Stratified spaces and synthetic Ricci curvature bounds
[Espaces stratifiés et bornes de courbure de Ricci synthétiques]
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 123-173.

Nous prouvons qu’un espace stratifié compact satisfait la condition de courbure-dimension riemannienne RCD(K,N) si et seulement si son tenseur de Ricci est borné inférieurement par K dans le lieu régulier, l’angle des cônes le long de la strate de codimension deux est inférieur ou égal à 2π et sa dimension est au plus égale à N. Ceci donne lieu à une large classe de nouveaux exemples d’espaces métriques mesurés satisfaisant la condition de courbure-dimension RCD(K,N), qui inclut notamment les suspensions sphériques, les orbifolds, les variétés de Kähler–Einstein avec un diviseur, les variétés d’Einstein avec des singularités le long d’une courbe. Nous obtenons aussi de nouveaux résultats analytiques et géométriques sur les espaces stratifiés, comme l’inégalité volumique de Bishop–Gromov, le théorème de comparaison pour le Laplacien de la distance, l’inégalité isopérimétrique de Lévy–Gromov. Notre résultat implique en outre une caractérisation similaire des espaces stratifiés compacts de courbure minorée au sens d’Alexandrov.

We prove that a compact stratified space satisfies the Riemannian curvature-dimension condition RCD(K,N) if and only if its Ricci tensor is bounded below by K on the regular set, the cone angle along the stratum of codimension two is smaller than or equal to 2π and its dimension is at most equal to N. This gives a new wide class of geometric examples of metric measure spaces satisfying the RCD(K,N) curvature-dimension condition, including for instance spherical suspensions, orbifolds, Kähler–Einstein manifolds with a divisor, Einstein manifolds with conical singularities along a curve. We also obtain new analytic and geometric results on stratified spaces, such as Bishop–Gromov volume inequality, Laplacian comparison, Lévy–Gromov isoperimetric inequality. Our result also implies a similar characterization of compact stratified spaces carrying a lower curvature bound in the sense of Alexandrov.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3393
Classification : 53C21, 54E50
Keywords: Curvature-dimension condition, stratified spaces, Ricci curvature lower bounds
Mot clés : Condition de courbure-dimension, espaces stratifiés, bornes inférieures de la courbure de Ricci

Bertrand, Jérôme 1 ; Ketterer, Christian 2 ; Mondello, Ilaria 3 ; Richard, Thomas 3

1 Université Paul Sabatier Institut de mathémathiques 118 Route de Narbonne 31062 Toulouse Cedex 9 (France)
2 University of Toronto Dept. of mathematics 40 St George St Toronto, Ontario M5S 2E4 (Canada)
3 Université de Paris Est Créteil Laboratoire d’analyse et mathématiques appliquées 61 Avenue du Général de Gaulle 94010 Créteil Cedex (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_1_123_0,
     author = {Bertrand, J\'er\^ome and Ketterer, Christian and Mondello, Ilaria and Richard, Thomas},
     title = {Stratified spaces and synthetic {Ricci} curvature bounds},
     journal = {Annales de l'Institut Fourier},
     pages = {123--173},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {1},
     year = {2021},
     doi = {10.5802/aif.3393},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3393/}
}
TY  - JOUR
AU  - Bertrand, Jérôme
AU  - Ketterer, Christian
AU  - Mondello, Ilaria
AU  - Richard, Thomas
TI  - Stratified spaces and synthetic Ricci curvature bounds
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 123
EP  - 173
VL  - 71
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3393/
DO  - 10.5802/aif.3393
LA  - en
ID  - AIF_2021__71_1_123_0
ER  - 
%0 Journal Article
%A Bertrand, Jérôme
%A Ketterer, Christian
%A Mondello, Ilaria
%A Richard, Thomas
%T Stratified spaces and synthetic Ricci curvature bounds
%J Annales de l'Institut Fourier
%D 2021
%P 123-173
%V 71
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3393/
%R 10.5802/aif.3393
%G en
%F AIF_2021__71_1_123_0
Bertrand, Jérôme; Ketterer, Christian; Mondello, Ilaria; Richard, Thomas. Stratified spaces and synthetic Ricci curvature bounds. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 123-173. doi : 10.5802/aif.3393. https://aif.centre-mersenne.org/articles/10.5802/aif.3393/

[1] Akutagawa, Kazuo; Carron, Gilles; Mazzeo, Rafe The Yamabe problem on stratified spaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1039-1079 | DOI | MR | Zbl

[2] Akutagawa, Kazuo; Carron, Gilles; Mazzeo, Rafe Hölder regularity of solutions for Schrödinger operators on stratified spaces, J. Funct. Anal., Volume 269 (2015) no. 3, pp. 815-840 | DOI | MR | Zbl

[3] Albin, Pierre; Leichtnam, Éric; Mazzeo, Rafe; Piazza, Paolo The signature package on Witt spaces, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 2, pp. 241-310 | DOI | Numdam | MR | Zbl

[4] Alexandrov, Aleksandr D. A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman & Hall/CRC, 2006, xiv+426 pages (edited by S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev) | MR

[5] Ambrosio, Luigi; Gigli, Nicola A user’s guide to optimal transport, Modelling and optimisation of flows on networks (Lecture Notes in Mathematics), Volume 2062, Springer, 2013, pp. 1-155 | DOI | MR

[6] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 969-996 | DOI | MR | Zbl

[7] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR

[8] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR

[9] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., Volume 43 (2015) no. 1, pp. 339-404 | DOI | MR

[10] Ambrosio, Luigi; Honda, Shouhei; Tewodrose, David Short-time behavior of the heat kernel and Weyl’s law on RCD * (K,N) spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR

[11] Ambrosio, Luigi; Mondino, Andrea; Savaré, Giuseppe Nonlinear diffusion equations and curvature conditions in metric measure spaces, Memoirs of the American Mathematical Society, 1270, American Mathematical Society, 2019

[12] Ambrozio, Lucas On static three-manifolds with positive scalar curvature, J. Differ. Geom., Volume 107 (2017) no. 1, pp. 1-45 | DOI | MR

[13] Bacher, Kathrin; Sturm, Karl-Theodor Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models, Springer, 2014, pp. 3-23 | DOI | MR

[14] Bakry, Dominique L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | DOI | MR

[15] Burago, Dmitri; Burago, Yuri; Ivanov, Sergei A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | MR

[16] do Carmo, Manfredo Perdigão Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992, xiv+300 pages (translated from the second Portuguese edition by Francis Flaherty) | DOI | MR

[17] Cavalletti, Fabio; Milman, Emanuel The globalization theorem for the Curvature-Dimension condition (2016) (https://arxiv.org/abs/1612.07623)

[18] Cavalletti, Fabio; Mondino, Andrea Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1750007, 27 pages | DOI | MR

[19] Cavalletti, Fabio; Mondino, Andrea Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | DOI | MR

[20] Cavalletti, Fabio; Mondino, Andrea New formulas for the Laplacian of distance functions and applications (2018) (https://arxiv.org/abs/1803.09687)

[21] Cheeger, Jeff Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR

[22] Cheeger, Jeff Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | MR | Zbl

[23] Cheeger, Jeff Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl

[24] Cheeger, Jeff; Taylor, Michael On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | DOI | MR | Zbl

[25] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 183-197 | DOI | MR | Zbl

[26] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 199-234 | DOI | MR | Zbl

[27] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 235-278 | DOI | MR | Zbl

[28] Colding, Tobias Holck; Naber, Aaron Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications., Ann. Math., Volume 176 (2012) no. 2, pp. 1173-1229 | DOI | Zbl

[29] Erbar, Matthias; Kuwada, Kazumasa; Sturm, Karl-Theodor On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl

[30] Galaz-García, Fernando; Kell, Martin; Mondino, Andrea; Sosa, Gerardo On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal., Volume 275 (2018) no. 6, pp. 1368-1446 | DOI | MR | Zbl

[31] Gibbons, G. W.; Hawking, S. W. Classification of gravitational instanton symmetries, Commun. Math. Phys., Volume 66 (1979) no. 3, pp. 291-310 | DOI | MR

[32] Gigli, Nicola On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., Volume 236 (2015) no. 1113, p. vi+91 | DOI | MR | Zbl

[33] Grigor’yan, Alexander Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | MR | Zbl

[34] Jeffres, Thalia; Mazzeo, Rafe; Rubinstein, Yanir A. Kähler-Einstein metrics with edge singularities, Ann. Math., Volume 183 (2016) no. 1, pp. 95-176 | DOI | MR | Zbl

[35] Ketterer, Christian Ricci curvature bounds for warped products, J. Funct. Anal., Volume 265 (2013) no. 2, pp. 266-299 | DOI | MR | Zbl

[36] Ketterer, Christian Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl

[37] Ketterer, Christian Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces, Volume 3 (2015), pp. 278-295 | DOI | MR | Zbl

[38] Ketterer, Christian; Mondino, Andrea Sectional and intermediate Ricci curvature lower bounds via optimal transport, Adv. Math., Volume 329 (2018), pp. 781-818 | DOI | MR | Zbl

[39] Kuwae, Kazuhiro; Machigashira, Yoshiroh; Shioya, Takashi Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z., Volume 238 (2001) no. 2, pp. 269-316 | DOI | MR | Zbl

[40] Li, Nan Globalization with probabilistic convexity, J. Topol. Anal., Volume 07 (2015) no. 04, pp. 719-735 | DOI | MR | Zbl

[41] Lott, John; Villani, Cédric Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl

[42] Mondello, Ilaria The Yamabe problem on stratified spaces, Ph. D. Thesis, Laboratoire de Mathématiques Jean Leray (France) (2015) (https://hal.archives-ouvertes.fr/tel-01204671)

[43] Mondello, Ilaria The local Yamabe constant of Einstein stratified spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 1, pp. 249-275 | DOI | MR | Zbl

[44] Mondello, Ilaria An Obata singular theorem for stratified spaces, Trans. Am. Math. Soc., Volume 370 (2018), pp. 4147-4175 | DOI | MR | Zbl

[45] Petrunin, Anton Alexandrov meets Lott-Villani-Sturm, Münster J. Math., Volume 4 (2011), pp. 53-64 | MR | Zbl

[46] Rajala, Tapio; Sturm, Karl-Theodor Non-branching geodesics and optimal maps in strong CD(K,)-spaces, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3-4, pp. 831-846 | DOI | MR | Zbl

[47] Reed, Michael; Simon, Barry Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR

[48] von Renesse, Max-K.; Sturm, Karl-Theodor Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Volume 58 (2005) no. 7, pp. 923-940 | DOI | MR

[49] Shanmugalingam, Nageswari Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., Volume 16 (2000) no. 2, pp. 243-279 | DOI | MR | Zbl

[50] Simon, Miles Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math., Volume 662 (2012), pp. 59-94 | DOI | MR | Zbl

[51] Simon, Miles; Topping, Peter Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces (2017) (https://arxiv.org/abs/1706.09490)

[52] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties, J. Reine Angew. Math., Volume 456 (1994), pp. 173-196 | DOI | MR | Zbl

[53] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl

[54] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl

[55] Sturm, Karl-Theodor On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl

[56] Sturm, Karl-Theodor On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl

[57] Tian, Gang K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI | MR | Zbl

Cité par Sources :