 1419-1479 | DOI | MR | Zbl
[7] Milnor invariants and twisted Whitney towers, J. Topol., Volume 7 (2014) no. 1, pp. 187-224 | DOI | MR | Zbl
[8] Burnside obstructions to the Montesinos–Nakanishi -move conjecture, Geom. Topol., Volume 6 (2002), pp. 355-360 | DOI | MR | Zbl
[9] Unexpected connections between Burnside groups and knot theory, Proc. Natl. Acad. Sci. USA, Volume 101 (2004) no. 50, pp. 17357-17360 | DOI | MR | Zbl
[10] Techniques of geometric topology, London Mathematical Society Lecture Note Series, 57, Cambridge University Press, 1983 | MR | Zbl
[11] Milnor’s invariants and self -equivalence, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 761-770 | DOI | MR | Zbl
[12] Congruence classes of knots, Osaka J. Math., Volume 10 (1958), pp. 37-41 | MR | Zbl
[13] The classification of links up to link-homotopy, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 389-419 | DOI | MR | Zbl
[14] Claspers and finite type invariants of links, Geom. Topol., Volume 4 (2000), pp. 1-83 | DOI | MR | Zbl
[15] On Wendt’s theorem of knots, Osaka J. Math., Volume 9 (1957), pp. 61-66 | MR | Zbl
[16] On the distribution of Alexander polynomials of alternating knots and links, Proc. Am. Math. Soc., Volume 79 (1980) no. 4, pp. 644-648 | DOI | MR | Zbl
[17] Fox’s congruence classes and the quantum- invariants of links in -manifolds, Comment. Math. Helv., Volume 71 (1996) no. 4, pp. 664-677 | DOI | MR | Zbl
[18] An approach to homotopy classification of links, Trans. Am. Math. Soc., Volume 306 (1988) no. 1, pp. 361-387 | DOI | MR | Zbl
[19] Characterization of finite type string link invariants of degree , Math. Proc. Camb. Philos. Soc., Volume 148 (2010) no. 3, pp. 439-472 | DOI | MR | Zbl
[20] Milnor invariants and the HOMFLYPT polynomial, Geom. Topol., Volume 16 (2012) no. 2, pp. 889-917 | DOI | MR | Zbl
[21] Arrow calculus for welded and classical links, Algebr. Geom. Topol., Volume 19 (2019) no. 1, pp. 397-456 | DOI | MR | Zbl
[22] Link groups, Ann. Math., Volume 59 (1954), pp. 177-195 | DOI | MR | Zbl
[23] Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, 1957, pp. 280-306 | Zbl
[24] Milnor invariants, -moves and -moves for welded string links (2021) (to appear in Tokyo J. Math.)
[25] On Fox’s congruence classes of knots. II, Osaka J. Math., Volume 27 (1990) no. 1, pp. 207-215 | MR | Zbl
[26] On Fox’s congruence classes of knots, Osaka J. Math., Volume 24 (1987) no. 1, pp. 217-225 | MR | Zbl
[27] moves on links, Braids (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 78, American Mathematical Society, 1988, pp. 615-656 | MR | Zbl
[28] Homology and central series of groups, J. Algebra, Volume 2 (1965), pp. 170-181 | DOI | MR | Zbl
[29] StringCMP: Faster calculation for Milnor invariant, 2013 (available at https://code.google.com/archive/p/stringcmp/)
[30] Classification of string links up to self delta-moves and concordance, Algebr. Geom. Topol., Volume 9 (2009) no. 1, pp. 265-275 | DOI | MR | Zbl
[31] Self delta-equivalence for links whose Milnor’s isotopy invariants vanish, Trans. Am. Math. Soc., Volume 361 (2009) no. 9, pp. 4721-4749 | DOI | MR | Zbl
Cité par Sources :