The real plane Cremona group is an amalgamated product
[Sur l’un des premiers problèmes de Wiles]
Annales de l'Institut Fourier, Online first, 23 p.

On montre que le groupe de Cremona du plan réel est un produit amalgamé non-trivial de deux groupes le long de leur intersection et on donne une preuve alternative de son abélianisation.

We show that the real Cremona group of the plane is a non-trivial amalgam of two groups amalgamated along their intersection and give an alternative proof of its abelianisation.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3415
Classification : 14E07,  20F05,  14P99
Mots clés : Groupe de Cremona, produit amalgamé
@unpublished{AIF_0__0_0_A15_0,
     author = {Zimmermann, Susanna},
     title = {The real plane {Cremona} group is an amalgamated product},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3415},
     language = {en},
     note = {Online first},
}
Zimmermann, Susanna. The real plane Cremona group is an amalgamated product. Annales de l'Institut Fourier, Online first, 23 p.

[1] Blanc, Jérémy Simple relations in the Cremona group, Proc. Am. Math. Soc., Volume 140 (2012) no. 5, pp. 1495-1500 | MR 2869134 | Zbl 1251.14008

[2] Blanc, Jérémy; Lamy, Stéphane; Zimmermann, Susanna Quotients of higher dimensional Cremona groups (2019) to be published in Acta Mathematica, volume 226 (2021), issue 2, https://arxiv.org/abs/1901.04145

[3] Blanc, Jérémy; Mangolte, Frédéric Cremona groups of real surfaces, Automorphisms in birational and affine geometry (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer, 2014, pp. 35-58 (Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012) | Zbl 1327.14067

[4] Cantat, Serge; Lamy, Stéphane; de Cornulier, Yves Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | Zbl 1278.14017

[5] Castelnuovo, Guido Le trasformazioni generatrici del gruppo cremoniano nel piano, Torino Atti (1901) no. 36, pp. 861-874 | Zbl 32.0675.03

[6] Corti, Alessio Factoring birational maps of threefolds after Sarkisov, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 223-254 | Zbl 0866.14007

[7] Hacon, Christopher D.; McKernan, James The Sarkisov program, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 389-405 | Zbl 1267.14024

[8] Iskovskikh, Vasiliĭ Alekseevich Proof of a theorem on relations in the two-dimensional Cremona group, Usp. Mat. Nauk, Volume 40 (1985) no. 5(245), p. 255-256 | MR 810819 | Zbl 0613.14012

[9] Iskovskikh, Vasiliĭ Alekseevich Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Usp. Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 | Zbl 0914.14005

[10] Lamy, St’ephane Groupes de transformations birationnelles de surfaces, 2010 (Mémoire d’habilitation à diriger des recherches, Université Claude Bernard Lyon 1, France)

[11] Lamy, St’ephane; Zimmermann, Susanna Signature morphisms from the Cremona group over a non-closed field, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3133-3173 | Zbl 07286829

[12] Robayo, Maria Fernanda; Zimmermann, Susanna Infinite algebraic subgroups of the real Cremona group, Osaka J. Math., Volume 55 (2018) no. 4, pp. 681-712 | Zbl 1423.14100

[13] Ronga, Felice; Vust, Thierry Birational diffeomorphisms of the real projective plane, Comment. Math. Helv., Volume 80 (2005) no. 3, pp. 517-540 | MR 2165201 | Zbl 1080.14020

[14] Sansuc, Jean-Jacques Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | Zbl 0468.14007

[15] Serre, Jean-Pierre Trees, Springer Monographs in Mathematics, Springer, 2003 (Translated from the French original by John Stillwell) | Zbl 1013.20001

[16] Wright, David Two-dimensional Cremona groups acting on simplicial complexes, Trans. Am. Math. Soc., Volume 331 (1992) no. 1, pp. 281-300 | MR 1038019 | Zbl 0767.14006

[17] Yasinsky, Egor Subgroups of odd order in the real plane Cremona group, J. Algebra, Volume 461 (2016), pp. 87-120 | MR 3513066 | Zbl 1349.14054

[18] Zimmermann, Susanna The abelianisation of the real Cremona group, Duke Math. J., Volume 167 (2018) no. 2, pp. 211-267 | Zbl 1402.14015