We show that the real Cremona group of the plane is a non-trivial amalgam of two groups amalgamated along their intersection and give an alternative proof of its abelianisation.
On montre que le groupe de Cremona du plan réel est un produit amalgamé non-trivial de deux groupes le long de leur intersection et on donne une preuve alternative de son abélianisation.
Revised:
Accepted:
Online First:
Published online:
Keywords: Cremona groups, amalgamated product
Mot clés : Groupe de Cremona, produit amalgamé
Zimmermann, Susanna 1
@article{AIF_2021__71_3_1023_0, author = {Zimmermann, Susanna}, title = {The real plane {Cremona} group is an amalgamated product}, journal = {Annales de l'Institut Fourier}, pages = {1023--1045}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3415}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3415/} }
TY - JOUR AU - Zimmermann, Susanna TI - The real plane Cremona group is an amalgamated product JO - Annales de l'Institut Fourier PY - 2021 SP - 1023 EP - 1045 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3415/ DO - 10.5802/aif.3415 LA - en ID - AIF_2021__71_3_1023_0 ER -
%0 Journal Article %A Zimmermann, Susanna %T The real plane Cremona group is an amalgamated product %J Annales de l'Institut Fourier %D 2021 %P 1023-1045 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3415/ %R 10.5802/aif.3415 %G en %F AIF_2021__71_3_1023_0
Zimmermann, Susanna. The real plane Cremona group is an amalgamated product. Annales de l'Institut Fourier, Volume 71 (2021) no. 3, pp. 1023-1045. doi : 10.5802/aif.3415. https://aif.centre-mersenne.org/articles/10.5802/aif.3415/
[1] Simple relations in the Cremona group, Proc. Am. Math. Soc., Volume 140 (2012) no. 5, pp. 1495-1500 | DOI | MR | Zbl
[2] Quotients of higher dimensional Cremona groups (2019) to be published in Acta Mathematica, volume 226 (2021), issue 2, https://arxiv.org/abs/1901.04145
[3] Cremona groups of real surfaces, Automorphisms in birational and affine geometry (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer, 2014, pp. 35-58 (Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012) | MR | Zbl
[4] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | DOI | MR | Zbl
[5] Le trasformazioni generatrici del gruppo cremoniano nel piano, Torino Atti (1901) no. 36, pp. 861-874 | Zbl
[6] Factoring birational maps of threefolds after Sarkisov, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 223-254 | MR | Zbl
[7] The Sarkisov program, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 389-405 | DOI | MR | Zbl
[8] Proof of a theorem on relations in the two-dimensional Cremona group, Usp. Mat. Nauk, Volume 40 (1985) no. 5(245), pp. 255-256 | MR | Zbl
[9] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Usp. Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 | MR | Zbl
[10] Groupes de transformations birationnelles de surfaces, 2010 (Mémoire d’habilitation à diriger des recherches, Université Claude Bernard Lyon 1, France)
[11] Signature morphisms from the Cremona group over a non-closed field, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3133-3173 | DOI | MR | Zbl
[12] Infinite algebraic subgroups of the real Cremona group, Osaka J. Math., Volume 55 (2018) no. 4, pp. 681-712 | MR | Zbl
[13] Birational diffeomorphisms of the real projective plane, Comment. Math. Helv., Volume 80 (2005) no. 3, pp. 517-540 | MR | Zbl
[14] Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | Zbl
[15] Trees, Springer Monographs in Mathematics, Springer, 2003 (Translated from the French original by John Stillwell) | Zbl
[16] Two-dimensional Cremona groups acting on simplicial complexes, Trans. Am. Math. Soc., Volume 331 (1992) no. 1, pp. 281-300 | DOI | MR | Zbl
[17] Subgroups of odd order in the real plane Cremona group, J. Algebra, Volume 461 (2016), pp. 87-120 | DOI | MR | Zbl
[18] The abelianisation of the real Cremona group, Duke Math. J., Volume 167 (2018) no. 2, pp. 211-267 | MR | Zbl
Cited by Sources: