Nous étudions un modèle variationnel en deux dimensions qui combine les caractéristiques des fonctionnelles de Ginzburg–Landau et de Mumford–Shah. Comme dans la théorie classique de Ginzburg–Landau (et dans le régime de faible énergie) un nombre prescrit de vortex apparaît ; le modèle autorise aussi la formation de lignes de discontinuité dont l’énergie pénalise la longueur. Le phénomène nouveau est que les vortex ont un degé fractionnaire prescrit et qu’ils doivent être connectés par les lignes de discontinuité pour former des agrégats de degré total entier. Vortex et discontinuités sont donc couplés par une contrainte topologique. Comme dans le modèle de Ginzburg–Landau, l’énergie contient une échelle de longueur . Nous faisons une analyse complète de la convergence de ce modèle lorsque dans le régime de faible énergie. Nous étudions ensuite la structure des minimiseurs du problème limite et montrons en particulier que les lignes de saut d’un tel minimiseur sont solutions d’une variante du problème de Steiner. Enfin, nous établissons que pour petit, les minimiseurs du problème initial possèdent la même structure, du moins loin des vortex.
We study a variational model which combines features of the Ginzburg–Landau model in 2D and of the Mumford–Shah functional. As in the classical Ginzburg–Landau theory, a prescribed number of point vortices appear in the small energy regime; the model allows for discontinuities, and the energy penalizes their length. The novel phenomenon here is that the vortices have a fractional degree with prescribed. Those vortices must be connected by line discontinuities to form clusters of total integer degrees. The vortices and line discontinuities are therefore coupled through a topological constraint. As in the Ginzburg–Landau model, the energy is parameterized by a small length scale . We perform a complete -convergence analysis of the model as in the small energy regime. We then study the structure of minimizers of the limit problem. In particular, we show that the line discontinuities of a minimizer solve a variant of the Steiner problem. We finally prove that for small , the minimizers of the original problem have the same structure away from the limiting vortices.
Révisé le :
Accepté le :
Publié le :
Keywords: Free discontinuities, Ginzburg–Landau, Steiner problem, Calculus of Variations
Mot clés : Problèmes de discontinuités libres, Ginzburg–Landau, Problème de Steiner, Calcul des Variations
Goldman, Michael 1 ; Merlet, Benoit 2 ; Millot, Vincent 3
@article{AIF_2020__70_6_2583_0, author = { Goldman, Michael and Merlet, Benoit and Millot, Vincent}, title = {A {Ginzburg{\textendash}Landau} model with topologically induced free discontinuities}, journal = {Annales de l'Institut Fourier}, pages = {2583--2675}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {6}, year = {2020}, doi = {10.5802/aif.3388}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3388/} }
TY - JOUR AU - Goldman, Michael AU - Merlet, Benoit AU - Millot, Vincent TI - A Ginzburg–Landau model with topologically induced free discontinuities JO - Annales de l'Institut Fourier PY - 2020 SP - 2583 EP - 2675 VL - 70 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3388/ DO - 10.5802/aif.3388 LA - en ID - AIF_2020__70_6_2583_0 ER -
%0 Journal Article %A Goldman, Michael %A Merlet, Benoit %A Millot, Vincent %T A Ginzburg–Landau model with topologically induced free discontinuities %J Annales de l'Institut Fourier %D 2020 %P 2583-2675 %V 70 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3388/ %R 10.5802/aif.3388 %G en %F AIF_2020__70_6_2583_0
Goldman, Michael; Merlet, Benoit; Millot, Vincent. A Ginzburg–Landau model with topologically induced free discontinuities. Annales de l'Institut Fourier, Tome 70 (2020) no. 6, pp. 2583-2675. doi : 10.5802/aif.3388. https://aif.centre-mersenne.org/articles/10.5802/aif.3388/
[1] The calibration method for the Mumford-Shah functional and free-discontinuity problems, Calc. Var. Partial Differ. Equ., Volume 16 (2003) no. 3, pp. 299-333 | DOI | MR | Zbl
[2] Ginzburg–Landau functionals and renormalized energy: a revised -convergence approach, J. Funct. Anal., Volume 266 (2014) no. 8, pp. 4890-4907 | DOI | MR | Zbl
[3] Defects of liquid crystals with variable degree of orientation, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 5, 128, 32 pages | MR | Zbl
[4] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000, xviii+434 pages | MR | Zbl
[5] Approximation of functionals depending on jumps by elliptic functionals via -convergence, Commun. Pure Appl. Math., Volume 43 (1990) no. 8, pp. 999-1036 | DOI | MR | Zbl
[6] On the approximation of free discontinuity problems, Boll. Unione Mat. Ital., VII. Ser., B, Volume 6 (1992) no. 1, pp. 105-123 | MR | Zbl
[7] -convergence analysis of a generalized model: fractional vortices and string defects, Commun. Math. Phys., Volume 358 (2018) no. 2, pp. 705-739 | DOI | MR | Zbl
[8] Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 493-535 | DOI | MR | Zbl
[9] Function spaces for liquid crystals, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 2, pp. 937-984 | DOI | MR | Zbl
[10] Theory of the ripple phase coexistance, J. Phys. II, Volume 1 (1991) no. 3, pp. 375-380
[11] The -limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 6, pp. 1091-1113 | DOI | MR | Zbl
[12] Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl
[13] Ginzburg–Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, 1994, xxviii+159 pages | DOI | MR | Zbl
[14] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86 | DOI | MR | Zbl
[15] Approximation of free-discontinuity problems, Lecture Notes in Mathematics, 1694, Springer, 1998, xii+149 pages | DOI | MR | Zbl
[16] -convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, 2002, xii+218 pages | DOI | MR | Zbl
[17] A relaxation result for energies defined on pairs set-function and applications, ESAIM, Control Optim. Calc. Var., Volume 13 (2007) no. 4, pp. 717-734 | DOI | Numdam | MR | Zbl
[18] Integral representation results for functionals defined on , J. Math. Pures Appl., Volume 75 (1996) no. 6, pp. 595-626 | MR | Zbl
[19] Multiple solutions of -systems and Rellich’s conjecture, Commun. Pure Appl. Math., Volume 37 (1984) no. 2, pp. 149-187 | DOI | MR | Zbl
[20] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705 | DOI | MR | Zbl
[21] -maps with values into , Geometric analysis of PDE and several complex variables (Contemporary Mathematics), Volume 368, American Mathematical Society, 2005, pp. 69-100 | DOI | MR | Zbl
[22] Monotonicity formula and regularity for general free discontinuity problems, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 2, pp. 489-511 | DOI | MR | Zbl
[23] Improved convergence theorems for bubble clusters I. The planar case, Indiana Univ. Math. J., Volume 65 (2016) no. 6, pp. 1979-2050 | DOI | MR | Zbl
[24] Ginzburg–Landau vortices: weak stability and Schrödinger equation dynamics, J. Anal. Math., Volume 77 (1999), pp. 129-205 | DOI | MR | Zbl
[25] A density result in SBV with respect to non-isotropic energies, Nonlinear Anal., Theory Methods Appl., Volume 38 (1999) no. 5, pp. 585-604 | DOI | MR | Zbl
[26] An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, 1993, xiv+340 pages | DOI | MR | Zbl
[27] Singular sets of minimizers for the Mumford–Shah functional, Progress in Mathematics, 233, Birkhäuser, 2005, xiv+581 pages | MR | Zbl
[28] Lifting of BV functions with values in , C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 3, pp. 159-164 | DOI | MR | Zbl
[29] On the approximation of SBV functions, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 28 (2017) no. 2, pp. 369-413 | DOI | MR | Zbl
[30] Une caractérisation des applications de qui peuvent être approchées par des fonctions régulières, C. R. Math. Acad. Sci. Paris, Volume 310 (1990) no. 7, pp. 553-557 | MR | Zbl
[31] Steiner minimal trees for regular polygons, Discrete Comput. Geom., Volume 2 (1987) no. 1, pp. 65-84 | DOI | MR | Zbl
[32] Uniqueness of vortexless Ginzburg–Landau type minimizers in two dimensions, Calc. Var. Partial Differ. Equ., Volume 46 (2013) no. 3-4, pp. 523-554 | DOI | MR | Zbl
[33] An overview of the Mumford–Shah problem, Milan J. Math., Volume 71 (2003), pp. 95-119 | DOI | MR | Zbl
[34] Functionals with linear growth in the calculus of variations. I, II, Commentat. Math. Univ. Carol., Volume 20 (1979) no. 1, p. 143-156, 157–172 | MR
[35] Steiner minimal trees, SIAM J. Appl. Math., Volume 16 (1968), pp. 1-29 | DOI | MR | Zbl
[36] Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Publ. Math., Inst. Hautes Étud. Sci. (1992) no. 76, pp. 165-246 | DOI | MR | Zbl
[37] Harmonic maps into round cones and singularities of nematic liquid crystals, Math. Z., Volume 213 (1993) no. 4, pp. 575-593 | DOI | MR | Zbl
[38] Minimization of the renormalized energy in the unit ball of , Nieuw Arch. Wiskd. (5), Volume 1 (2000) no. 3, pp. 278-280 | MR | Zbl
[39] Lifting of -valued maps in and applications to uniaxial -tensors. With an appendix on an intrinsic -energy for manifold-valued maps, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 2, 68, 26 pages | DOI | MR | Zbl
[40] The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., Volume 14 (2002) no. 2, pp. 151-191 | DOI | MR | Zbl
[41] Ginzburg–Landau type energy with discontinuous constraint, J. Anal. Math., Volume 77 (1999), pp. 1-26 | DOI | MR | Zbl
[42] A selective review on Mumford–Shah minimizers, Boll. Unione Mat. Ital., Volume 9 (2016) no. 1, pp. 69-113 | DOI | MR | Zbl
[43] Structure of Symmetric and Asymmetric “Ripple” Phases in Lipid Bilayers, Phys. Rev. Lett., Volume 98 (2007), p. 058104 | DOI
[44] Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 789-814 | DOI | MR | Zbl
[45] On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Commun. Math. Phys., Volume 200 (1999) no. 2, pp. 249-274 | DOI | MR
[46] Theory of “Ripple” Phases of Lipid Bilayers, Phys. Rev. Lett., Volume 71 (1993), pp. 1565-1568 | DOI
[47] Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory, Cambridge Studies in Advanced Mathematics, 135, Cambridge University Press, 2012, xx+454 pages | DOI | MR | Zbl
[48] Two remarks on liftings of maps with values into , C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 7, pp. 467-472 | DOI | MR | Zbl
[49] The calibration method for free-discontinuity problems on vector-valued maps, J. Convex Anal., Volume 9 (2002) no. 1, pp. 1-29 | MR | Zbl
[50] -minimal curve regularity, Proc. Am. Math. Soc., Volume 120 (1994) no. 3, pp. 677-686 | DOI | MR | Zbl
[51] Some remarks on the Steiner problem, J. Comb. Theory, Ser. A, Volume 24 (1978) no. 3, pp. 278-295 | DOI | MR | Zbl
[52] On defects in different phases of two-dimensional lipid bilayers, J. Phys. France, Volume 44 (1983) no. 9, pp. 1025-1034 | DOI
[53] Physical basis of self-organization and function of membranes: physics of vesicles, Handbook of biological physics. Vol. 1: Structure and dynamics of membranes, Elsevier, 1995, pp. 213-304 | DOI
[54] Vortices for Ginzburg–Landau equations: with magnetic field versus without, Noncompact problems at the intersection of geometry, analysis, and topology (Contemporary Mathematics), Volume 350, American Mathematical Society, 2004, pp. 233-244 | DOI | MR | Zbl
[55] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318-344 | DOI | MR | Zbl
[56] Uniqueness of solutions of the Ginzburg–Landau problem, Nonlinear Anal., Theory Methods Appl., Volume 26 (1996) no. 3, pp. 603-612 | DOI | MR
Cité par Sources :