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A GINZBURG–LANDAU MODEL WITH
TOPOLOGICALLY INDUCED FREE DISCONTINUITIES

by Michael GOLDMAN,
Benoit MERLET & Vincent MILLOT (*)

Abstract. — We study a variational model which combines features of the
Ginzburg–Landau model in 2D and of the Mumford–Shah functional. As in the
classical Ginzburg–Landau theory, a prescribed number of point vortices appear
in the small energy regime; the model allows for discontinuities, and the energy
penalizes their length. The novel phenomenon here is that the vortices have a
fractional degree 1/m with m > 2 prescribed. Those vortices must be connected
by line discontinuities to form clusters of total integer degrees. The vortices and
line discontinuities are therefore coupled through a topological constraint. As in
the Ginzburg–Landau model, the energy is parameterized by a small length scale
ε > 0. We perform a complete Γ-convergence analysis of the model as ε ↓ 0 in
the small energy regime. We then study the structure of minimizers of the limit
problem. In particular, we show that the line discontinuities of a minimizer solve a
variant of the Steiner problem. We finally prove that for small ε > 0, the minimizers
of the original problem have the same structure away from the limiting vortices.
Résumé. — Nous étudions un modèle variationnel en deux dimensions qui com-

bine les caractéristiques des fonctionnelles de Ginzburg–Landau et de Mumford–
Shah. Comme dans la théorie classique de Ginzburg–Landau (et dans le régime de
faible énergie) un nombre prescrit de vortex apparaît ; le modèle autorise aussi la
formation de lignes de discontinuité dont l’énergie pénalise la longueur. Le phéno-
mène nouveau est que les vortex ont un degé fractionnaire 1/m prescrit et qu’ils
doivent être connectés par les lignes de discontinuité pour former des agrégats de
degré total entier. Vortex et discontinuités sont donc couplés par une contrainte
topologique. Comme dans le modèle de Ginzburg–Landau, l’énergie contient une
échelle de longueur ε > 0. Nous faisons une analyse complète de la Γ−convergence
de ce modèle lorsque ε ↓ 0 dans le régime de faible énergie. Nous étudions ensuite
la structure des minimiseurs du problème limite et montrons en particulier que les
lignes de saut d’un tel minimiseur sont solutions d’une variante du problème de
Steiner. Enfin, nous établissons que pour ε > 0 petit, les minimiseurs du problème
initial possèdent la même structure, du moins loin des vortex.

Keywords: Free discontinuities, Ginzburg–Landau, Steiner problem, Calculus of
Variations.
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1. Introduction

The purpose of this article is to study the asymptotic behavior of a family
of functionals combining aspects of both Ginzburg–Landau [13, 54] and
Mumford–Shah [4, 33, 42] functionals in dimension two. Those extend the
standard Ginzburg–Landau energy, and give rise to the formation of vortex
points connected by line defects in the small energy regime. Interestingly,
vortices and line defects are coupled through topological constraints.

To be more specific, let us introduce the mathematical context. We
consider for m ∈ N, m > 2, the group of m-th roots of unity Gm ={

1,a,a2, . . . ,am−1} with a := e2iπ/m. We are interested in maps taking
values in the quotient space C/Gm. We identify C/Gm with the round
cone

N :=
{

(z, t) ∈ C× R : t = |z|
√
m2 − 1

}
⊆ R3

by means of the map P : C→ N defined as

P(z) := 1
m

(
p(z), |z|

√
m2 − 1

)
with p(z) := zm

|z|m−1 .

The map P induces an isometry between C/Gm and N , and restricted
to C \ {0} it defines a covering map of N \ {0} of degree m. For a given
open set Ω and p > 1 we can thus say that u ∈ W 1,p(Ω,C/Gm) if P(u) ∈
W 1,p(Ω,N ) (where we say that a map v ∈W 1,p(Ω,N ) if v takes values in
N and v ∈W 1,p(Ω,R3)).

m = 3

N

S

u1

u2

u3

P(uj)

p(uj)/m

2π/3

2π/3

Figure 1.1. The cone N and the projection P. P(u1) = P(u2) = P(u3).

For a simply connected smooth bounded domain Ω ⊆ R2 and a “small”
parameter ε > 0, the standard Ginzburg–Landau energy over Ω of a vector
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valued W 1,2-map reads

Eε(u) := 1
2

∫
Ω
|∇u|2 + 1

2ε2 (1− |u|2)2 dx .

Here, the main functional under investigation is defined for u ∈ SBV2(Ω)
satisfying the constraint P(u) ∈W 1,2(Ω;N ) by

(1.1) F 0
ε (u) := Eε

(
P(u)

)
+H1(Ju) ,

where Ju denotes the jump set of u (see [4] and Section 2.3 below). We
stress that F 0

ε extends Eε, that is F 0
ε (u) = Eε(u) whenever u ∈ W 1,2(Ω),

which comes from the isometric character of P. In the same way F 0
ε appears

as a Mumford–Shah type functional since

F 0
ε (u) = 1

2

∫
Ω
|∇u|2 + 1

2ε2 (1− |u|2)2 dx+H1(Ju) ,

where ∇u denotes the absolutely continuous part of the measure Du. The
constraint P(u) ∈ W 1,2(Ω;N ) rephrases the fact that the functional is
restricted to the class

{
u ∈ SBV2(Ω) : u+/u− ∈ Gm on Ju

}
. In particular,

only specific discontinuities in the orientation are allowed. The case m = 2,
which consists in identifying u and −u, is of special interest as it appears
in many physical models, see Section 1.2 below.
We also consider an Ambrosio–Tortorelli regularization of (1.1) where

the jump set Ju is (formally) replaced by the zero set {ψ ∼ 0} of some
scalar phase field function ψ, and the length H1(Ju) by a suitable energy
of ψ. We introduce a second small parameter η and consider for u ∈ L2(Ω)
and ψ ∈ W 1,2(Ω; [0, 1]) satisfying P(u) ∈ W 1,2(Ω;N ) and uψ ∈ W 1,2(Ω),
the functional

(1.2) F ηε (u, ψ) := Eε
(
P(u)

)
+ 1

2

∫
Ω
η|∇ψ|2 + 1

η
(1− ψ)2 dx .

Compared to the original Ambrosio–Tortorelli functional [5, 6], u and ψ

are only coupled through the constraint uψ ∈ W 1,2(Ω), and not in the
functional itself. As for F 0

ε , the functional F ηε extends Eε in the sense that
F ηε (u, 1) = Eε(u) whenever u ∈W 1,2(Ω).
We aim to study low energy states (in particular minimizers) of the

functionals F 0
ε and F ηε under Dirichlet boundary conditions of the form

u = g on ∂Ω for a prescribed smooth g ∈ C∞(∂Ω; S1). Concerning F 0
ε ,

we work in the class Gg(Ω) of maps satisfying P(u) = P(g) on ∂Ω. Then,
we penalize possible deviations from g on ∂Ω by considering the modified
energy

F 0
ε,g(u) := F 0

ε (u) +H1({u 6= g} ∩ ∂Ω
)
.

TOME 70 (2020), FASCICULE 6
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Notice that such a penalization is necessary in order to have lower semi-
continuity of the functional (see for instance [34]). For the functional F ηε ,
we restrict ourselves to admissible pairs (u, ψ) satisfying uψ = g and ψ =
1 on ∂Ω, and write Hg(Ω) the corresponding class. In this setting, the
functionals F 0

ε,g and F ηε still extend Eε restricted to W 1,2
g (Ω), so that

(1.3) min
Gg(Ω)

F 0
ε,g 6 min

W 1,2
g (Ω)

Eε and min
Hg(Ω)

F ηε 6 min
W 1,2
g (Ω)

Eε .

As in the classical Ginzburg–Landau theory [13], we assume that the wind-
ing number (or degree) is strictly positive, i.e.,

d := deg(g, ∂Ω) > 0 .

In this way, g does not admit a continuous S1-valued extension to Ω. This
topological obstruction is responsible for the formation of vortices (point
singularities) in any configuration of small energy Eε as ε → 0, and the
minimum value of Eε over W 1,2

g is given by πd|log ε| at first order. In view
of (1.3), creating discontinuities in the orientation may lead to configura-
tions of smaller energy. Indeed, direct constructions of competitors show
that the minimum value of F 0

ε,g or F ηε is less than πd
m |log ε| at first order,

and thus (almost) minimizers must have line singularities (or “diffuse” line
singularities for F ηε ), at least for ε (and η) small enough.

1.1. Heuristics

The starting point is the identity

Eε
(
P(u)

)
= 1
m2Eε

(
p(u)

)
+ m2 − 1

m2 Eε
(
|p(u)|

)
.

Following the standard theory of the Ginzburg–Landau functional [13, 54],
one may expect that for configurations u of small energy, the leading term
is 1

m2Eε
(
p(u)

)
, and that p(u) has (classical) Ginzburg–Landau energy Eε

close to the one of the minimizers under the boundary condition p(u) =
p(g) on ∂Ω. Since p(g) = gm, its topological degree equals md, and p(u)
should have md distinct vortices of degree +1, i.e., md distinct points xk
in Ω such that p(u)(xk) = 0 and

p(u)(x) ∼ αk
x− xk
|x− xk|

for ε� |x− xk| � 1 and some constant αk ∈ S1.

In terms of Eε, the energetic cost of each vortex is π|log ε| at leading order,
and therefore Eε

(
P(u)

)
should be less than πd

m |log ε|, again at leading order.

ANNALES DE L’INSTITUT FOURIER
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Λ

Λ/2

Figure 1.2. Top: profile of the Λ−phase. Bottom: profile of the Λ/2−phase.

This discussion led us to consider the energy regimes

(1.4) F 0
ε,g(u) 6 πd

m
|log ε|+O(1) and F ηε (u, ψ) 6 πd

m
|log ε|+O(1)

for u ∈ Gg(Ω) or (u, ψ) ∈ Hg(Ω), respectively. Once again, it corresponds to
the energy regime of md vortices of degree +1 in the variable p(u). By an
elementary topological argument, one can see that any pre-image by p of
x−xk
|x−xk| must have at least one discontinuity line departing from xk, and has
a (formal) winding number around xk equal to 1/m (in other words, the
phase has a jump of 2π/m around xk). For this reason, any configuration
u satisfying (1.4) must be discontinuous. In the sharp interface case (1.1),
we actually expect that each connected component of the jump set Ju
connects mk vortices for some k ∈ {1, . . . , d}, since the winding number
around any such connected component must be an integer. A similar picture
should hold in the diffuse case (1.2) with Ju replaced by the zero set {ψ =
0}. The energy associated with discontinuities is their length (or diffuse
length), and there should be a competition between this term which favors
clustered vortices and the so-called renormalized energy from Ginzburg–
Landau theory which is a repulsive (logarithmic) point interaction.

1.2. Motivation

Our original motivation for studying the functionals (1.2) and (1.1)
stemmed from the analysis of the defect patterns observed in the so-called
ripple or Pβ′ phase in biological membranes such as lipid bilayers [10, 43, 46,
52, 53]. In this phase, which is intermediate between the gel and the liquid
phase, periodic corrugations are observed at the surface of the membranes
(see [52] for instance).

TOME 70 (2020), FASCICULE 6
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Λ/2−phase

Λ−phase

Figure 1.3. Creation of two vortices of degree 1/2.

Two different kinds of periodic sawtooth profiles are observed. A sym-
metric one and an asymmetric one respectively called Λ and Λ/2−phases
(see Figure 1.2 for a schematic representation of a cross-section). In the
asymmetric phase, only defects of integer degree are allowed while in the
symmetric phase half integer degree vortices are also permitted. Since two
vortices of degree 1/2 have an energetic cost of order π

2 |log ε| (where ε is
the lengthscale of the vortex) while a vortex of degree 1 has a cost of or-
der π|log ε|, it is expected that even in the regime where the Λ/2−phase
is favored (which happens for nearly flat membranes), a phase transition
occurs around the defects with the nucleation of a small island of Λ−phase
leading to the formation of two vortices of degree 1/2 (see Figure 1.3). In
the model proposed by [10], the order parameter is given by f(ϕ), where f
is a fixed profile (corresponding to the one on the right part of Figure 1.2)
and ϕ is the phase modulation. Their functional corresponds to F ηε , for
ε = η, m = 2 and u = ∇ϕ (so that u represents the local speed at which
the profile f is modulated). In [10], the authors further argue that the con-
straint of u being a gradient can be relaxed so that we recover completely
our model.

ANNALES DE L’INSTITUT FOURIER



A G.L. MODEL WITH FREE DISCONTINUITIES 2589

We also point out that (1.1) and (1.2) have connections with many other
models appearing in the literature. As an example, we can mention the issue
of orientability of Sobolev vector fields into RP2, see [8]. More generally, our
functionals resemble the ones suggested recently to model liquid crystals
where both points and lines singularities appear, see [9]. Similarly to [8], a
central issue here is to find square roots (and more generally m−th roots)
of W 1,p-functions into S1 (see [39]), and this is intimately related to the
question of lifting of Sobolev functions into S1, see [14, 21, 28, 30, 48].

While completing this article, we have been aware of the work [7], where
the authors perform an analogous Γ-convergence analysis for a discrete
model, obtaining in the continuous limit almost the same functional as
ours. These authors were motivated by applications to liquid crystals, mi-
cromagnetics, and crystal plasticity, and we refer to their introduction for
more references on the physical literature.

1.3. Main results

Our first main theorem is a Γ-convergence result in the energy regime(1.4)
(we refer to [16, 26] for a complete exposition on Γ-convergence theory).
To describe the limiting functional, we need to introduce the following ob-
jects. First, set Ad to be the family of all atomic measures of the form
µ = 2π

∑md
k=1 δxk , for some md distinct points xk ∈ Ω. To µ ∈ Ad, we

associate the so-called canonical harmonic map vµ defined by

vµ(x) := eiϕµ(x)
md∏
k=1

x− xk
|x− xk|

with
{

∆ϕµ = 0 in Ω ,

vµ = gm on ∂Ω .

In turn, the renormalized energy W(µ) can be defined as the finite part of
the energy of vµ, i.e.,

W(µ) := lim
r↓0

{
1
2

∫
Ω\Br(µ)

|∇vµ|2 dx− πmd|log r|
}
,

and we refer to (2.15) for its explicit expression.
We provide below a concise version of the Γ-convergence result, complete

statements can be found in Theorem 3.1 and Theorem 3.2.

TOME 70 (2020), FASCICULE 6
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Theorem 1.1. — The functionals {F 0
ε,g− πd

m |log ε|} and {F ηε − πd
m |log ε|}

(respectively restricted to Gg(Ω) and Hg(Ω)) Γ-converge in the strong L1-
topology as ε→ 0 and η → 0 to the functional

F0,g(u) := 1
2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm

+H1(Ju) +H1({u 6= g} ∩ ∂Ω
)

defined for u ∈ SBV(Ω; S1) such that um = eiϕvµ for some µ ∈ Ad and
ϕ ∈ W 1,2(Ω) satisfying eiϕ = 1 on ∂Ω. The constant γm, referred to as
core energy (see (3.1)), only depends on m.

We point out that there is of course a compactness result companion to
Theorem 1.1. Namely, if a sequence {uε} satisfies the energy bound (1.4),
and is uniformly bounded in L∞(Ω), then {uε} converges up to a subse-
quence in L1(Ω), and {p(uε)} converges (again up to a subsequence) in the
weak W 1,p-topology for every p < 2. As can be expected, the proof of The-
orem 1.1 combines ideas coming from the study of the Ginzburg–Landau
functional [2, 13, 24, 40, 45, 54], together with ideas from free discontinuities
problems [4, 6, 15, 17]. Concerning the compactness part, we have included
complete proofs to provide a rather self-contained exposition. Although
some estimates (such as the W 1,p bound, see Lemma 2.12) are certainly
known to the Ginzburg–Landau community (see for instance [24, 45]),
they have never been used in the context of Γ-convergence. The Γ-lim inf
inequality is a relatively standard combination of techniques developed
in [2, 17, 24], while the construction of recovery sequences is a much more
delicate issue. The main difficulty comes from the constraint um = eiϕvµ,
which prevents us from applying directly the existing approximation re-
sults by functions with a smooth jump set, see e.g. [11, 18, 25, 29]). Our
approach uses a (new) regularization technique (see Lemma 3.17) which is
somehow reminiscent of [5] and could be of independent interest. Another
difficulty comes from the optimal profile problem defining the core energy
γm. The underlying minimization problem involves the Ginzburg–Landau
energy of N -valued maps, and one has to find almost minimizers which can
be lifted into C-valued maps in SBV2, see Section 3.2.
The Γ-convergence result applies to minimizers of either F 0

ε,g or F ηε
(whose existence is proven in Theorems 2.7 and 2.8). It shows that they
converge in L1(Ω) to a minimizer u of F0,g. Our second main result deals
with the characterization of such minimizer u. It is based on the following
observations. First, from the explicit form of F0,g, it follows that ϕ = 0 in
the representation um = eiϕvµ. In particular, u can be characterized as a

ANNALES DE L’INSTITUT FOURIER
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solution of the minimization problem

min
{

1
m2W(µ) +H1(Ju) +H1({u 6= g} ∩ ∂Ω

)
:

u ∈ SBV(Ω; S1), um = vµ for some µ ∈ Ad

}
.

In turn, this later can be equivalently rewritten as

min
µ∈Ad

min
{

1
m2W(µ) +H1(Ju) +H1({u 6= g} ∩ ∂Ω

)
:

u ∈ SBV(Ω; S1) , um = vµ

}
.

As a consequence, fixing µ ∈ Ad and solving

L(µ) := min
{
H1(Ju) +H1({u 6= g} ∩ ∂Ω

)
: u ∈ SBV(Ω; S1) , um = vµ

}
,

we are left with a finite dimensional problem to recover the minimizers
of F0,g.
Given µ ∈ Ad, we compare in Theorem 1.2 below the minimization prob-

lem L(µ) with the following variant of the Steiner problem (see e.g. [35]):

Λ(µ) := min
{
H1(Γ) : Γ ⊆ Ω compact with sptµ ⊆ Γ

and every connected component Σ satisfies

Card(Σ ∩ sptµ) ∈ mN
}
.

We shall see that any minimizer Γ of Λ(µ) is made of at most d disjoint
Steiner trees, i.e., connected trees made of a finite union of segments meet-
ing either at points of sptµ, or at triple junction making a 120◦ angle. From
now on, when talking about triple junctions we always implicitly include
this condition on the angles.
Our second main result is the following theorem, in which we assume Ω

to be convex (to avoid issues at the boundary).

Theorem 1.2. — Assume that Ω is convex. For every µ ∈ Ad, L(µ) =
Λ(µ). Moreover, if u is a minimizer for L(µ), then its jump set Ju is a
minimizer for Λ(µ), u ∈ C∞(Ω \ Ju), and u = g on ∂Ω. Vice-versa, if
Γ is a minimizer for Λ(µ), then there exists a minimizer u for L(µ) such
that Ju = Γ.

TOME 70 (2020), FASCICULE 6
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To complete the picture, we shall give several examples illustrating the
fact that the geometry of minimizers for Λ(µ) strongly depends on m, d,
and the location of sptµ. In the case m = 2, a minimizer for Λ(µ) is always
given by a disjoint union of d segments connecting the points of sptµ (see
Proposition 4.7). However, for m > 3 and d > 2, minimizers are not always
the disjoint union of d Steiner trees containing exactly m vortices (see
Proposition 4.8 and Proposition 4.10).
In our third and last main result, we use the characterization of the

minimizers of F0,g provided by Theorem 1.2 to show that for ε > 0 small
enough, minimizers of F 0

ε,g have essentially the same structure away from
the limiting vortices.

Theorem 1.3. — Assume that Ω is convex. Let εh → 0, and let uh be
a minimizer of F 0

εh,g
over Gg(Ω). Assume that uh → u in L1(Ω) as h→∞

for some minimizer u of F0,g. Letting µ ∈ Ad be such that um = vµ,
for every σ > 0 small enough, if h is large enough (depending on σ), the
following holds:

(i) Juh \Bσ(µ) is a compact subset of Ω\Bσ(µ) made of finitely many
segments, meeting by three at an angle of 120◦ (i.e., triple junc-
tions).

(ii) uh ∈ C∞
(
Ω \ (Bσ(µ) ∪ Juh)

)
and uh = g on ∂Ω.

In addition,
(iv) Juh converges in the Hausdorff distance to Ju.
(v) uh → u in Ckloc(Ω\Ju)∩C1,α

loc (Ω\Ju) for every k ∈ N and α ∈ (0, 1).

In proving Theorem 1.3, we actually show a stronger result that we
now briefly describe (see Theorem 5.1, Remark 5.2, and Section 5.1). In
each (sufficiently small) ball Br(x) ⊆ Ω \ Bσ(µ) and ε small enough, uε is
bounded away from zero, and it can be decomposed as uε = φεwε where
φε ∈ SBV2(Br(x)) and wε is minimizing the classical Ginzburg–Landau
energy Eε( · , Br(x)) with respect to its own boundary condition (and as
a consequence, wε is smooth). The proof of this decomposition relies on
the energy splitting discovered by Lassoued and Mironescu [41]. Combined
with the classical Wente estimate [19, 55], it leads to a lower expansion of
the energy of the form

F 0
ε (uε, Br(x)) > Eε(wε, Br(x))

+ 1
α

(∫
Br(x)

|∇φε|2 dx+ αH1(Jφε ∩Br(x)
))

,

ANNALES DE L’INSTITUT FOURIER
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for some constant α > 0 (see Proposition 5.11). Using suitable competitors,
we deduce that φε is a Dirichlet minimizer of the Mumford–Shah functional
in Br(x). Applying the calibration results of [1, 49], we infer that φε takes
values into the finite set Gm, reducing the problem to a minimal parti-
tion problem in Br(x). The classical regularity results on two dimensional
minimal clusters then yield the announced geometry of the jump set.
The paper is organized as follows. Section 2 is devoted to a full set of pre-

liminary results. First, we present some fine properties of the BV -functions
under investigation, and then we prove existence of minimizers for F ηε and
F 0
ε,g. In a third part, we provide all the material and results concerning

the Ginzburg–Landau energy that we shall use. The Γ-convergence result
of Theorem 1.1 is the object of Section 3. In Section 4, we prove Theo-
rem 1.2 and give the aforementioned examples of Λ(µ)-minimizers. In the
last Section 5, we return to the analysis of minimizers of F 0

ε,g, and prove
Theorem 1.3.

2. Preliminaries

2.1. Conventions and notation

Throughout the paper we identify the complex plane C with R2. We
say that a property holds a.e. if it holds outside a set of Lebesgue measure
zero.

• For a, b ∈ R2, we write a ∧ b := det(a, b);
• For a ∈ R2 and M = (b1, . . . , bn) ∈M2×n(R), we write

a ∧M := t(a ∧ b1, . . . , a ∧ bn) ∈ Rn ;

• For M ∈Md×n(R), we write |M | := |tr(M tM)|1/2;
• For a = (a1, a2) ∈ R2 we let a⊥ := (−a2, a1)
• for a set Ω ⊆ R2, we call ν its external normal and τ its tangent
chosen so that (ν, τ) is a direct basis (in particular ν⊥ = τ and ∂Ω
is oriented counterclockwise);

• The distributional derivative is denoted by Df ;
• For v ∈ Rn, we let ∂vf := Df(v) be the partial derivative of f in
the direction v and if v = el is a vector of the canonical basis of Rn

then we simply write ∂lf := ∂elf ;
• ∇f = (∂lfk)k,l is the Jacobian matrix of the vector valued func-

tion f ;

TOME 70 (2020), FASCICULE 6
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• For j = (j1, j2), we denote by curl j := ∂1j2 − ∂2j1 the rotational
of j;

• For A ⊆ Rn, we denote by Br(A) the tubular neighborhood of A
of radius r. For a measure µ, we simply write Br(µ) := Br(spt µ);

• In most of the paper, we work with Ω a given bounded open and
simply connected set. Nevertheless, since in Sections 4 and 5 we will
require that Ω is convex, we will repeat at the beginning of each
section the hypothesis we are making on Ω;

• We shall not relabel subsequences if no confusion arises.

2.2. Finite subgroups of S1 and isometric cones.

Given an integer m > 2, we denote by Gm the subgroup of S1 made of
all m-th roots of unity, i.e.,

Gm =
{

1,a,a2, . . . ,am−1} with a := e2iπ/m .

We consider the quotient space C/Gm endowed with the canonical distance

dist
(
[z1], [z2]

)
:= min

z1∈[z1], z2∈[z2]
|z1 − z2| = min

k=0,...,m−1
|z1 − akz2| ,

where [z] is the equivalence class of z ∈ C. We note that C/Gm is iso-
metrically embedded into R3 ' C×R by means of the Lipschitz mapping
P : C→ R3 given by

P(z) := 1
m

(
p(z), |z|

√
m2 − 1

)
where p(z) := zm

|z|m−1 .

In this way we identify C/Gm with the round cone of R3,

N := P(C) =
{

(x, t) ∈ R2 ×R : t = |x|
√
m2 − 1

}
,

and one has dist
(
[z1], [z2]

)
= dN

(
P(z1),P(z2)

)
for every z1, z2 ∈ C, where

dN denotes the geodesic distance on N induced by the Euclidean metric
(in particular, |P(z)| = |z| for every z ∈ C). Similarly, S1/Gm coincides
with the horizontal circle

S :=
{

(x, t) ∈ N : |x| = 1/m, t =
√

1− 1/m2
}

= P(S1) .

Note that in the case m = 2, S ' S1/{±1} is the real projective line RP1.
Finally, we point out that P is smooth away from the origin, and since P
is isometric,

(2.1) |∇P(z)v| = |v| for every v ∈ R2 and every z ∈ C \ {0} ,
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where ∇P(z) ∈ M3×2(R) is the differential of P at z represented in real
coordinates. Similarly, we write ∇p(z) ∈M2×2(R) for the differential of p
at z.

2.3. BV and SBV functions, weak Jacobians

Concerning functions of bounded variations, their fine properties, and
standard notations, we refer to [4]. Let us briefly introduce the main prop-
erties and definitions used in the paper. For an open subset Ω of R2, we
first recall that BV (Ω,Rq) is the space of functions of bounded variation
in Ω, i.e., functions u ∈ L1(Ω,Rq) for which the distributional derivative
Du is a finite (matrix valued) Radon measure on Ω. We recall that for a
function u ∈ BV (Ω,Rq), we have the following decomposition

Du = ∇udx+Dju+Dcu ,

where
(2.2) Dju := (u+ − u−)⊗ νu H1 Ju .

The functions u± denote the traces of u on the jump set Ju which is a
countably H1-rectifiable set. Since all the properties we will consider are
oblivious to modifications of Ju on sets of zero H1 measure, we shall not
distinguish between Ju and the singular set of u (usually denoted as Su).
In particular, when Ju is regular or a finite union of polygonal curves, we
will also not distinguish between Ju and its closure so that we shall often
consider it as a compact set. Analogously, for sets E of finite perimeter, i.e.,
such that χE ∈ BV (Ω), we simply denote by ∂E the reduced boundary.
The space SBV(Ω,Rq) is defined as the subspace of BV (Ω,Rq) made of

functions u satisfying Dcu ≡ 0. For a finite exponent p > 1, the subspace
SBVp(Ω,Rq) ⊆ SBV(Ω,Rq) is defined as

SBVp(Ω,Rq) :=
{
u ∈ SBV(Ω,Rq) : ∇u ∈ Lp(Ω) and H1(Ju) <∞

}
.

Remark 2.1 (pre-Jacobian). — For a smooth function u, we define the
pre-Jacobian of u as

j(u) := u ∧∇u,
which also writes j(u) = Re(iu∇u) in complex notation. Notice that if
u = ρeiθ for some smooth functions ρ and θ, then j(u) = ρ2∇θ so that j(u)
measures the variation of the phase. In particular, if Ω is simply connected
and u takes values into S1, then curl j(u) = 0 and we can write j(u) = ∇θ,
hence recovering the phase θ.

TOME 70 (2020), FASCICULE 6



2596 Michael GOLDMAN, Benoit MERLET & Vincent MILLOT

To our purposes, we need to extend the notion of pre-Jacobian to BV -
maps.

Definition 2.2. — For u ∈ BV (Ω), we define the pre-Jacobian of u to
be the measurable vector field

j(u) := u ∧∇u ,

where ∇u is the absolutely continuous part of Du. It belongs to L1(Ω)
whenever u ∈ L∞(Ω) or ∇u ∈ L2(Ω) (since BV (Ω) is continuously embed-
ded in L2(Ω)).

Lemma 2.3. — Let u ∈ BV (Ω). Then V := P(u) and v := p(u) are of
bounded variation in Ω, and

(i) V (x) ∈ N for a.e. x ∈ Ω;
(ii) JV ⊆ Ju;
(iii)

(
V +, V −, νV

)
=
(
P(u+),P(u−), νu

)
on JV ;

(iv) P
(
u+(x)

)
= P

(
u−(x)

)
for every x ∈ Ju \ JV ;

(v) |∇V | = |∇u| a.e. in Ω;
(vi) |DcV | = |Dcu|;
(vii) j(v) = mj(u) a.e. in Ω.

Proof. — The fact that V ∈ BV (Ω; R3), as well as items (i), (ii), (iii),
and (iv), is a direct consequence of the 1-Lipschitz property of P, see [4,
proof of Theorem 3.96]. Moreover, |DV | 6 |Du|. It remains to prove (v),
(vi), and (vii). Recall that, by [4, Proposition 3.92], we have |Du|(Zu) = 0
where

Zu :=
{
x ∈ Ω \ Ju : u(x) = 0

}
.

For k ∈ N, we set

A0 :=
{
x ∈ Ω \ Ju : |u(x)| > 1

}
,

Ak :=
{
x ∈ Ω \ Ju : 2−k < |u(x)| 6 2−k+1} ,

so that Ω \ Zu =
⋃
k Ak with a disjoint union. Then, for each k ∈ N, we

consider Pk ∈ C1(C; R3) such that Pk(z) = P(z) whenever |z| > 2−k.
Using the chain-rule formula in BV (see [4, Theorem 3.96]), for Pk(u) and
the locality of the derivative of a BV function (see [4, Remark 3.93]), we
readily obtain (v) and (vi).
To prove (vii), we first notice that for z ∈ C \ {0} and X ∈ R2, we have

p(z) ∧ (∇p(z)X) = mz ∧X .
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Therefore, if x ∈ Ω \ Zu is a Lebesgue point for ∇u and ∇V , we have for
each l ∈ {1, 2},

v(x) ∧ ∂lv(x) = p(u(x)) ∧
(
∇p(u(x))∂lu(x)

)
= mu(x) ∧ ∂lu(x) ,

and the proof is complete. �

Corollary 2.4. — If u ∈ BV (Ω) is such that P(u) ∈ W 1,p(Ω;N ) for
some p > 1, then u ∈ SBV(Ω) and ∇u ∈ Lp(Ω). Moreover, u±(x) 6= 0 for
every x ∈ Ju, and u+(x)/u−(x) ∈ Gm. If, in addition, |u| > δ a.e. in Ω for
some δ > 0, then u ∈ SBVp(Ω) and |Dju| > δ|a − 1|H1 Ju.

Proof. — The fact that u ∈ SBV(Ω) and ∇u ∈ Lp(Ω) is a direct con-
sequence of (vi) and (v) in Lemma 2.3, respectively. Next, assume that
u+(x) = 0 for some x ∈ Ju. Then (iv) in Lemma 2.3 yields u−(x) = 0,
so that x 6∈ Ju. Hence u± does not vanish on Ju. Moreover from (iv) in
Lemma 2.3, we directly infer that u+/u− ∈ Gm \ {1} on Ju.

Finally, if |u| > δ > 0 a.e. in Ω, then |u±| > δ on Ju. Therefore, for every
x ∈ Ju we have
|u+(x)− u−(x)| > δ|u+(x)/u−(x)− 1| > δ min

k=1,...,m−1
|ak − 1| = δ|a − 1| ,

and thus |Dju| > δ|a− 1|H1 Ju by (2.2). In particular, H1(Ju) <∞ and
u ∈ SBVp(Ω). �

Definition 2.5 (weak Jacobian). — For an open set Ω ⊆ R2 and u ∈
BV (Ω) such that j(u) ∈ L1(Ω), the weak Jacobian of u is defined as the
distributional curl in Ω of the vector field j(u). It belongs to (C0,1

0 (Ω))∗,
and its action on a Lipschitz function φ ∈ C0,1

0 (Ω) that vanishes on the
boundary is

〈curl j(u), φ〉 = −
∫

Ω
j(u) · ∇⊥φdx .

Lemma 2.6. — Assume that Ω ⊆ R2 is simply connected. Let u1, u2 ∈
SBV(Ω; S1) be such that p(uk) ∈ W 1,1(Ω; S1) for k = 1, 2. Then, the
following properties are equivalent

(i) curl j(u1) = curl j(u2) in D′(Ω);
(ii) there exist ϕ ∈W 1,1(Ω) and a Caccioppoli partition {Ek}mk=1 of Ω

(see e.g. [4, Chapter 4, Section 4.4]) such that

(2.3) u2 =
(

m∑
k=1

akχEk

)
eiϕu1 .

In addition, if P(u1) = P(u2) and (i) holds, then ϕ is a multiple constant
of 2π/m.
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Proof. — Define ũ := u2u1 ∈ SBV(Ω; S1) and ṽ := p(ũ) ∈ W 1,1(Ω; S1).
By Corollary 2.4, we have H1(Jũ) < ∞. Then Lemma 2.3, together with
the fact that p(ũ) = p(u2)p(u1), leads to

j(ṽ) = j
(
p(u2) p(u1)

)
= j(p(u2))− j(p(u1)) = m

(
j(u2)− j(u1)

)
.

If (i) holds, then curl j(ṽ) = 0 in D′(Ω). By [30] (see also [21, Theorem 7])
there exists ϕ ∈ W 1,1(Ω) such that ṽ = eimϕ. Consequently, p(e−iϕũ) = 1
and thus e−iϕũ ∈ BV (Ω; Gm), so that e−iϕũ =

∑m−1
k=0 akχEk for some

Caccioppoli partition {Ek}m−1
k=0 of Ω. This proves (2.3). When p(u1) =

p(u2), then ṽ = 1, and we infer that ϕ(x) ∈ 2π
m Z for a.e. x ∈ Ω. Since

ϕ ∈W 1,1(Ω) we conclude that ϕ is constant.
If (ii) holds, then for each l ∈ {1, 2},

∂lu2 =
(
m−1∑
k=0

akχEk

)
eiϕ
(
∂lu1 + i∂lϕu1

)
a.e. in Ω .

Consequently, j(u2) = j(u1) +∇ϕ a.e. in Ω, and (ii) follows. �

2.4. Energies, functional classes, and existence of minimizers

Throughout this section, we assume that Ω ⊆ R2 is a smooth, bounded,
and simply connected domain. For q ∈ {2, 3} and ε > 0, we consider the
Ginzburg–Landau functional Eε : W 1,2(Ω; Rq)→ [0,∞) defined by

Eε(u) := 1
2

∫
Ω
|∇u|2 dx+ 1

4ε2

∫
Ω

(1− |u|2)2 dx .

For any Borel set A ⊆ Ω, we let

Eε(u,A) := 1
2

∫
A

|∇u|2 dx+ 1
4ε2

∫
A

(1− |u|2)2 dx .

We shall use the analogous notation for the localized version of most of the
energies under consideration.
For u ∈ SBV2(Ω) such that v := p(u) = um/|u|m−1 ∈W 1,2(Ω), we have

(by Lemma 2.3)

(2.4) Eε (P(u)) = 1
m2Eε(v) + m2 − 1

m2 Eε(|v|) =: Gε(v) .

Equivalently, the functional Gε : W 1,2(Ω)→ [0,∞) can be defined by

(2.5) Gε(v) = 1
2m2

∫
Ω
|∇v|2 + (m2 − 1)

∣∣∇|v|∣∣2 dx+ 1
4ε2

∫
Ω

(1− |v|2)2 dx .
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For the phase field we consider the functionals Iη : W 1,2(Ω; [0, 1])→ [0,∞)
defined for η > 0 as

Iη(ψ) := η

2

∫
Ω
|∇ψ|2 dx+ 1

2η

∫
Ω

(1− ψ)2 dx .

The classes of functions we are interested in are the following

H(Ω) :=
{

(u, ψ) ∈ L2(Ω)×W 1,2(Ω; [0, 1]) :

P(u) ∈W 1,2(Ω;N ) and ψu ∈W 1,2(Ω)
}
,

and
G(Ω) :=

{
u ∈ SBV2(Ω) : P(u) ∈W 1,2(Ω;N )

}
.

Notice that in the definition of H(Ω), the condition ψu ∈ W 1,2(Ω) degen-
erates on the set {ψ = 0} allowing for discontinuities of u. Typically, u
may jump through lines where ψ vanishes and (since P(u) does not jump)
the jump satisfies formally the constraint P(u+) = P(u−) in the spirit of
Lemma 2.3(iv).
On H(Ω) and G(Ω), we define the functionals F ηε : H(Ω) → [0,∞) and

F 0
ε : G(Ω)→ [0,∞) by

(2.6) F ηε (u, ψ) := Eε
(
P(u)

)
+Iη(ψ) and F 0

ε (u) := Eε
(
P(u)

)
+H1(Ju) .

Note that F 0
ε is a functional of the type “Mumford–Shah”. Indeed, by

Lemma 2.3 we have

F 0
ε (u) = 1

2

∫
Ω
|∇u|2 + 1

2ε2 (1− |u|2)2 dx+H1(Ju) .

As already pointed out in the introduction, F ηε can be seen as an
“Ambrosio–Tortorelli” regularization of F 0

ε (with a coupling between u and
ψ in the class H(Ω) rather than in the functional itself).
We aim to minimize F ηε and F 0

ε under a given Dirichlet condition on the
boundary. We fix a smooth map g : ∂Ω ' S1 → S1 of topological degree
d > 0. Accordingly, we introduce the subclasses

(2.7) Hg(Ω) :=
{

(u, ψ) ∈ H(Ω) : ψ = 1 and ψu = g on ∂Ω
}
,

and
Gg(Ω) :=

{
u ∈ G(Ω) : P(u) = P(g) on ∂Ω

}
.

Note that in Gg(Ω) we do not impose the condition u = g on ∂Ω. Instead
we penalize deviations from g minimizing over Gg(Ω) the functional

(2.8) F 0
ε,g(u) := F 0

ε (u) +H1({u 6= g} ∩ ∂Ω
)
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in place of F 0
ε . As already mentioned in the introduction, this penalization

is necessary to ensure lower semi-continuity (since F 0
ε,g is precisely the

L1(Ω)-relaxation of F 0
ε ).

As a warm-up, let us prove that the functionals F ηε and F 0
ε,g admit min-

imizers.

Theorem 2.7. — The functional F ηε admits a minimizing pair (uε, ψε)
in Hg(Ω). In addition, any such minimizer satisfies ‖uε‖L∞(Ω) 6 1.

Theorem 2.8. — The functional F 0
ε,g has a minimizer uε in Gg(Ω). In

addition, any such minimizer satisfies ‖uε‖L∞(Ω) 6 1.

The proof of Theorem 2.7 rests on the following compactness result.

Proposition 2.9. — Let Ω ⊆ R2 be a bounded open subset. Let
{(uh, ψh)}h∈N ⊆ H(Ω) be such that

sup
h

{
‖uh‖L∞(Ω) + ‖∇ψh‖L2(Ω) +

∥∥∇(P(uh))
∥∥
L2(Ω)

}
<∞ .

Then, there exist a subsequence and (u, ψ) ∈ H(Ω) such that(
ψh, ψhuh,P(uh)

)
⇀
(
ψ,ψu,P(u)

)
weakly in W 1,2(Ω) .

Proof. — Set φh := ψhuh, Vh := P(uh), and notice that P(φh) = ψhVh.
Therefore,

∇(P(φh)) = ψh∇Vh +∇ψh ⊗ Vh .
By (2.1), |∇φh| =

∣∣∇(P(φh))
∣∣ a.e. in Ω, and since 0 6 ψh 6 1, we infer

that ∫
Ω
|∇φh|2 dx 6 2

∫
Ω
|∇Vh|2 dx+ 2‖uh‖2L∞(Ω)

∫
Ω
|∇ψh|2 dx .

Hence {ψh}, {Vh}, and {φh} are bounded in W 1,2(Ω). Thus, we can find
a subsequence such that (ψh, φh, Vh) ⇀ (ψ, φ, V ) weakly in W 1,2(Ω) and
a.e. in Ω, for some (ψ, φ, V ) ∈W 1,2(Ω; [0, 1])×W 1,2(Ω)×W 1,2(Ω;N ). On
the one hand, since {uh} is bounded in L∞(Ω), the sequence {uh(x)} is
bounded for a.e. x ∈ Ω, and we deduce that φ(x) = limh ψh(x)uh(x) = 0
for a.e. x ∈ {ψ = 0}. On the other hand, one has limh uh(x) = φ(x)/ψ(x)
and V (x) = limh Vh(x) = P(φ(x)/ψ(x)) for a.e. x ∈ {ψ 6= 0}. Now, we
define u ∈ L∞(Ω) by setting

u := φ

ψ
χ{ψ 6=0} + α(V )χ{ψ=0} ,

where α : N → C is the “unrolling map” of the cone N , i.e.,

α(z, t) :=
{
m|z|eiθ/m for z = |z|eiθ ∈ C \ {0} with θ ∈ [0, 2π) ,
0 otherwise .
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By construction, we have φ = ψu and V = P(u), and the proof is
complete. �

Proof of Theorem 2.7. — Let {(uh, ψh)} ⊆ Hg(Ω) be a minimizing
sequence for F ηε in Hg(Ω). Since P(uh) ∈ W 1,2(Ω; R3), we have |uh| ∈
W 1,2(Ω) and thus also [max(1, |uh|)]−1 ∈ W 1,2(Ω) ∩ L∞(Ω). Since ψh = 1
and ψhuh = g on ∂Ω, we have |uh| = 1 on ∂Ω and then also
[max(1, |uh|)]−1 = 1 on ∂Ω. Consequently, setting

(2.9) ûh := uh
max(1, |uh|)

,

it quickly follows that ψhûh∈W 1,2(Ω), ψhûh=g on ∂Ω, and ‖ûh‖L∞(Ω)61.
Since also,

(2.10) P(ûh) = P(uh)
max(1, |uh|)

= P(uh)
max(1, |P(uh)|) ∈W

1,2(Ω;N ) ,

we have (ψh, ûh) ∈ Hg(Ω). Moreover, (2.10) implies that Eε(P(ûh)) 6
Eε(P(uh)) with equality if and only if |P(uh)| 6 1 a.e. in Ω (and since
|P(uh)| = |uh|, equality holds if and only if |uh| 6 1 a.e. in Ω).

As a consequence, F ηε (ûh, ψh) 6 F ηε (uh, ψh), and thus {(ûh, ψh)} is also
a minimizing sequence for F ηε in Hg(Ω). Since ‖ûh‖L∞(Ω) 6 1, we can ap-
ply Proposition 2.9 to find a subsequence such that (ψh, ψhûh,P(ûh)) ⇀
(ψε, ψεuε,P(uε)) weakly in W 1,2(Ω) for some (uε, ψε) ∈ H(Ω) with
|P(uε)| = |uε| 6 1 a.e. in Ω. From the continuity of the trace operator,
we deduce that ψε = 1 and ψεuε = g on ∂Ω, that is (uε, ψε) ∈ Hg(Ω).
Finally, the functional F ηε being clearly lower semi-continuous with respect
to the weak convergence in W 1,2(Ω), we conclude that (uε, ψε) minimizes
F ηε over Hg(Ω). Since the truncation argument above shows that any min-
imizer satisfies the announced L∞ bound, the proof is complete. �

Proof of Theorem 2.8. — The truncation argument is identical to the
one above so we may reduce ourselves to the class of functions u satisfying
‖u‖L∞(Ω) 6 1. Let {uh} ⊆ Gg(Ω) be a minimizing sequence for F 0

ε,g.
We fix some r0 > 0 small enough in such a way that

(2.11) Ω̃ :=
{
x ∈ R2 : dist(x,Ω) < r0

}
defines a smooth domain, and that the nearest point projection on ∂Ω,
denoted by Π, is well defined and smooth in

{
x ∈ R2 : dist(x, ∂Ω) < 2r0

}
.

We extend each uh to Ω̃ by setting uh(x) = g
(
Π(x)

)
for x ∈ Ω̃ \ Ω. Then

we have Juh ∩ Ω̃ = (Juh ∩ Ω) ∪ ({uh 6= g} ∩ ∂Ω), so that

F 0
ε (uh, Ω̃) = F 0

ε,g(uh) + Cg ,
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for a constant Cg depending only on g, r0, and Ω. Since |∇uh| = |∇(P(uh))|
by Lemma 2.3, we deduce that {∇uh} is bounded in L2(Ω̃). Hence we can
apply [4, Theorem 4.7 and 4.8] to find a subsequence such that uh ⇀ uε
weakly* in BV (Ω̃) and a.e. in Ω to some uε ∈ SBV2(Ω̃). From the a.e.
convergence, we deduce that uε(x) = g

(
Π(x)

)
for x ∈ Ω̃ \ Ω. Then, still

by [4, Theorem 4.7],

(2.12) lim inf
h→∞

H1(Juh∩Ω) +H1({uh 6= g}∩ ∂Ω
)

= lim inf
h→∞

H1(Juh∩ Ω̃)

> H1(Juε∩ Ω̃) = H1(Juε∩ Ω) +H1({uε 6= g} ∩ ∂Ω
)
.

Since {P(uh)} is bounded inW 1,2(Ω) and P(uh)→ P(uε) a.e. in Ω, we infer
that P(uh) ⇀ P(uε) weakly in W 1,2(Ω). As a consequence, uε ∈ Gg(Ω).
Finally, the lower semi-continuity of Eε with respect to the weak W 1,2-
convergence, together with (2.12), leads to F 0

ε,g(uε) 6 lim infh F 0
ε,g(uh).

Hence uε is a minimizer of F 0
ε,g in Gg(Ω). �

2.5. Asymptotic for the Ginzburg–Landau functional

The aim of this subsection is to recall some classical facts about the
asymptotic limit as ε ↓ 0 of low energy states for the Ginzburg–Landau
functional Eε. In this section we still assume that Ω ⊆ R2 is a smooth,
bounded, and simply connected domain. Some of the material below can
be found with greater details in [2, 13, 54] and the references therein. We
start with the notion of renormalized energy originally introduced in [13].

2.5.1. The renormalized energy and canonical harmonic maps

Let us denote by Ad the set of all finite positive measures µ of the form

(2.13) µ = 2π
md∑
k=1

δxk ,

for some md distinct points {x1, . . . , xmd} ⊆ Ω.
Given µ ∈ Ad, the canonical harmonic map vµ : Ω\sptµ→ C associated

to µ is the map defined by

(2.14) vµ(x) := eiϕµ(x)
md∏
k=1

x− xk
|x− xk|

,
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with {
∆ϕµ = 0 in Ω ,

vµ = gm on ∂Ω .

Note that ϕµ is a smooth function in Ω uniquely determined up to constant
multiple of 2π. The canonical map vµ is a smooth harmonic map from
Ω \ sptµ into S1. It satisfies{

div j(vµ) = 0
curl j(vµ) = µ

in D′(Ω) .

It turns out that vµ ∈ W 1,p(Ω) for every p ∈ [1, 2), but fails to be in
W 1,2(Ω). However, the Dirichlet energy of vµ still have a well defined finite
part called the renormalized energy given by

(2.15) W(µ) := −π
∑
k 6=l

log |xk − xl|

+ 1
2

∫
∂Ω
gm ∧ ∂(gm)

∂τ
Φµ dH1 − π

md∑
k=1

Rµ(xk) ,

where Φµ is the solution of
∆Φµ = µ in Ω ,
∂Φµ
∂ν = gm ∧ ∂(gm)

∂τ on ∂Ω ,∫
∂Ω Φµ dH1 = 0 ,

and Rµ(x) := Φµ(x)−
∑
k log |x−xk| . Note that Rµ is an harmonic function

in Ω, smooth up to ∂Ω. The function Φµ is related to the harmonic map
vµ through the relation

(2.16) j(vµ) = ∇⊥Φµ ,

and W(µ) is the finite part of the Dirichlet energy of vµ in the sense that

(2.17) lim
r↓0

{
1
2

∫
Ω\Br(µ)

|∇vµ|2 dx− πmd|log r|
}

= W(µ) .

2.5.2. Asymptotic for low energy states

We are now ready to state the following compactness result, which is a
slight improvement of [2, Theorem 6.1]. The proof is postponed to the end
of this section.
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Theorem 2.10. — For a sequence εh ↓ 0, let {vh} ⊆ W 1,2
gm (Ω) be such

that {vh} is bounded in L∞(Ω), and

(2.18) Eεh(vh) 6 πmd|log εh|+O(1) as h→∞ .

There exist a subsequence, a measure µ ∈ Ad, and a phase ϕ ∈ W 1,2(Ω)
such that

(i) vh ⇀ eiϕvµ weakly in W 1,p(Ω) for every p ∈ [1, 2);
(ii) vh ⇀ eiϕvµ weakly in W 1,2

loc (Ω \ sptµ);
(iii) eiϕ = 1 on ∂Ω;
(iv) for r > 0 small enough,

(2.19) lim inf
h→∞

{
Eεh

(
vh, Br(µ)

)
− πmd log r

εh

}
> C∗ ,

for a constant C∗ independent of r, and

lim inf
r↓0

lim inf
h→∞

{
1
2

∫
Ω\Br(µ)

|∇vh|2 dx− πmd|log r|
}

>
1
2

∫
Ω
|∇ϕ|2 dx+ W(µ) .

Moreover, µh := curl j(vh) ∈ L1(Ω) converges to µ = curl j(eiϕvµ) in the
weak* topology of (C0,1

0 (Ω))∗.

The proof of this theorem relies on the following two auxiliary results.
In particular, Lemma 2.12 provides an a priori W 1,p-bound for sequences
of low Ginzburg–Landau energy. We believe that Proposition 2.11 and
Lemma 2.12 are already well known to experts (see in particular [24, Theo-
rem 1.4.4]). Since we did not find clear statements and proofs in the existing
literature, we have decided to provide here (mostly) self-contained proofs.

Proposition 2.11. — Let v ∈W 1,1(Ω; S1) and µ ∈ Ad be such that{
curl j(v) = µ in D′(Ω) ,
v = gm on ∂Ω .

If v ∈W 1,2
loc (Ω \ sptµ) and

(2.20) lim inf
r↓0

{
1
2

∫
Ω\Br(µ)

|∇v|2 dx− πmd|log r|
}
<∞ ,

then v = eiϕvµ for some ϕ ∈W 1,2(Ω) such that eiϕ = 1 on ∂Ω. In addition,

lim
r↓0

{
1
2

∫
Ω\Br(µ)

|∇v|2 dx− πmd|log r|
}

= 1
2

∫
Ω
|∇ϕ|2 dx+ W(µ) .
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Proof. — The fact that v = eiϕvµ for some ϕ ∈W 1,1(Ω) with eiϕ = 1 on
∂Ω follows as in the proof of Lemma 2.6. Moreover, v ∈W 1,2

loc (Ω\ sptµ; S1)
yields ϕ ∈ W 1,2

loc (Ω \ sptµ). Let us prove that in fact ϕ ∈ W 1,2(Ω). First
notice that

(2.21) |∇v|2 = |j(v)|2 = |∇ϕ|2 + |j(vµ)|2 + 2∇ϕ · j(vµ)
= |∇ϕ|2 + |∇vµ|2 + 2∇ϕ · ∇⊥Φµ ,

where the last identity follows from (2.16).
For each k ∈ {1, . . . ,md}, we set

Rkµ(x) := Φµ(x)− log |x− xk| ,

so that Rkµ is a smooth harmonic function in Ω \
⋃
l 6=k{xl}. Notice in par-

ticular that
∂τΦµ = ∂τR

k
µ on ∂Br(xk).

Integrating by parts (2.21) in Ωr := Ω \ Br(µ) with r > 0 small enough,
leads to∫

Ωr
|∇v|2 dx =

∫
Ωr
|∇ϕ|2 dx+

∫
Ωr
|∇vµ|2 dx+ 2

md∑
k=1

∫
∂Br(xk)

ϕ∂τΦµ dH1

=
∫

Ωr
|∇ϕ|2 dx+

∫
Ωr
|∇vµ|2 dx+ 2

md∑
k=1

∫
∂Br(xk)

ϕ∂τR
k
µ dH1 .(2.22)

By the boundary trace theorem for BV functions [4, Theorem 3.87], and
the embedding of W 1,1 into L2,

(2.23)
∫
∂Br(xk)

|ϕ|dH1 .
∫
Br(xk)

|∇ϕ|+ 1
r
|ϕ|dx

.
∫
Br(xk)

|∇ϕ|dx+
(∫

Br(xk)
|ϕ|2dx

)1/2

−→
r→0

0 .

Using the smoothness of Rkµ near xk, we can combine (2.17), (2.20), (2.22),
and (2.23) to deduce that∫

Ωr
|∇ϕ|2 dx = O(1) as r → 0 .

Therefore ϕ ∈W 1,2(Ω). Going back to (2.22), we subtract πmd|log r| from
both sides of this identity, and we let r → 0 to reach the conclusion. �
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Lemma 2.12. — For a sequence εh ↓ 0, let {vh} ⊆ W 1,2
gm (Ω,C) be such

that {vh} is bounded in L∞(Ω), (2.18) holds, and for which µh := j(vh)
weakly* converges in (C0,1

0 (Ω))∗ to some measure µ ∈ Ad as h→∞. Then
{vh} is bounded in W 1,p(Ω) for every 1 6 p < 2.

The proof of Lemma 2.12 rests on the so-called “ball construction” in [54,
Theorem 4.1] that we now recall.

Theorem 2.13 ([54]). — For any α ∈ (0, 1) there exists ε0(α) > 0 such
that, for any ε ∈ (0, ε0(α)) and any v ∈ C∞(Ω) satisfying Eε(v) 6 εα−1,
the following holds for some universal constants c0, c1, and c2: for any
r ∈

[
c0ε

α/2, 1
)
there exists a finite collection Br =

{
Bj
}
j∈J of disjoint

closed balls such that
(i) r =

∑
j rj ;

(ii) setting Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) > ε

}
and V εr := Ωε ∩

(⋃
j Bj

)
,{

x ∈ Ωε :
∣∣|v(x)| − 1

∣∣ > εα/4} ⊆ V εr ;

(iii) setting dj = deg(v, ∂Bj) if Bj ⊆ Ωε, and dj = 0 otherwise,

(2.24) Eε(v, V εr ) > πDr

(
log r

Drε
− c1

)
whenever Dr :=

∑
j |dj | 6= 0;

(iv) the following estimate holds

(2.25) Dr 6 c2
Eε(v)
α|log ε| .

Finally, if r1 < r2, then every ball of Br1 is contained in a ball of Br2 .

Proof of Lemma 2.12. — Since Ω is a smooth bounded domain and g is
smooth, any map in W 1,2

gm (Ω) ∩ L∞(Ω) can be (strongly) approximated in
the W 1,2-sense by a sequence in {v ∈ C∞(Ω) : v = gm on ∂Ω} which also
remains bounded in L∞(Ω). Hence, we can assume vh ∈ C∞(Ω) for each
h. Recall that µ writes µ = 2π

∑md
k=1 δxk . Setting

σ0 := 1
4 min

{
1,min

k
dist(xk, ∂Ω),min

k 6=l
|xk − xl|

}
,

we may assume without loss of generality that σ0 = 1. We choose α = 1/2 in
Theorem 2.13 (this choice of α is arbitrary). By (2.18), we have Eεh(vh) 6
ε
−1/2
h for εh small enough, and we can therefore apply Theorem 2.13 to vh.
We claim that for εh sufficiently small,

(2.26) Dr > md for every r ∈
[
c0ε

1/4
h , 1/6

]
.

ANNALES DE L’INSTITUT FOURIER



A G.L. MODEL WITH FREE DISCONTINUITIES 2607

Let us introduce the modified function

ṽh := min
{
|vh|

1− ε1/8
h

, 1
}

vh
|vh|
∈W 1,2(Ω) .

Noticing that

j(ṽh) = min
{

1(
1− ε1/8

h

)2 , 1
|vh|2

}
j(vh) ,

and setting µ̃h := curl j(ṽh), we estimate

‖µ̃h − µh‖(C0,1
0 (Ω))∗

= sup
‖φ‖

C
0,1
0 (Ω))61

∫
Ω

(
min

{
1(

1−ε1/8
h

)2 , 1
|vh|2

}
− 1
)
j(vh) · ∇⊥φdx

6
∫

Ω

∣∣∣∣∣min
{

1(
1− ε1/8

h

)2 , 1
|vh|2

}
− 1
∣∣∣∣∣ |j(vh)|dx

. ε1/8
h ‖j(vh)‖L1(Ω) −→

h→∞
0 ,(2.27)

where in the last step we have used that since j(vh) = vh ∧∇vh,

‖j(vh)‖L1(Ω) . ‖vh‖L∞(Ω)‖∇vh‖L∞(Ω)

. ‖vh‖L∞(Ω)E
1/2
εh

(vh)
(2.18)
. ‖vh‖L∞(Ω)|log εh|1/2 .

Given r ∈
[
c0ε

1/4
h , 1/6

]
, we set

Aεhr :=
{
t ∈ [1/2, 1− r] : ∂Bt(µ) ∩ V εhr = ∅

}
.

By item (i) in Theorem 2.13, we have |Aεhr | > 1/2 − 2r > 1/6. Then, for
each k = 1, . . . ,md, we define a function ζk ∈ C0,1(Ω) compactly supported
in Ω by setting

ζk(x) :=
∫ 1

min(1,|x−xk|)
χAεhr (t) dt .

Notice that ‖ζk‖C0,1(Ω) 6 2. Since µ̃h → µ in (C0,1
0 (Ω))∗ by (2.27), we have

‖µ̃h−µ‖(C0,1
0 (Ω))∗ 6 π/12 for εh small enough. Consequently, by definition

of σ0 and for εh small,

〈µ̃h, ζk〉 > 〈µ, ζk〉 − 2‖µ̃h − µ‖(C0,1
0 (Ω))∗ > 2π|Aεhr | − π/6 > π/6 ,
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for each k = 1, . . . ,md. Moreover, using that for t ∈ Aεhr and x ∈ ∂Bt(xk),
ṽh = vh

|vh| , we have

〈µ̃h, ζk〉 = −
∫
B1(xk)

j(ṽh) · ∇⊥ζk dx

=
∫ 1

0
χAεhr (t)

(∫
∂Bt(xk)

j(ṽh) · τ dH1

)
dt

=
∫
A
εh
r

(∫
∂Bt(xk)

j

(
vh
|vh|

)
· τ dH1

)
dt

= 2π
∫
A
εh
r

deg
(
vh, ∂Bt(xk)

)
dt ,

and we conclude that for εh sufficiently small (independently of r),∫
A
εh
r

deg
(
vh, ∂Bt(xk)

)
dt > 1/12 for each k = 1, . . . ,md .

Hence, for each k = 1, . . . ,md, there exists a radius ρkh ∈ Aεhr such that
deg
(
vh, ∂Bρk

h
(xk)

)
6= 0 whenever εh is small enough (independently of r).

In turn, it implies the existence, for each k = 1, . . . ,md, of an element
Bkh(r) ∈ Br such that Bkh(r) ⊆ Bρk

h
(xk) ⊆ Ωεh and deg

(
vh, ∂B

k
h(r)

)
6= 0,

whenever εh is small. By the very definition of Dr, we infer that (2.26)
holds for εh small (independently of r).
Combining (2.18) and (2.25), we deduce that Dr 6 C for some constant

C independent of εh and r. Then, (2.24) yields for εh small enough,

Eεh(vh, V εhr ) > πmd log
(
r

εh

)
− C for every r ∈

[
c0ε

1/4
h , 1/6

]
,

where C is still a constant independent of r and εh. In view of (2.18), we
thus have

(2.28) Eεh(vh,Ω \ V εhr ) 6 πmd|log r|+ C for every r ∈
[
c0ε

1/4
h , 1/6

]
.

Now we define on the set {|vh| > 0} the map v̂h := vh/|vh|. Given r ∈[
c0ε

1/4
h , 1/12

]
, we have

∣∣|vh|−1
∣∣ 6 ε1/8

h on V εh2r \V εhr , and we can apply [54,
Proposition 4.2] to deduce that for εh sufficiently small (independently of r),

1
2

∫
V
εh
2r \V

εh
r

|∇v̂h|2 dx >
md∑
k=1

1
2

∫
Bk
h

(2r)\V εhr
|∇v̂h|2 dx > πmd log 2 .

Therefore, if εh is small, using that

|∇vh|2 = |∇|vh||2 + |vh|2|∇v̂h|2 > |vh|2|∇v̂h|2;
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we obtain

(2.29) 1
2

∫
V
εh
2r \V

εh
r

|∇vh|2 dx

>
1
2

∫
V
εh
2r \V

εh
r

|vh|2|∇v̂h|2 dx > πmd log 2− Cε1/8
h ,

for some constant C independent of r and εh. Then set for j ∈ N, rj :=
2−j/6 and define

Jh := max
{
j ∈ N : rj > c0ε1/4

h

}
.

Using the fact that V εhrj+1
⊆ V εhrj , estimate (2.28) leads to

(2.30)
Jh−1∑
j=0

1
2

∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx

6 Eεh(vh,Ω \ V εhrJh ) 6
(
πmd log 2

)
Jh + C .

Since Jh = O(|log εh|), we infer from (2.29) and (2.30) that

(2.31)
∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx 6 C(1 + Jhε
1/8
h ) 6 C

for every j = 0, . . . , Jh − 1 ,

for a constant C independent of εh.
Finally, fix an arbitrary p ∈ [1, 2). Noticing that |V εhrj | = O(r2

j ), we
estimate by means of (2.28), (2.31), and Hölder’s inequality,

∫
Ω\V εhrJh

|∇vh|p dx 6
∫

Ω\V εhr0
|∇vh|p dx+

Jh−1∑
k=0

∫
V
εh
rj
\V εhrj+1

|∇vh|p dx

6 C

1 +
Jh−1∑
k=0

r2−p
j

(∫
V
εh
rj
\V εhrj+1

|∇vh|2 dx
)p/2 6 C

22−p − 1 ,

for some constant C independent of εh (and p). Since,∫
V
εh
rJh

|∇vh|p dx 6 Cr2−p
Jh

(∫
Ω
|∇vh|2 dx

)p/2
6 Cεh

2−p
4 |log εh|p/2 6 C ,

we conclude that {vh} is indeed bounded in W 1,p(Ω). �

Proof of Theorem 2.10. — In view of (2.18), we can apply [2, Theo-
rem 6.1] to find a subsequence such that µh

∗
⇀µ weakly* in (C0,1

0 (Ω))∗ for
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some measure µ = 2π
∑md
k=1 δxk ∈ Ad. Moreover, for a radius r satisfying

0 < r 6 σ0 := 1
4 min

{
1,min

k
dist(xk, ∂Ω),min

k 6=l
|xk − xl|

}
,

estimate (2.19) holds by [2, Theorem 4.1]. Consequently,

(2.32) Eεh
(
vh,Ω \Br(µ)

)
6 πmd|log r|+ C ,

for a constant C independent of r and εh. As a consequence of (2.32), we can
extract a further subsequence such that vh ⇀ v0 weakly in W 1,2

loc (Ω \ sptµ)
for some v0 ∈W 1,2

loc (Ω \ sptµ; S1). By lower semi-continuity we have

(2.33) lim inf
h→∞

Eεh
(
vh,Ω \Br(µ)

)
>

1
2

∫
Ω\Br(µ)

|∇v0|2 dx .

In addition, from the continuity of the trace operator we deduce that v0 =
gm on ∂Ω. Thanks to Lemma 2.12, {vh} is also bounded in W 1,p(Ω) for
every 1 6 p < 2 so that vh ⇀ v0 weakly in W 1,p(Ω) for every p ∈ [1, 2).
From this convergence, we easily derive

〈µh, ζ〉 = −
∫

Ω
j(vh) · ∇⊥ζ dx −→

h→∞
−
∫

Ω
j(v0) · ∇⊥ζ dx = 〈curl j(v0), ζ〉 ,

for every ζ ∈ D(Ω), and thus curl j(v0) = µ in D′(Ω). Combining (2.32)
with (2.33) yields

lim sup
r↓0

{
1
2

∫
Ω\Br(µ)

|∇v0|2 dx− πmd|log r|
}
<∞ .

Hence, we are now in position to apply Proposition 2.11 to conclude that
v0 = eiϕvµ for some ϕ ∈ W 1,2(Ω) satisfying eiϕ = 1 on ∂Ω, and the proof
is complete. �

3. The Γ-convergence results

In this section, our main objective is to determine the Γ-limit of the
functional F ηε defined in (2.6) as η ↓ 0 and ε ↓ 0. We introduce F̃ ηε :
L1(Ω)× L1(Ω)→ (−∞,∞] given as

F̃ ηε(u, ψ) :=
{
F ηε (u, ψ)− πd

m |log ε| if (u, ψ) ∈ Hg(Ω) ,
∞ otherwise ,

where F ηε and the class Hg(Ω) are defined in (2.6), (2.7) respectively.
Throughout this section Ω ⊆ R2 denotes a smooth, bounded, and sim-
ply connected domain.
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In a first part, we shall prove that the domain of the Γ-limit is determined
by the class of functions

Lg(Ω) :=
{
u ∈ SBV(Ω; S1) : um = eiϕvµ for some µ ∈ Ad

and ϕ ∈W 1,2(Ω) satisfying eiϕ = 1 on ∂Ω
}
,

where Ad is the family of measures defined in (2.13), and vµ is the canonical
harmonic map associated to µ through (2.14). We emphasize that Lg(Ω) ⊆
SBVp(Ω; S1) for every p ∈ [1, 2) by Corollary 2.4. In turn, the Γ-limit is
given by the functional F0,g : Lg(Ω)→ R defined by

F0,g(u) := E0(u) +H1(Ju) +H1({u 6= g} ∩ ∂Ω
)
,

where we have set for um =: eiϕvµ,

E0(u) := 1
2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm .

In the expression above, γm is a structural constant which is usually inter-
preted as the core energy of a singularity. In our context, it is defined as

(3.1) γm := lim
R→∞

min
{
E1(w,BR)− π

m2 logR : w ∈W 1,2(BR;N ) ,

w(z) = 1
m

(
z

|z|
,
√
m2 − 1

)
on ∂BR

}
.

Existence and finiteness of this limit follows from a classical comparison
argument (see Lemma 3.9, and [13, Lemma III.1]). We also note that the
value of F0,g(u) only depends on u and not on a particular representation
um = eiϕvµ. Indeed, one always has µ = curl j(um) and |∇ϕ| = |∇(vµum)|.
To properly state the Γ-convergence result, it is now convenient to intro-

duce F̃ 0 : L1(Ω)× L1(Ω)→ (−∞,∞] given by

F̃ 0(u, ψ) :=
{
F0,g(u) if u ∈ Lg(Ω) and ψ ≡ 1 ,
∞ otherwise .

Theorem 3.1. — Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. The
sequence of functionals

{
F̃ ηhεh

}
Γ-converges in the strong

[
L1(Ω)

]2-topology
to F̃ 0 as h→∞. More precisely:

(i) If {(uh, ψh)} ⊆ Hg(Ω), {uh} is a bounded sequence in L∞(Ω), and
suph F̃ ηhεh (uh, ψh) < ∞, then there exist a subsequence and u ∈
Lg(Ω) with um =: eiϕvµ such that (uh, ψh) → (u, 1) in L1(Ω),
vh := p(uh) ⇀ um weakly inW 1,p(Ω) for every p < 2 and weakly in
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W 1,2
loc (Ω\sptµ), and the measures µh := curl j(vh) weakly* converge

to µ = curl j(um) in the (C0,1
0 (Ω))∗ topology.

(ii) Under the conclusions of (i),

(3.2) lim inf
h→∞

{
Eεh

(
P(uh)

)
− πd

m
|log εh|

}
> E0(u) ,

and

(3.3) lim inf
h→∞

Iηh(ψh) > H1(Ju) +H1({u 6= g} ∩ ∂Ω
)
.

Moreover, if F̃ 0(u, 1) = limh F̃
ηh
εh

(uh, ψh) < ∞, then p(uh) → um

strongly inW 1,p(Ω) for every p < 2 and strongly inW 1,2
loc (Ω\sptµ),

(3.4) lim
h→∞

Eεh
(
P(uh),Ω \Br(µ)

)
= 1

2m2

∫
Ω\Br(µ)

|∇(um)|2 dx

for every r > 0 ,

and

(3.5) lim
h→∞

Iηh
(
ψh
)

= H1(Ju) +H1({u 6= g} ∩ ∂Ω
)
.

(iii) For every u ∈ Lg(Ω), there exists a sequence {(uh, ψh)} ⊆ Hg(Ω)
such that uh = g on ∂Ω, (uh, ψh) → (u, 1) in L1(Ω), p(uh) → um

strongly inW 1,p(Ω) for every p < 2 and strongly inW 1,2
loc (Ω\sptµ),

and satisfying

lim
h→∞

{
Eεh

(
P(uh)

)
− πd

m
|log εh|

}
= E0(u) ,(3.6)

lim
h→∞

Iηh(ψh) = H1(Ju) +H1({u 6= g} ∩ Ω
)
.(3.7)

We proceed analogously with the sharp interface functionals F 0
ε,g defined

in (2.8), and introduce F̃ 0
ε : L1(Ω)→ (−∞,∞] and F̃ 0 : L1(Ω)→ (−∞,∞]

defined as

F̃ 0
ε(u) :=

F
0
ε,g(u)− πd

m |log ε| if u ∈ Gg(Ω) ,

∞ otherwise ,

and

F̃ 0(u) :=
{
F0,g(u) if u ∈ Lg(Ω) ,
∞ otherwise .

Theorem 3.2. — Let εh ↓ 0 be an arbitrary sequence. The sequence of
functionals

{
F̃ 0
εh

}
h∈N Γ-converges in the strong L1(Ω)-topology to F̃ 0 as

h→∞. More precisely:
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(i) If {uh} ⊆ Gg(Ω), {uh} is bounded in L∞(Ω), and suph F̂ 0
εh

(uh) <
∞, then there exist a subsequence and u ∈ Lg(Ω) with um =:
eiϕvµ such that uh → u in L1(Ω), vh := p(uh) ⇀ um weakly in
W 1,p(Ω) for every p < 2 and weakly in W 1,2

loc (Ω \ sptµ), and the
measures µh := curl j(vh) weakly* converge to µ = curl j(um) in
the (C0,1

0 (Ω))∗ topology.
(ii) If {uh} ⊆ Gg(Ω) is such that uh → u in L1(Ω), then

(3.8) lim inf
h→∞

F̃ 0
εh

(uh) > F̃ 0(u) .

Moreover, if F̃ 0(u) = limh F̃
0
εh

(uh) < ∞, then p(uh) → um

strongly inW 1,p(Ω) for every p < 2 and strongly inW 1,2
loc (Ω\sptµ),

identity (3.4) holds, and for every open set A ⊆ R2 such that
H1(Ju ∩ (Ω ∩ ∂A)

)
+H1({u 6= g} ∩ ∂Ω ∩ ∂A

)
= 0,

(3.9) lim
h→∞

H1(Juh ∩ (Ω ∩A)
)

+H1({uh 6= g} ∩ ∂Ω ∩A
)

= H1(Ju ∩ (Ω ∩A)
)

+H1({u 6= g} ∩ ∂Ω ∩A
)
.

(iii) For every u ∈ Lg(Ω), there exists a sequence {uh} ⊆ Gg(Ω) such
that uh → u in L1(Ω) and

(3.10) lim
h→∞

F̃ 0
εh

(uh) = F̃ 0(u) .

As a standard consequence of these Γ-convergence results, we have the
following corollaries concerning the minimizers of F ηε and F 0

ε,g, whose exis-
tence was proved in Theorems 2.7 and 2.8 respectively (together with the
uniform L∞-bound allowing for compactness).

Corollary 3.3. — Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. For
each h ∈ N, let (uh, ψh) be a minimizer of F ηhεh in Hg(Ω). There exists a
subsequence and a map u minimizing F0,g over Lg(Ω) such that (uh, ψh)→
(u, 1) in L1(Ω), p(uh) → um strongly in W 1,p(Ω) for every p < 2 and
strongly in W 1,2

loc (Ω \ sptµ) where µ := curl j(um). In addition,

F ηhεh (uh, ψh) = πd

m
|log εh|+ F0,g(u) + o(1) as h→∞ .

Corollary 3.4. — Let εh ↓ 0 be an arbitrary sequence. For each h ∈
N, let uh be a minimizer of F 0

εh,g
in Gg(Ω). There exists a subsequence and a

map u minimizing F0,g over Lg(Ω) such that uh → u in L1(Ω), p(uh)→ um

strongly in W 1,p(Ω) for every p < 2 and strongly in W 1,2
loc (Ω \ sptµ) where

µ := curl j(um). In addition,

F 0
εh,g

(uh) = πd

m
|log εh|+ F0,g(u) + o(1) as h→∞ .

TOME 70 (2020), FASCICULE 6



2614 Michael GOLDMAN, Benoit MERLET & Vincent MILLOT

Remark 3.5. — From the definition of F0,g, any minimizer u of F0,g over
Lg(Ω) satisfies um = vµ where µ := curl j(um) (i.e., in any representation
um = eiϕvµ, the phase ϕ is a constant multiple of 2π). As a consequence,

F0,g(u) = 1
m2W(µ) +mdγm +H1(Ju) +H1({u 6= g} ∩ ∂Ω

)
.

The rest of this section if devoted to the proofs of Theorems 3.1 and 3.2.
Starting with Theorem 3.1, compactness, Γ-lim inf, and Γ-lim sup parts
are proved in Subsections 3.1, 3.3, and 3.4 respectively. The proof of The-
orem 3.2 is the object of Subsection 3.5.

3.1. Proof of Theorem 3.1(i): Compactness

Proposition 3.6. — Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. Let
{(uh, ψh)} ⊆ Hg(Ω) be such that {uh} is bounded in L∞(Ω), and

(3.11) sup
h

{
F ηhεh (uh, ψh)− πd

m
|log εh|

}
<∞ .

Then, there exist a subsequence and u ∈ Lg(Ω) with um =: eiϕvµ such that
(i) (uh, ψh)→ (u, 1) strongly in L1(Ω);
(ii) vh := p(uh) ⇀ um weakly in W 1,p(Ω) for every p ∈ [1, 2);
(iii) vh ⇀ um weakly in W 1,2

loc (Ω \ sptµ)
Moreover, µh := curl j(vh) ∈ L1(Ω) converges to µ = curl j(um) in the
weak* topology of (C0,1

0 (Ω))∗.

The proposition above partially rests on the following preliminary lemma.

Lemma 3.7. — Let {(uh, ψh)} ⊆ H(Ω) be such that ψh → 1 a.e. in Ω.
Assume that for some p ∈ (1, 2],

sup
h

{
‖uh‖L∞(Ω) + ‖ψh − 1‖L2(Ω)‖∇ψh‖L2(Ω) +

∥∥∇p(uh)
∥∥
Lp(Ω)

}
<∞ .

Then there exist a subsequence and u ∈ SBVp(Ω) such that P(u) ∈
W 1,p(Ω;N ), uh → u strongly in L1(Ω), and P(uh) ⇀ P(u) weakly in
W 1,p(Ω).

Proof. — By assumption and Cauchy–Schwarz inequality, we have∫
Ω

(1− ψh)|∇ψh|dx 6 C ,
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for some constant C independent of h. According to the co-area formula
(see [4, Theorem 3.40]),∫

Ω
(1− ψh)|∇ψh|dx =

∫ 1

0
(1− t)H1(∂{ψh < t} ∩ Ω

)
dt

>
∫ 3/4

1/4
(1− t)H1(∂{ψh < t} ∩ Ω

)
dt .

Therefore, we can find a level th ∈ (1/4, 3/4) such that∫
Ω

(1− ψh)|∇ψh|dx >
1
4H

1(∂Eh ∩ Ω) , with Eh := {ψh < th} .

Notice that |Eh| → 0 since ψh → 1 a.e. in Ω.
Let us now define

ũh := (1− χEh)uh .
With our choice of Eh, we have that (1 − χEh)/ψh ∈ SBVp(Ω) ∩ L∞(Ω).
Since ψhuh ∈W 1,2(Ω)∩L∞(Ω), we deduce that ũh = (ψhuh)(1−χEh)/ψn ∈
SBVp(Ω) ∩ L∞(Ω) with Jũh ⊆ ∂Eh. Since P(ũh) = (1 − χEh)P(uh) ∈
SBV(Ω; R3), we infer that

|∇ũh| =
∣∣∇(P(ũh))

∣∣ = (1− χEh)
∣∣∇(P(uh))

∣∣ 6 ∣∣∇(P(uh))
∣∣ a.e. in Ω .

Consequently,

(3.12) sup
h

{
‖ũh‖L∞(Ω) + ‖∇ũh‖Lp(Ω) +H1(Jũh)

}
<∞ .

Now select a subsequence such that P(uh) ⇀ w weakly in W 1,p(Ω). In
view of (3.12), we can apply Ambrosio’s compactness theorem in SBV (see
e.g. [4, Theorem 4.8 and Remark 4.9]) to find a further subsequence such
that ũh → u strongly in L1(Ω) for some u ∈ SBVp(Ω) ∩ L∞(Ω). Then,

‖uh − u‖L1(Ω) 6 ‖ũh − u‖L1(Ω) + ‖uh‖L∞(Ω)|Eh| −→
h→∞

0 .

Since P is 1-Lipschitz, we have ‖P(uh)− P(u)‖L1(Ω) 6 ‖uh − u‖L1(Ω), and
thus w = P(u). �

Proof of Proposition 3.6. — Let us first recall (2.4), that is Eεh(P(uh)) =
Gεh(vh) with vh := p(uh). In view of (2.4), assumption (3.11) implies

(3.13) Eεh(vh) 6 πmd|log εh|+ C ,

that is (2.18) holds. In turn, we deduce from (3.11) that

‖ψh − 1‖L2(Ω)‖∇ψh‖L2(Ω) 6
η

2

∫
Ω
|∇ψh|2dx+ 1

2η

∫
Ω

(1− ψh)2dx

= Iηh(ψh) 6 C ,
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for a constant C independent of ηh. Clearly, it implies that ψh → 1 a.e. Ω,
at least for a suitable subsequence. We are thus in position to apply first
Theorem 2.10 to {vh}, and then Lemma 3.7 to {(uh, ψh)} to conclude the
proof. �

Remark 3.8. — We emphasize that, in addition to the conclusions of
Proposition 3.6, assumption (3.11) implies suph Iηh(ψh) <∞.

3.2. Optimal profiles and the constant γm

In this subsection, we first study the core energy associated with one
vortex in the Ginzburg–Landau energies {Eε}. We consider for R > 0 and
ε > 0, the minimum value

(3.14) γm(ε,R) := min
{
Eε(w,BR)− π

m2 log R
ε

: w ∈W 1,2(BR;N ) ,

w(z) = 1
m

(
z

|z|
,
√
m2 − 1

)
on ∂BR

}
.

In view of identity (2.5) defining the functional Gε, the value γm(ε,R) can
be written as

γm(ε,R) = min
{
Gε(v,BR)− π

m2 log R
ε

:

v ∈W 1,2(BR) , v(z) = z

|z|
on ∂BR

}
.

Notice that, by homogeneity,

(3.15) γm(ε,R) = γm(1, R/ε) =: γm(R/ε) .

We start by proving that γm admits a limit as R → ∞. This will be
needed for the lower bounds (3.2) and (3.8).

Lemma 3.9. — The function R 7→ γm(R) is non increasing and the limit

(3.16) γm := lim
R→∞

γm(R)

is finite.

Proof. — The proof of this lemma closely follows the proof of [13, Lem-
ma III.1]. Let us first show that γm is non increasing. Let 0 < R1 < R2, and
consider an admissible competitor w for the minimization problem defining
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γm(R1). We extend w by 0-homogeneity in the annulus BR2 \ BR1 , i.e.,
w(x) = w(R1x/|x|) for x ∈ BR2 \BR1 . By construction w ∈W 1,2(BR2 ;N ),
and it is an admissible competitor for γm(R2). Elementary computations
then yield

E1(w,BR2) = E1(w;BR1) + π

m2 log R2

R1
.

Hence, γm(R2) 6 E1(w;BR1)− π
m2 logR1. Taking the infimum with respect

to w yields γm(R2) 6 γm(R1), so that γm is indeed non increasing. Next,
for an arbitrary w ∈ W 1,2(B1;N ) satisfying w(x) = (1/m)(x,

√
m2 − 1)

on ∂B1, we have w = (1/m)(v,
√
m2 − 1|v|) with v ∈ W 1,2(B1) satisfying

v(x) = x on ∂B1. Consequently, for ε > 0 we have

Eε(w,B1) = Gε(v,B1) > 1
m2Eε(v,B1) > π

m2 log 1
ε
− C ,

for some universal constant C by [13]. In view of (3.15), we infer that
γm(1/ε) is bounded from below, and thus γm > −∞. �

The following lemma and its subsequent corollary will allow us to con-
struct a recovery sequence close to the vortices.

Lemma 3.10. — For every v ∈ W 1,2(B1) satisfying v(x) = x on ∂B1,
there exists a sequence {uk} ⊆ SBV2(B1) such that

(i) p(uk) ∈W 1,2(B1) and p(uk)(x) = x in a neighborhood of ∂B1;
(ii) Juk ⊆ Σk where Σk is a smooth simple curve (i.e., a smooth image

of [0, 1]) contained in B1;
(iii) p(uk)→ v strongly in W 1,2(B1).

Proof.
Step 1. — Since the function ṽ : z 7→ v(x)− x belongs to W 1,2

0 (B1), for
each k ∈ N we can find φk ∈ C∞c (B1) such that ‖ṽ − φk‖W 1,2(B1) 6 2−k.
Implicitly, we extend φk by 0 outside B1. Then, we select a sequence of
radii {rk} ⊆ (3/4, 1) such that rk → 1 as k → ∞, and sptφk ⊆ Brk . By
Morse–Sard Theorem, we can find {ck} ⊆ C with |ck| < (1 − rk)2 such
that ck is a regular value of the mapping x 7→ x + φk(x) for each k ∈ N.
Next, we consider for each k ∈ N a cut-off function χk ∈ C∞(R2; [0, 1])
satisfying χk(x) = 1 for |x| 6 rk, χk(x) = 0 for |x| > (1 + rk)/2, and
(1 − rk)|∇χk| 6 C for a constant C independent of k. Now we define the
smooth function

vk(x) := x+ φk(x)− ckχk(x) ,
which satisfies vk(x) = x in a neighborhood of ∂B1. We estimate

‖vk− v‖W 1,2(B1) 6 ‖ṽ−φk‖W 1,2(B1) + |ck|‖χk‖W 1,2(B1) 6 2−k +C(1− rk) .
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Therefore vk → v strongly in W 1,2(B1) as k →∞.
Step 2. — Let us fix an index k ∈ N. To complete the proof, we shall

produce a map uk ∈ SBV2(B1) such that p(uk) = vk and Juk is contained
in a closed and smooth simple curve. First notice that our choice of ck and
the fact that φk = 0 on B1 \Brk imply that

|vk| > rk − |ck| > 11/16 in B1 \Brk ,

so that {vk = 0} = {vk = 0} ∩ Brk = {x + φk(x) = ck} ∩ Brk is a finite
set. Hence we can find a smooth simple curve Σk contained in B1 such
that Σk ∩ ∂B1 = {ak, bk} with ak, bk the distinct endpoints of Σk, Σk
meets ∂B1 orthogonally at ak and bk, and {vk = 0} ⊆ Σk. In this way,
B1 \ Σk = A1

k ∪ A2
k where A1

k and A2
k are disjoint simply connected open

sets with Lipschitz boundary. Since vk does not vanish in each Ajk, it admits
a smoothm-th root ujk in each Ajk in the sense that p(ujk) = vk in Ajk, which
is continuous up to ∂Ajk. We define

uk(x) := ujk(x) if x ∈ Ajk .

It is then elementary to check that uk ∈ SBV2(B1). By construction,
items (i), (ii), and (iii) hold. �

Corollary 3.11. — Let εh ↓ 0 be an arbitrary sequence. There exist
{uh} ⊆ SBV2(B1)∩L∞(Ω) with ‖uh‖L∞(Ω) 6 1, and a sequence of smooth
simple curves {Σh} ⊆ B1 such that Juh ⊆ Σh for every h ∈ N, p(uh) ∈
W 1,2(Ω), p(uh)(x) = x in a neighborhood of ∂B1, and

lim
h→∞

{
Eεh

(
P(uh), B1

)
− π

m2 |log εh|
}

= γm .

Proof. — Let us fix an arbitrary h ∈ N. Consider wh ∈ W 1,2(B1,N ) a
solution of the minimization problem (3.14) defining γm(εh, 1) (existence
easily follows from the direct method of calculus of variations), and write
wh = (1/m)(vh, |vh|

√
m2 − 1) with vh ∈ W 1,2(B1). We apply Lemma 3.10

to vh to produce a sequence {uk} and curves {Σk}. The convergence prop-
erty (iii) in Lemma 3.10 implies that Eεh

(
P(uk)

)
→ Eεh(wh) as k → ∞.

Hence, we can find kh ∈ N such that, setting ũh := ukh and Σh :=
Σkh , one has Jũh ⊆ Σh and Eεh

(
P(ũh)

)
6 Eεh(wh) + εh. Setting uh :=

ũh/max
(
1, |ũh|

)
, we observe that uh ∈ SBV2(B1), ‖uh‖L∞(Ω) 6 1, and

Juh ⊆ Jũh ⊆ Σh. As in (2.10) we have p(uh) = p(ũh)/max
(
1, |p(ũh)|

)
, and

we infer that p(uh) ∈ W 1,2(Ω), p(uh)(x) = x in a neighborhood of ∂B1,
and

γm(εh, 1) 6 Eεh
(
P(uh)

)
6 Eεh

(
P(ũh)

)
6 Eεh(wh) + εh .
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Since Eεh(wh) = γm(εh, 1)→ γm as h→∞ by (3.15) and Lemma 3.9, the
conclusion follows. �

To close this section, we characterize the optimal one dimensional profile
related to the energy Iη. This will be important to go from a recovery
sequence for the sharp interface functional F 0

ε,g to a recovery sequence of
the diffuse interface functional F ηε .

Lemma 3.12. — For every η > 0,

min
{
I1D
η (ψ) := η

2

∫
R
|ψ′(s)|2 ds+ 1

2η

∫
R

(1− ψ(s))2 ds : ψ(0) = 0
}

= 1 .

The minimum is uniquely achieved by ψη(s) := ψ?(s/η) with ψ?(s) =
1− e−|s|.

Proof. — By rescaling, we may assume without loss of generality that
η = 1. Write

Φ(t) := (1− |t|)2/2 =
∫ 1

|t|
(1− s) ds .

Let ψ : R → R be such that ψ(0) = 0 and I1D
1 (ψ) < ∞. First, notice

that the condition I1D
1 (ψ) < ∞ implies that lims→±∞ ψ(s) = 1. Then, by

Cauchy–Schwarz and Young inequalities, we have

I1D
1 (ψ) >

∫
R
|1− ψ(s)| |ψ′(s)|ds =

∫ 0

−∞

∣∣(Φ ◦ ψ)′
∣∣ ds+

∫ ∞
0

∣∣(Φ ◦ ψ)′
∣∣ ds

> 2(Φ(0)− Φ(1)) = 1 .
We have equality in the above chain of inequalities if and only if |ψ′| =
|1 − ψ|. Using ψ(0) = 0 and the condition

∫
R |ψ

′|2 ds < ∞ leads to the
optimal profile ψ?. �

3.3. Proof of Theorem 3.1(ii): The Γ-lim inf inequality

Proposition 3.13. — Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. If
{(uh, ψh)} ⊆ Hg(Ω) is such that (uh, ψh)→ (u, ψ) in L1(Ω), then

(3.17) F̃ 0(u, ψ) 6 lim inf
h→∞

F̃ ηhεh (uh, ψh) .

In addition,
(i) if the liminf is finite, then u ∈ Lg(Ω), ψ ≡ 1, and (3.2)–(3.3) hold;
(ii) if equality holds and the liminf is a finite limit, then p(uh) converges

to um =: eiϕvµ strongly in W 1,p(Ω) for every p < 2 and strongly in
W 1,2

loc (Ω \ sptµ), and (3.4)–(3.5) hold.
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Proof. — Without loss of generality, we may assume that

(3.18) lim inf
h→∞

F̃ ηhεh (uh, ψh) = lim
h→∞

F̃ ηhεh (uh, ψh) <∞ .

We may also assume that ‖uh‖L∞(Ω) 6 1. Indeed, on the first hand (3.18)
clearly implies that |u| = 1. On the other hand, the truncation argument
used in the proof of Theorem 2.7 shows that replacing uh by ûh given
by (2.9) does not increase the energy. Moreover,

(3.19) ‖uh − ûh‖L1(Ω) 6 ‖|uh| − 1‖L1(Ω) 6 ‖uh − u‖L1(Ω) ,

so that ûh → u in L1(Ω). Hence (uh, ψh) can be replaced by (ûh, ψh).
Next, we apply Theorem 3.6 to extract a further subsequence to obtain

all the conclusions of that theorem. As a consequence, ψ = 1 and u ∈ Lg(Ω)
with um = eiϕvµ. We have to show that

(3.20) F0,g(u) 6 lim
h→∞

F̃ ηhεh (uh, ψh) .

We shall prove this inequality in several steps.
Step 1. — We first claim that (3.3) holds. By Remark 3.8, suph Iηh(ψh)<

∞. We consider the larger domain Ω̃ defined in (2.11), as

Ω̃ :=
{
x ∈ R2 : dist(x,Ω) < r0

}
,

for r0 small enough and we recall that the nearest point projection Π on
∂Ω is well defined and smooth in Ω̃ \Ω. We extend (uh, ψh) and u to Ω̃ by
setting for x ∈ Ω̃ \ Ω, ψh(x) = 1, uh(x) = g

(
Π(x)

)
, and u(x) = g

(
Π(x)

)
.

Then, it is elementary to check that (uh, ψh) ∈ H(Ω̃) and u ∈ SBVp(Ω̃) for
every p < 2. In addition, P(uh) ⇀ P(u) weakly in W 1,p(Ω̃) for every p < 2,
and∫

Ω̃
(1− ψh)|∇ψh|dx 6

ηh
2

∫
Ω̃
|∇ψh|2 dx+ 1

2ηh

∫
Ω̃

(1− ψh)2 dx

= Iηh(ψh) 6 C .

Next, consider some arbitrary δ ∈ (0, 1/2). Arguing as in the proof of
Lemma 3.7, ∫ 1−δ

δ

(1− t)H1(∂{ψh < t} ∩ Ω̃
)

dt 6 Iηh(ψh) ,

so that we can find a level th ∈ (δ, 1− δ) such that

(3.21) 1− 2δ
2 H1(∂Eh ∩ Ω̃) 6 Iηh(ψh) with Eh := {ψh < th} .

Notice that Eh ⊆ Ω, and |Eh| → 0 since ψh → 1 in L1(Ω).
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Fix some p ∈ (1, 2). Defining

ũh := (1− χEh)uh ,

we argue as in the proof of Lemma 3.7 to show that ũh ∈ SBVp(Ω̃) ∩
L∞(Ω̃) with Jũh ⊆ ∂Eh, and that ũh → u in L1(Ω̃). Moreover, |∇ũh| 6∣∣∇(P(uh))

∣∣ a.e. in Ω̃, so that {∇ũh} is bounded in Lp(Ω̃). By [17, Theo-
rem 1], we have

lim inf
h→∞

{
δ

∫
Ω̃
|∇ũh|p dx+ 1− 2δ

2 H1(∂Eh ∩ Ω̃)
}

> δ
∫

Ω̃
|∇ũ|p dx+ (1− 2δ)H1(Ju ∩ Ω̃) ,

and thus
H1(Ju ∩ Ω̃) 6 lim inf

h→∞

1
2H

1(∂Eh ∩ Ω̃) + Cδ .

Inserting this inequality in (3.21) and letting δ ↓ 0, we conclude that

lim inf
h→∞

Iηh(ψh) > H1(Ju ∩ Ω̃) .

Since u = g ◦ Π in Ω̃ \ Ω, we have Ju ⊆ Ω, and thus H1(Ju ∩ Ω̃) =
H1(Ju ∩ Ω) +H1({u 6= g} ∩ ∂Ω

)
, and inequality (3.3) follows.

Step 2. — We now prove the lower bound (3.2). Note that putting (3.2)
and (3.3) together leads to (3.20). First, we recall that (3.18) implies (2.18)
with vh := p(uh) (by means of (2.4)). Then the proof of (3.2) follows very
closely the ones of [2, Theorem 5.3] and [24, Lemma 4.1.1] for the classical
Ginzburg–Landau functional. We provide a quite detailed proof for the
reader’s convenience. Write µ = 2π

∑md
k=1 xk, and choose σ > 0 in such a

way that the balls Bσ(xk) are contained inside Ω and are pairwise disjoint.
Set

K :=
{
vα : C \ {0} → S1 defined as v(z) = α

z

|z|
: α ∈ S1

}
.

For each k ∈ {1, . . . ,md}, our aim is to prove that either vh is W 1,2-close
to K on ∂Bσ(xk), or it has “large” energy. We define for t ∈ (0, σ] and
w ∈W 1,2(Bt \Bt/2),

dt(w,K) := min
{
‖w − v‖W 1,2(Bt\Bt/2) : v ∈ K

}
.

It is proven in [2] that for a given δ ∈ (0, 1), there exists a constant cδ > 0
independent of t such that the condition lim infh dt(vh( · + xk),K) > δ

implies

(3.22) lim inf
h→∞

1
2

∫
Bt(xk)\Bt/2(xk)

|∇vh|2 dx > π log 2 + cδ .
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Now let L ∈ N be such that
Lcδ
m2 >

1
2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm −
πd

m
log σ − C∗

m2 ,

where cδ is the constant from (3.22), and C∗ is the constant from (2.19).
For l ∈ {1, . . . , L} we write Cl(xk) := B21−lσ(xk) \B2−lσ(xk). By the weak
W 1,2

loc (Ω \ sptµ) convergence of vh to um = eiϕvµ, we have for each k and l,

(3.23) lim inf
h→∞

1
2

∫
Cl(xk)

|∇vh|2 dx > 1
2

∫
Cl(xk)

|∇ϕ|2 + |∇vµ|2 dx > π log 2 .

We now have to distinguish two different cases.
Case 1. — For h large enough, and for each 1 6 l 6 L, there exists at

least one kl ∈ {1, . . . ,md} such that d21−lσ(uh( · + xkl),K) > δ. Then, we
estimate

Eεh
(
P (uh)

)
− πd

m
|log εh| >

1
m2Eεh(vh)− πd

m
|log εh|

>
1
m2

{
Eεh(vh, B2−Lσ(µ))− πdm|log εh|

}
+ 1
m2

L∑
l=1

md∑
k=1

1
2

∫
Cl(xk)

|∇vh|2 dx .

Taking the liminf in h, and combining (2.19), (3.22), and (3.23) yields

lim inf
h→∞

{
Eεh

(
P (uh)

)
− πd

m
|log εh|

}
>
πd

m
log σ

2L + C∗
m2 + L

m2 (πdm log 2 + cδ)

= πd

m
log σ + C∗

m2 + Lcδ
m2

>
1

2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm ,(3.24)

and thus (3.2) holds.
Case 2. — For a subsequence there exists l ∈ {1, . . . , L} such that,

setting σ := 21−lσ, dσ(uh( · + xk),K) < δ for every k ∈ {1, . . . ,md}. Let
us prove that for εh small enough,

(3.25) Gεh
(
vh, Bσ(µ)

)
− πd

m
log σ

εh
> mdγm(εh, σ)− Cσδ ,

where, here and below, Cσ denotes a nonnegative number depending on
σ but not on h or δ. To establish this inequality, we shall modify vh in
Bσ(µ) without increasing the energy too much, and in such a way that it is
admissible for (3.16). We can proceed on each ball Bσ(xk) separately, and
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we may assume without loss of generality that xk = 0. Up to a rotation,
we can even assume that

(3.26)
∫
Bσ\Bσ/2

∣∣∇vh −∇(eiθ)
∣∣2 dx 6 δ2 ,

where θ(x) denotes the argument of x/|x|. As (2.18) holds, we infer from
(2.19) in Theorem 2.10 that∫

B3σ/4\Bσ/2
|∇vh|2 + 1

ε2
h

(1− |vh|2)2 dx 6 Cσ .

Therefore, for every h we can find σ̃h ∈ [σ/2, 3σ/4] for which

(3.27)
∫
∂Bσ̃h

|∇vh|2 + 1
ε2
h

(1− |vh|2)2 dH1 6 Cσ ,

and

(3.28)
∫
∂Bσ̃h

∣∣∇vh −∇(eiθ)
∣∣2 dH1 6 Cσδ

2 .

From (3.28) we first derive∫
∂Bσ̃h

|∇vh|2 dH1 =
∫
∂Bσ̃h

∣∣∇vh −∇(eiθ) +∇(eiθ)
∣∣2 dH1

6
1 + δ

δ

∫
∂Bσ̃h

∣∣∇vh −∇(eiθ)
∣∣2 dH1

+ (1 + δ)
∫
∂Bσ̃h

∣∣∇(eiθ)
∣∣2 dH1

6 Cσδ + 2π
σ̃h

(1 + δ) 6 Cσδ + 2π
σ̃h

.(3.29)

Next, by a scaling argument, one obtains

‖|u| − 1‖2L∞(∂Br) . Cεh

∫
∂Br

|∇u|2 + 1
ε2
h

(1− |u|2)2 dH1

for every εh 6 r and u ∈W 1,2(∂Br). Hence, (3.27) yields

(3.30) ‖|vh| − 1‖L∞(∂Bσ̃h ) 6 Cσε
1/2
h .

We can thus write vh = ρhe
iθh on ∂Bσ̃h . Moreover, we have deg(vh, ∂Bσ̃h) =

1 by (3.28), so that θh− θ can be chosen to be single valued. Let us extend
ρh and θh by zero homogeneity outside Bσ̃h . For εh small enough, we set
σ̂h := σ̃h + ε

1/2
h , and we define ṽh in Bσ̂h as

ṽh(x) :=

vh(x) in Bσ̃h ,(
ρh(x) σ̂h−|x|σ̂h−σ̃h + |x|−σ̃h

σ̂h−σ̃h

)
eiθh(x) in Bσ̂h \Bσ̃h .

TOME 70 (2020), FASCICULE 6



2624 Michael GOLDMAN, Benoit MERLET & Vincent MILLOT

From (3.27) and (3.30) we infer that

(3.31) Gεh(ṽh, Bσ̂h \Bσ̃h) 6 Cσε1/2
h .

In turn, (3.29) and (3.30) yield, for εh small enough,

(3.32)
∫
∂Bσ̂h

|∇ṽh|2 dH1 6 Cσδ + 2π
σ̂h

.

We now are left to define ṽh in Bσ \Bσ̂h . We define for x ∈ Bσ \Bσ̂h ,

θ̂h(x) := σ − |x|
σ − σ̂h

θh + |x| − σ̂h
σ − σ̂h

θ ,

i.e., the linear interpolation between θh(x) and θ(x). Setting ṽh(x) :=
eiθ̂h(x) in Bσ \ Bσ̂h , it can be proven by means of (3.32) and elementary
computations (see [24, Lemma 4.1.1]) that∫

Bσ\Bσ̂h
|∇ṽh|2 dx 6 2π log σ

σ̂h
+ Cσδ .

Combining this last inequality with (3.31), we first derive

Gεh(vh, Bσ)
= Gεh(ṽh, Bσ) +Gεh(vh, Bσ \Bσ̃h)−Gεh(ṽh, Bσ \Bσ̃h)

> Gεh(ṽh, Bσ) + 1
2m2

∫
Bσ\Bσ̂h

|∇vh|2 − |∇ṽh|2 dx−Gεh(ṽh, Bσ̂h \Bσ̃h)

> Gεh(ṽh, Bσ) + 1
2m2

(∫
Bσ\Bσ̂h

|∇vh|2 dx− 2π log σ

σ̂h

)
− Cσ(δ + ε

1/2
h ) .

From (3.26) we then obtain∫
Bσ\Bσ̂h

|∇vh|2 dx

>
∫
Bσ\Bσ̂h

∣∣∇(eiθ)
∣∣2 dx+

∫
Bσ\Bσ̂h

∣∣∇vh −∇(eiθ)
∣∣2 dx

− 2
(∫

Bσ\Bσ̂h

∣∣∇(eiθ)
∣∣2 dx

)1/2(∫
Bσ\Bσ̂h

∣∣∇vh −∇(eiθ)
∣∣2 dx

)1/2

> 2π log σ

σ̂h
− Cσδ ,

and we deduce that for εh small enough,

Gεh(vh, Bσ) > Gεh(ṽh, Bσ)− Cσ(δ + ε
1/2
h ) .

ANNALES DE L’INSTITUT FOURIER



A G.L. MODEL WITH FREE DISCONTINUITIES 2625

By the definition of γm(ε, σ) (see (3.14)), we conclude that for εh small,

Gεh(vh, Bσ)− π

m2 log σ

εh
> γm(εh, σ)− Cσ(δ + ε

1/2
h ) ,

which proves (3.25).
We can now complete the proof of (3.2). Indeed, by (3.25) and the con-

vergence of vh towards eiϕvµ in the weak W 1,2
loc (Ω \ sptµ) topology,

(3.33) lim inf
h→∞

{
Gεh(vh)− πd

m
|log εh|

}
= lim inf

h→∞

{
Gεh
(
vh,Ω\Bσ(µ)

)
− πd

m
|log σ|+Gεh(vh, Bσ(µ))− πd

m
log σ

εh

}
> lim inf

h→∞

{
Gεh
(
vh,Ω\Bσ(µ)

)
− πd

m
|log σ|

}
+md lim

h→∞
γm(εh, σ)− Cσδ

>
1

2m2

∫
Ω\Bσ(µ)

|∇(eiϕvµ)|2 dx− πd

m
|log σ|+mdγm − Cσδ ,

where the last inequality follows from (3.15) and Lemma 3.9. In view of
Proposition 2.11, letting first δ ↓ 0 and then σ ↓ 0 leads to (3.2).
Step 3. — In order to complete the proof, let us show that if equality

holds in (3.17), then (3.4) and (3.5) hold. Note that (3.4) rewrites as

(3.34) lim
h→∞

Gεh
(
vh,Ω\Br(µ)

)
= 1

2m2

∫
Ω\Br(µ)

|∇(eiϕvµ)|2 dx ∀ r > 0 ,

which, combined with the weak convergence of {vh} in W 1,2
loc (Ω \ sptµ) to

eiϕvµ, classically leads to its strong convergence in W 1,2
loc (Ω \ sptµ).

From (3.2) and (3.3) we first infer that

lim
h→∞

Iηh(ψh) = H1(Ju) +H1({u 6= g} ∩ ∂Ω
)
,

and

lim
h→∞

{
Gεh(vh)− πd

m
|log εh|

}
= 1

2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm .

In view of (3.24), Case 2 in Step 2 above must hold. We argue by contradic-
tion assuming that (3.34) does not hold. Then we can find a subsequence,
σ0 > 0, and η0 > 0 such that

lim inf
h→∞

Gεh
(
vh,Ω \Bσ0(µ)

)
>

1
2m2

∫
Ω\Bσ0 (µ)

|∇(eiϕvµ)|2 dx+ η0 .
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By lower semi-continuity of the Dirichlet energy, the same inequality holds
for every σ ∈ (0, σ0). Then, for σ and δ small enough, we have by (3.33),

1
2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm = lim
h→∞

{
Gεh(vh)− πd

m
|log εh|

}
>

1
2m2

∫
Ω\Bσ(µ)

|∇(eiϕvµ)|2 dx− πd

m
|log σ|+mdγm − Cσδ + η0 ,

where σ is determined from σ as in Case 2 above. Using Proposition 2.11
again, we let δ → 0 and then σ → 0 to reach a contradiction.
To conclude, it only remains to prove that vh → eiϕvµ strongly in

W 1,p(Ω) for every p < 2. Fix an arbitrary p ∈ (1, 2). Since {|∇vh|p}
is bounded in L1(Ω), we can extract a further subsequence such that
|∇vh|p ⇀ |∇(eiϕvµ)|p+ν∗ weakly* as measures for some non negative finite
measure ν∗ on Ω. From the strong convergence of vh in W 1,2

loc (Ω \ sptµ), we
infer that spt ν∗ ⊆ sptµ. Since {∇vh} is also bounded in Lq(Ω) for every
q ∈ (p, 2), we have by Hölder’s inequality

ν∗(Ω) 6 lim inf
h→∞

∫
Br(µ)

|∇vh|p dx 6 Cr2(1−p/q)

for every r > 0 and q ∈ (p, 2) .

Letting r ↓ 0 we deduce that ν∗ ≡ 0 which together with the weak conver-
gence in W 1,p(Ω) of vh towards eiϕvµ concludes the proof. �

3.4. Proof of Theorem 3.1(iii): Construction of recovery
sequences

In this section we prove the Γ−limsup inequality.

Proposition 3.14. — Let εh ↓ 0 and ηh ↓ 0 be arbitrary sequences. For
every u ∈ Lg(Ω) with um =: eiϕvµ, there exists a sequence {(uh, ψh)} ⊆
Hg(Ω) such that {uh} ⊆ SBV2(Ω), and

(i) (uh, ψh)→ (u, 1) strongly in L1(Ω);
(ii) p(uh) → um strongly in W 1,2

loc (Ω \ sptµ) and W 1,p(Ω) for every
p < 2;

(iii) (3.6) and (3.7) hold.
Moreover, we can choose uh such that

(3.35) lim
h→∞

H1(Juh) = H1(Ju) +H1({u 6= g} ∩ ∂Ω
)
.
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The proof of Proposition 3.14 relies on a suitable approximation proce-
dure showing that maps in Lg(Ω) having a compact jump set lying at a
positive distance from the boundary are dense in energy. This is the purpose
of the following section. The proof of Proposition 3.14 is then performed in
Section 3.4.2.

3.4.1. Some density results

Lemma 3.15. — Let u ∈ Lg(Ω) with um =: eiϕvµ and µ = 2π
∑md
k=1 δxk .

For every δ > 0, there exists u∗ ∈ Lg(Ω) and constants ξ1, . . . , ξmd ∈ S1

such that
(i) dist(Ju∗ , ∂Ω) > 0, u∗ = g on ∂Ω, and curl j(um∗ ) = µ;
(ii) um∗ (x) = ξk

x−xk
|x−xk| in a neighborhood of xk for each k ∈ {1, . . . ,md};

(iii) ‖u− u∗‖L1(Ω) < δ and E0(u∗) < E0(u) + δ;
(iv) H1(Ju∗) < H1(Ju) +H1 ({u 6= g} ∩ ∂Ω) + δ.

Remark 3.16. — If one considers δk ↓ 0 and {uk} ⊆ Lg(Ω) the corre-
sponding sequence provided by Lemma 3.15, then umk → um strongly in
W 1,p(Ω) for every p < 2. Indeed, writing umk = eiϕkvµ, item (iii) implies
the strong convergence of {∇ϕk} in L2(Ω), which in turn yields the strong
convergence of {umk } in W 1,p(Ω).
Proof of Lemma 3.15.
Step 1. — We start by modifying u in such a way that (i), (iii), and (iv)

hold. We proceed as follows. We consider the larger domain Ω̃ defined
in (2.11), and we recall that the nearest point projection Π on ∂Ω is well
defined and smooth in {x : dist(x, ∂Ω) < 2r0}. Denote by dΩ : R2 →
R the signed distance to ∂Ω, i.e., dΩ(x) := dist(x, ∂Ω) for x ∈ R2 \ Ω,
and dΩ(x) := −dist(x, ∂Ω) for x ∈ Ω. Note that dΩ is smooth in {x :
dist(x, ∂Ω) < 2r0}. Next we consider a smooth vector field X ∈ C∞c (Ω̃ \
sptµ; R2) satisfying X = ∇dΩ in {x : dist(x, ∂Ω) < r0/2}, and we fix
σ ∈ (0, r0/2) such that spt X ⊆ Ω̃ \ Bσ(µ). We denote by {φt}t∈R the
integral flow on R2 generated by X. Then spt(φt − id) ⊆ Ω̃ \ Bσ(µ) for
every t ∈ R, so that {φt}t∈R defines a one parameter family of smooth
diffeomorphisms from Ω̃ \Bσ(µ) onto Ω̃ \Bσ(µ).
We extend u to Ω̃ by setting u(x) := g

(
Π(x)

)
for x ∈ Ω̃ \Ω. Then we set

ut := u ◦ φt, and we consider the restriction of ut to Ω. By construction,
for every t > 0 we have ut ∈ Lg(Ω), ut = g on ∂Ω, ut = u in Bσ(µ), and
dist(Jut , ∂Ω) > 0. Moreover, as t ↓ 0, we have ut → u weakly* in BV (Ω),
∇ut → ∇u strongly in L2(Ω \Bσ(µ)), and

H1(Jut)→ H1(Ju) +H1 ({u 6= g} ∩ ∂Ω) .
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Given δ > 0, we can then choose t > 0 small enough so that ut satisfies (i),
(iii), and (iv) of Lemma 3.15.
Step 2. — To complete the proof, we shall modify further ut in Bσ(µ)

to achieve property (ii). Fix σ′ ∈ (0, σ) such that 2σ′ < min{|xk − xl| :
1 6 k < l 6 md}. From the specific form of vµ (see (2.14)), for each
k ∈ {1, . . . , dm} there exists ψk ∈W 1,2(Bσ′(xk)) such that

um(x) = eimψk(x) x− xk
|x− xk|

for x ∈ Bσ′(xk) .

For ρ > 0 and θ ∈ [0, 2π) we set qm(ρeiθ) := ρeiθ/m, and define ϑk(x) :=
qm((x − xk)/|x − xk|) for x ∈ Bσ′(xk). Since curl j(ϑmk ) = µ = curl j(um)
in Bσ′(xk) and p(ϑkeiψk) = p(u), we can invoke Lemma 2.6 to infer that
there exists ûk ∈ SBV(Bσ′(xk),Gm) such that

u = ûkϑke
iψk in Bσ′(xk) .

We now fix a cut-off function χ ∈ C∞c (B1, [0, 1]) such that, χ ≡ 1 in B1/2,
and we set χk,r(x) := χ((x−xk)/r) for r > 0. We define for k ∈ {1, . . . ,md}
and r ∈ (0, σ′),

uk,r(x) := ûk(x)ϑk(x) exp
(
iψk(x) + iχk,r(x)

(
ψk,r − ψk(x)

))
for x ∈ Bσ′(xk) ,

where ψk,r denotes the mean value

ψk,r := 1
πr2

∫
Br(xk)

ψk(x) dx .

By construction, we have

umk,r(x) = ξk,r
x− xk
|x− xk|

for x ∈ Br/2(xk) ,

with ξk,r := exp(imψk,r), and uk,r = u = ut in Bσ′(xk) \ Br(xk). Finally,
we set

u∗(x) :=
{
uk,r(x) if x ∈ Bσ′(xk) ,
ut(x) if x ∈ Ω \Bσ′(µ) .

By means of Poincaré’s inequality (and Step 1), it is standard to check that
for r small enough, u∗ complies to all the requirements of the lemma. �

Now we show that we can substitute to u∗ a mapping u] with a compact
jump set.
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Lemma 3.17. — Let u∗ ∈ Lg(Ω) be such that dist(Ju∗ , ∂Ω) > 0. For
every δ > 0, there exist u] ∈ Lg(Ω), a compact set K ⊆ Ω, and σ > 0 such
that

(i) ‖u] − u∗‖L1(Ω) 6 δ, um] = um∗ , and H1(Ju] \ Ju∗) = 0;
(ii) H1(K4Ju]) = 0;
(iii) H1(K ∩Br(x)

)
> r for every x ∈ K and every r ∈ (0, σ).

Proof.
Step 1. — Given a parameter λ > 1, we consider the class of maps

A :=
{
u ∈ Lg(Ω) : um = um∗ , H1(Ju \ Ju∗) = 0

}
,

and the functional Aλ : A → [0,∞) defined by

Aλ(u) := H1(Ju) + λ

∫
Ω
|u− u∗|2 dx .

We claim that Aλ admits at least one minimizer uλ ∈ A . Indeed, |∇u| =∣∣∇(P(u∗)
∣∣ = |∇u∗| for every u ∈ A , so that {∇u : u ∈ A } is bounded in

Lp(Ω) for every p < 2. Obviously, if {uk} ⊆ A is a minimizing sequence,
then Aλ(uk) is bounded. By the compactness theorem for SBV functions [4,
Theorems 4.7 and 4.8, and Remark 4.9], we can find uλ ∈ SBV(Ω) and a
subsequence such that uk → uλ in L1(Ω) and a.e. in Ω, and satisfying
Aλ(uλ) 6 lim infk Aλ(uk). From the pointwise convergence we infer that
uλ is S1-valued, and umλ = um∗ . Moreover, the sequence of positive mea-
sures {H1 Juk} weakly* converges towards H1 Juλ . Since H1 Juk 6
H1 Ju∗ , we have H1 Juλ(U) 6 lim infkH1 Juk(U) 6 H1 Ju∗(U) for
every open set U ⊆ Ω. By outer regularity, we deduce that H1 Juλ 6
H1 Ju∗ . Hence uλ ∈ A , and thus uλ is a minimizer of Aλ.

Noticing that Aλ(uλ) 6 Aλ(u∗) and H1(Juλ) 6 H1(Ju∗), we now deduce
that uλ → u∗ in L1(Ω) as λ→∞. Given δ > 0, we choose λ large enough
so that (i) holds with u] := uλ. To complete the proof, we have to find a
compact set K and σ > 0 such that (ii) and (iii) hold. This is the purpose
of the next steps.
Step 2. — Write curl j(um∗ ) =: µ = 2π

∑md
k=1 δxk , and set

σ := min
(

1
8λ , dist(Ju∗ , ∂Ω) , 1

2 min
{
|xk − xl| : 1 6 k < l 6 md

})
.

We claim that for H1-a.e. x ∈ Ju] , there holds

(3.36) H1(Ju] ∩Br(x)
)
> r for every r ∈ (0, σ) .

Let us first recall that for H1-a.e. x ∈ Ju] ,

(3.37) H1(Ju] ∩Br(x)
)
> 0 for every r ∈ (0, σ) .
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Hence, it is enough to establish (3.36) at every x ∈ Ju] \ sptµ such
that (3.37) holds. Let us fix such a point x and without loss of gener-
ality let us assume x = 0. Setting σ0 := min

(
σ, dist(0, sptµ)

)
, we shall

distinguish the two cases r ∈ (0, σ0] and r ∈ (σ0, σ).
Case 1: r ∈ (0, σ0]. — Since Bσ0 ⊆ Ω \ spt µ and um] = um∗ , we have

curl j(u]) = 0 in D ′(Bσ0) by Lemma 2.3. Applying Lemma 2.6 in the ball
Bσ0 (with u1 = 1 and u2 = u]), we obtain a function ϕ ∈ W 1,1(Bσ0) and
a Caccioppoli partition {Ek}m−1

k=0 of the ball Bσ0 such that

u] =
(
m−1∑
k=0

akχEk

)
eiϕ in Bσ0 .

Since ϕ ∈W 1,1(Bσ0), we have

Ju] ∩Bσ0 =
m−1⋃
k=0

∂Ek up to an H1-null set ,

where ∂Ek denotes the reduced boundary of Ek in Bσ0 . Moreover (see [4,
Remark 4.22]),

(3.38) H1(Ju] ∩Br) = 1
2

m−1∑
k=0
H1(∂Ek ∩Br) for every r ∈ (0, σ0) .

Before going any further, let us recall a slicing property of sets of finite
perimeter (see e.g. [4, Chapter 3, Section 3.11] for further details). For a
Borel set E ⊆ R2, we first denote by E1 the (Borel) set of points of density
1 for E, i.e.,

E1 :=
{
y ∈ R2 : lim

ρ↓0

|E ∩Bρ(y)|
πρ2 = 1

}
.

For r > 0, we write Er := E1∩∂Br, and we consider Er as a subset of ∂Br
(in particular, ∂Er and int(Er) denote the relative boundary and relative
interior of Er in ∂Br, respectively). If E ⊆ R2 has a finite perimeter, then
for a.e. r > 0 the following properties hold:

(3.39) ∂Er is finite and is equal to ∂E ∩ ∂Br .

We point out that since {Ek} is a Caccioppoli partition of Bσ0 , by [4,
Theorem 4.17]

(3.40) Bσ0 =
m−1⋃
k=0

E1
k ∪

m−1⋃
k=0

∂Ek up to an H1-null set .
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For almost all radii r ∈ (0, σ0), (3.39) holds for each Ek, k ∈ {0, . . . ,
m− 1}. We claim that for such radii

(3.41)
m−1∑
k=0
H0(∂Ek ∩ ∂Br) > 2.

To prove (3.41), let us fix such a r and assume by contradiction that

∂Ek ∩ ∂Br = ∂(Ek)r = ∅ for every k ∈ {0, . . . ,m− 1} .

Then each (Ek)r is either equal to ∂Br or empty, in particular H1(Ek ∩
∂Br) ∈ {0, 2πr}. Since H1(∂Ek ∩ ∂Br) = 0 for each k by (3.39), we in-
fer from (3.40) that H1(Ekr ∩ ∂Br) = 2πr for exactly one index kr ∈
{0, . . . ,m− 1}. Consequently, every point of ∂Br is a point of density 1 for
Ekr , and of density 0 for Ek with k 6= kr. We then introduce the competitor

ũ := akreiϕ in Br , ũ := u] in Ω \Br .

By construction Jũ \ Br = Ju] \ Br and Jũ ∩ Br = ∅, so that ũ is an
admissible competitor. By optimality of u], we have Aλ(ũ) > Aλ(u]). Using
that

|ũ−u∗|2−|u]−u∗|2 = (|ũ− u∗|+ |u] − u∗|) (|ũ− u∗| − |u] − u∗|) 6 4|ũ−u]|

(since |ũ| = |u∗| = |u]| = 1), we compute

0 6 Aλ(ũ)−Aλ(u]) = λ

∫
Br

|ũ− u∗|2 − |u] − u∗|2 dx−H1(Ju] ∩Br)

6 4λ
∫
Br

|ũ− u]|dx−H1(Ju] ∩Br)

= 4λ
∑
k 6=kr

|1− ak−kr ||Ek ∩Br| −
1
2

m−1∑
k=0
H1(∂Ek ∩Br)

6
1
2
∑
k 6=kr

{
16λ|Ek ∩Br| − H1(∂Ek ∩Br)

}
.

Since H1(∂Ek ∩ ∂Br) = 0 and (Ek)1 ∩ ∂Br = ∅ for k 6= kr, we infer that
Ek ∩ Br has finite perimeter and ∂(Ek ∩ Br) = ∂Ek ∩ Br for k 6= kr.
Therefore, ∑

k 6=kr

{
16λ|Ek ∩Br| − H1(∂(Ek ∩Br)

)}
> 0 .

By the (two dimensional) isoperimetric inequality, we have

|Ek ∩Br| 6
√
|Br|

√
|Ek ∩Br| 6

r

2H
1(∂(Ek ∩Br)

)
,
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so that
(8λr − 1)

∑
k 6=kr

H1(∂(Ek ∩Br)
)
> 0 .

Since r < σ 6 (8λ)−1, the prefactor above is negative, and we deduce that
H1(∂(Ek ∩ Br)) = 0 for each k 6= kr. As a consequence Br ⊆ E1

kr
, so that

u] = ũ . In particular,H1(Ju]∩Br) = 0 which contradicts (3.37), and (3.41)
is proved.
By (3.41), we can now infer from the coarea formula (see [47, Theo-

rem II.7.7] for instance) that r ∈ (0, σ0]

m−1∑
k=0
H1(∂Ek ∩Br) >

m−1∑
k=0

∫ r

0
H0(∂Ek ∩ ∂Bt) dt

=
∫ r

0

m−1∑
k=0
H0(∂Ek ∩ ∂Bt) dt > 2r.

Combining this inequality with (3.38) yields (3.36) for every r ∈ (0, σ0].
Case 2: r ∈ (σ0, σ). — In this case, we must have σ0 < σ, so that

σ0 = dist(0, sptµ) and Bσ ∩ sptµ 6= ∅. Our choice of σ then implies that
Bσ ∩ sptµ is reduced to a singleton, i.e., there exists k0 ∈ {0, . . . ,m − 1}
such that Bσ ∩ sptµ = {xk0}. Moreover, xk0 ∈ ∂Bσ0 .
By the definition of Lg(Ω) and the slicing properties of BV -functions

(see e.g. [4, Chapter 3, Section 3.11] for details), for a.e. r ∈ (σ0, σ) we
have sptµ ∩ ∂Br = ∅, the trace ur := u]|∂Br belongs to SBV2(∂Br; S1),
and Jur = Ju] ∩ ∂Br is finite. We claim that for every such r,

(3.42) H0(Jur ) > 1.

Indeed, let r be such a radius and assume by contradiction that Jur = ∅.
Then ur ∈W 1,2(∂Br,S1) and thus ur is continuous. In addition, the trace
(um] )r := um] |∂Br

belongs to W 1,2(∂Br,S1) and it satisfies (um] )r = (ur)m.
Hence the topological degree ` of (um] )r is equal to m times the topological
degree of ur. Moreover, we have um] (x) = eiψ(x − xk0)/|x − xk0 | in Br
for some ψ ∈ W 1,2(Br) satisfying ψ|∂Br ∈ W 1,2(∂Br). Hence ` = 1 which
contradicts ` ∈ mZ, and (3.42) is proved.
By (3.42), we can infer again from the coarea formula that

H1(Ju] ∩ (Br \Bσ0)
)
>
∫ r

σ0

H0(Ju] ∩ ∂Bt) dt =
∫ r

σ0

H0(Jut) dt > r − σ0

for every r ∈ (σ0, σ). Since H1(Ju] ∩Bσ0) > σ0 by Case 1, we deduce that

H1(Ju] ∩Br) = H1(Ju] ∩ (Br \Bσ0)
)

+H1(Ju] ∩Bσ0) > (r− σ0) + σ0 = r
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for every r ∈ (σ0, σ), and (3.36) is proved for every r ∈ (σ0, σ).
Step 3. — We define

K :=
{
x ∈ Ω : H1(Ju] ∩Br(x)

)
> r for every r ∈ (0, σ)

}
.

By definition,K is closed and since dist(Ju∗ , ∂Ω) > 0, it is a compact subset
of Ω. On the one hand, we can deduce from Step 2 that H1(Ju] \K) = 0.
On the other hand,

lim
r↓0

H1(Ju] ∩Br(x))
r

= 0 for H1-a.e. x ∈ Ω \ Ju] ,

see e.g. [4, Section 2.9, Theorem 2.56 and (2.42)]. In particular, H1(K \
Ju]) = 0, and therefore H1(K4Ju]) = 0. �

3.4.2. Proof of Proposition 3.14

Proof. — Thanks to Lemma 3.15, Remark 3.16, and Lemma 3.17 and
a diagonal argument, it is enough to make the construction for a map
u ∈ Lg(Ω) with um =: eiϕvµ and µ = 2π

∑md
k=1 δxk and such that there

exists σ > 0 and a compact set K ⊆ Ω such that
(a) dist(Ju, ∂Ω) > 2σ and u = g on ∂Ω;
(b) dist(sptµ, ∂Ω) > 2σ and |xk − xl| > 2σ for k 6= l;
(c) um(x) = ξk(x− xk)/|x− xk| in each Bσ(xk) for some ξk ∈ S1;
(d) H1(K4Ju) = 0;
(e) dist(K, ∂Ω) > 2σ and H1(K ∩ Br(x)

)
> r for every x ∈ K and

r ∈ (0, σ).
By a further diagonal argument, it is enough to fix δ > 0 and con-

struct a sequence {(uh, ψh)} ⊆ Hg such that {uh} ⊆ Gg(Ω) ∩ L∞(Ω) with
‖uh‖L∞(Ω) 6 1, (uh, ψh)→ (u, 1) in L1(Ω) as h→∞, p(uh)→ um strongly
in W 1,p(Ω) for every p < 2, and

lim sup
h→∞

{
Eεh

(
P(uh)

)
− πd

m
|log εh|

}
6 E0(u) + δ ,(3.43)

lim sup
h→∞

H1(Juh) 6 H1(Ju) ,(3.44)

lim sup
h→∞

Iηh(ψh) 6 (1 + δ)H1(Ju) .(3.45)

First, by Corollary 3.11 we can find ε ∈ (0, 1), ũ ∈ SBV2(B1)∩L∞(B1) with
‖ũ‖L∞(B1) 6 1, and a closed smooth curve Σ ⊆ B1 such that p(ũ)(x) = x

in a neighborhood of ∂B1, Jũ ⊆ Σ, and

Eε
(
P(ũ), B1

)
− π

m2 log 1
ε
6 γm + δ

md
.
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Then, for each k ∈ {1, . . . ,md} we select ζk ∈ S1 such that ζmk = ξk, and
we set for εh ∈ (0, σε),

uh(x) :=
{
u(x) if x ∈ Ω \Bεh/ε(µ) ,
ζkũ
(
ε
εh

(x− xk)
)

if x ∈ Bεh/ε(xk) , k ∈ {1, . . . , dm} .

By construction, we have uh ∈ Gg(Ω) ∩ L∞(Ω) with ‖uh‖L∞(Ω) 6 1 (since
|u| = 1), and

‖uh − u‖L1(Ω) 6 2πmd(εh/ε)2 −→
h→∞

0 .

For p < 2, we estimate

‖p(uh)− um‖W 1,p(Ω)

. ‖um‖W 1,p(Bεh/ε(µ)) + (εh/ε)(2−p)/p‖p(ũ)‖W 1,p(B1) −→
h→∞

0 .

Next, changing variables, we have for each k ∈ {1, . . . ,md},

Eεh
(
P(uh);Bεh/ε(xk)

)
= Eε

(
P(ũ);B1

)
6

π

m2 log 1
ε

+ γm + δ

md
.

Consequently,

Eεh
(
P(uh)

)
−πd
m

log 1
εh
6 Eεh

(
P(u),Ω\Bεh/ε(µ)

)
−πd
m

log ε

εh
+mdγm+δ

= 1
2m2

∫
Ω\Bεh/ε(µ)

|∇(um)|2 dx− πd

m
log ε

εh
+mdγm + δ ,

and (3.43) follows from Proposition 2.11.
By construction, we have

Juh ⊆ Kh := K ∪
(

sptµ+ εh
ε

(∂B1 ∪ Σ)
)

up to an H1-null set ,

so that
H1(Juh) 6 H1(K) +md

εh
ε

(
2π +H1(Σ)

)
.

Since H1(K) = H1(Ju), (3.44) follows letting h → ∞ in the inequality
above.
To produce the sequence {ψh}, we argue in a way similar to [5, Section 5].

We start by introducing a family of smooth profiles approximating the
optimal profile ψ?(s) = 1 − e−|s| from Lemma 3.12. For λ > 0 we define
ψλ : [0,∞)→ [0, 1] as

ψλ(t) :=

1− exp
(
− λt
λ−t
)

if t < λ ,

1 otherwise .
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Notice that 1−ψλ and ψ′λ are supported on [0, λ]. Setting eλ(t) :=
(
ψ′λ(t)

)2+(
1− ψλ(t)

)2, elementary computations yield

sλ :=
∫ λ

0
eλ(t) dt −→

λ→∞
1 .

Hence we can find λ > 0 such that sλ 6 1+δ. Setting dh(x) := dist(x,Kh),
we define ψh as

ψh(x) := ψλ

(
dh(x)
ηh

)
.

The function ψh is Lipschitz continuous and for εh ∈ (0, σε) we have
dist(Kh, ∂Ω) > σ so that ψh = 1 on ∂Ω whenever ηh ∈ (0, σ/λ). Since
uh ∈W 1,2(Ω \Kh) and ψh = 0 on Kh, we infer that (uh, ψh) ∈ Hg(Ω).
To estimate Iηh(ψh), we first notice that dh is 1-Lipschitz. This leads to

Iηh(ψh) 6 1
2ηh

∫
Ω
eλ
(
dh(x)/ηh

)
dx = 1

2ηh

∫
Kh+Bληh

eλ
(
dh(x)/ηh

)
dx .

We use Fubini’s theorem to obtain∫
Kh+Bληh

eλ
(
dh(x)/ηh

)
dx = −

∫
Kh+Bληh

(∫ λ

dh(x)/ηh
e′λ(t) dt

)
dx

= −
∫ λ

0
e′λ(t)|Kh +Btηh |dt .

Noticing that e′λ(t) 6 0 and

|Kh +Btηh | 6 |K +Btηh |+md
∣∣∣εh
ε

(∂B1 ∪ Σ) +Btηh

∣∣∣ ,
we derive

(3.46) Iηh(ψh) 6 −
∫ λ

0
te′λ(t) |K +Btηh |

2tηh
dt

−md
∫ λ

0
te′λ(t)

∣∣ εh
ε (∂B1 ∪ Σ) +Btηh

∣∣
2tηh

dt =: J1
h + J2

h .

By the Ahlfors regularity assumption on K stated in (e), we have (see
e.g. [4, Theorem 2.104])

lim
r↓0

|K +Br|
2r = H1(K) .

Hence, by dominated convergence

(3.47) lim
h→∞

J1
h = −H1(K)

∫ λ

0
te′λ(t) dt = sλH1(Ju) 6 (1 + δ)H1(Ju) .
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We now claim that

(3.48) lim
h→∞

J2
h = 0 .

To prove (3.48) we may argue on subsequences if necessary. We distinguish
the two complementary cases limh(εh/ηh) < ∞ and limh(εh/ηh) = ∞. If
limh(εh/ηh) <∞, then we estimate for t ∈ (0, λ)∣∣∣εh

ε
(∂B1 ∪ Σ) +Btηh

∣∣∣ 6 ∣∣Btηh+εh/ε
∣∣ . t2η2

h + (εh/ε)2 6 Cλ2η2
h ,

so that J2
h = O(ηh) as h→∞. We now assume that limh(εh/ηh) =∞, and

we write for t > 0,∣∣ εh
ε (∂B1 ∪ Σ) +Btηh

∣∣
2tηh

=
(εh
ε

) ∣∣(∂B1 ∪ Σ) +Btεηh/εh
∣∣

2tεηh/εh
.

By smoothness of ∂B1 and Σ, we have

lim
r↓0

|(∂B1 ∪ Σ) +Br|
2r = H1(∂B1 ∪ Σ) ,

and we conclude that J2
h = O(εh) as h → ∞. In both cases (3.48) holds

true.
Eventually, putting together (3.46), (3.47), and (3.48) leads to (3.45). �

3.5. Proof of Theorem 3.2

The proof of Theorem 3.2 is very similar to the proof of Theorem 3.1
but we include a sketch of proof for the reader’s convenience. It is divided
as usual into three parts: compactness, the Γ-lim inf inequality, and the
construction of recovery sequences. Concerning recovery sequences, we note
that they are actually provided by Proposition 3.14 since (3.6) and (3.35)
clearly lead to (3.10). We proceed with the proof of points (i) and (ii) of
the theorem.
Compactness, proof of (i). — For the compactness part, we argue as

in the proof of Proposition 3.6 and apply in particular Theorem 2.10. We
can argue in particular that {∇uh} is bounded in Lp(Ω) and that H1(Juh)
is bounded. Therefore, since we also know that ‖uh‖L∞(Ω) is bounded, we
may apply [4, Theorem 4.8] to conclude the proof as in Theorem 2.8. �

The Γ-lim inf inequality, proof of (ii). — Without loss of generality, we
can assume that

lim inf
h→∞

F̃ 0
εh

(uh) = lim
h→∞

F̃ 0
εh

(uh) <∞ .
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Moreover, the truncation argument in the proof of Theorem 2.8 together
with (3.19) shows that uh can be replaced by ûh defined in (2.9). Hence we
can also assume that ‖uh‖L∞(Ω) 6 1, and the proof of (i) above applies.
In particular vh := p(uh) satisfies (2.18), and we reproduce verbatim the
proof of Theorem 3.1 to show that (3.2) holds.
Moreover, up to extending uh and u to a larger domain Ω̃ as in

the proof of Theorem 2.8, we may assume that H1({uh 6= g} ∩ ∂Ω) =
H1({u 6= g} ∩ ∂Ω) = 0. We consider the sequence of non negative finite
measures on Ω

νh := H1 (Juh∩Ω) .
Since νh(Ω) = H1(Juh) is bounded, we can extract a further subsequence
such that νh ⇀ ν∗ weakly* as measures for some non negative finite mea-
sure ν∗ on Ω. Since spt νh ⊆ Ω, we have spt ν∗ ⊆ Ω and νh(Ω)→ ν∗(Ω).

We claim that

(3.49) ν∗ > H1 (Ju ∩ Ω) .

Before proving (3.49), we observe that it implies

(3.50) lim
h→∞

H1(Juh) = lim
h→∞

νh(Ω) = ν∗(Ω) > H1(Ju) = H1(Ju) ,

which, combined with (3.2), leads to (3.8).
To prove (3.49), we fix an open set A ⊆ Ω. Consider an arbitrary compact

set K ⊆ A, and choose another open set B such that K ⊆ B ⊆ B ⊆ A. By
the proof of (i) above, we can apply [4, Theorem 4.7] in the open set B to
derive

ν∗(A) > ν∗(B) > lim inf
h→∞

νh(B) = lim inf
h→∞

H1(Juh ∩B) > H1(Ju ∩B) .

Hence ν∗(A) > H1(Ju∩K), and by inner regularity it implies that ν∗(A) >
H1(Ju ∩A). By outer regularity, we conclude that (3.49) holds.

Let us now assume that F0(u) = limh F̂
0
ε(uh). In view of (3.2) and (3.50),

we have

(3.51) lim
h→∞

{
Gεh(vh)− πd

m
|log εh|

}
= 1

2m2

∫
Ω
|∇ϕ|2 dx+ 1

m2W(µ) +mdγm ,

and

(3.52) ν∗(Ω) = lim
h→∞

H1(Juh) = H1(Ju) .

From (3.51), we can argue exactly as in the proof of Proposition 3.13,
Step 3, to deduce that vh → um strongly in W 1,p(Ω) for every p < 2 and
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strongly inW 1,2
loc (Ω\sptµ), and that (3.4) holds. Then, we infer from (3.49)

and (3.52) that ν∗ ≡ H1 Ju. As a consequence, if A ⊆ R2 is an open set
such that ν∗(∂A) = 0, then

H1(Ju ∩A) = ν∗(A) = lim
h→∞

νh(A) = H1(Juh ∩A) ,

which proves (3.9) since ν∗(∂A) = H1(Ju ∩ ∂A). �

4. The limiting problem

The aim of this section is to study minimizers over Lg(Ω) of the limiting
functional F0,g. To avoid some technical issues (at the boundary), we shall
assume for simplicity that Ω is a smooth bounded convex set.

By Remark 3.5 and Lemma 2.3, minimizers of F0,g over Lg(Ω) coincide
with solutions of

(4.1) min
{

1
m2W(µ) +H1(Ju) +H1({u 6= g} ∩ ∂Ω) :

u ∈ SBV(Ω; S1) , µ := m curl j(u) ∈ Ad and um = vµ

}
.

In turn, (4.1) amounts to solve for each µ ∈ Ad,

(4.2) L(µ) :=min
{
H1(Ju)+H1({u 6=g}∩∂Ω

)
: u∈SBV(Ω,S1) , um=vµ

}
,

and then minimize 1
m2W( · ) + L( · ) over Ad which is a finite dimensional

optimization problem. Let us however point out that since on the one hand
Steiner type problems are usually very hard to solve and since on the other
hand, the minimization of W can be rarely explicitly done (see [38]), this
finite dimensional problem does not seem easy to handle.
For the rest of this section we fix a measure µ ∈ Ad, and focus on

problem (4.2). First, we notice that existence of minimizers in (4.2) follows
as in the proof of Lemma 3.17 (Step 1) since |∇vµ| ∈ Lp(Ω) for every p < 2
and |∇u| = 1

m |∇vµ| for any admissible competitor u (see Lemma 2.3). We
will prove that minimizers of (4.2) are related to a variant of the Steiner
problem that we now describe.
Write µ =: 2π

∑md
k=1 δxk , and recall that the xk’s are distinct points of

the domain Ω. We let

(4.3) Λ(µ) := min
{
H1(Γ) : sptµ ⊆ Γ, and for every connected

component Σ of Γ, Card(Σ ∩ sptµ) ∈ mN
}
.
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Notice that since we can always remove connected components which do
not contain any vortex xk, we can reduce the above minimization problem
to sets Γ with the property that every connected component contains a
positive number of vortices. Of course, this implies that Γ has at most d
connected components. Each of these connected components Σ is a competi-
tor for the Steiner problem related to sptµ∩Σ. This shows that minimizers
of (4.3) exist and are made of (at most d) Steiner trees i.e. finite union
of segments meeting only at the vortices or at triple junctions (see [50,
Prop. 2.2]).

Definition 4.1. — A compact set Γ is said to be a Λ(µ)-minimizer if
it solves (4.3).

Remark 4.2. — Since we assumed that Ω is convex, any Λ(µ)-minimizer
Γ is contained in the convex hull of sptµ. More precisely, since projecting
on convex sets reduces distances, if Σ is a connected component of Γ, then
Σ is contained in the convex hull of Σ∩sptµ. Since Σ is a tree, we also infer
the following property: if C ⊆ Σ is an open segment, such that C ∩ sptµ =
∅, then Σ \ C is made of two connected components A and B satisfying
Card(A ∩ sptµ) 6∈ mN \ {0} and Card(B ∩ sptµ) 6∈ mN \ {0}. Otherwise,
Γ\C would be an admissible competitor for Λ(µ) with strictly lower length,
contradicting minimality.

We are now ready to prove the main result of this section, which states
that the jump set of any minimizer of (4.2) is a Λ(µ)−minimizer.

Theorem 4.3. — Assume that Ω is a smooth, bounded, and convex
open set. For every µ ∈ Ad, it holds

(4.4) L(µ) = Λ(µ) .
Moreover, if u is a minimizer of L(µ), then Ju is a Λ(µ)-minimizer, u ∈
C∞(Ω \ Ju), and u = g on ∂Ω. Vice-versa, if Γ is a Λ(µ)-minimizer, then
there exists u minimizing L(µ) with Ju = Γ.

Proof.
Step 1. — Let µ = 2π

∑md
k=1 δxk be fixed. We first prove that
L(µ) 6 Λ(µ) .

Consider Γ a Λ(µ)-minimizer. Treating each connected component of Γ
separately, we may assume without loss of generality that Γ is connected.
Since R2 \ Γ is connected, we can find a smooth injective curve with arc-
length parameterization γ1 : [0,∞) → R2 satisfying γ1(0) = x1, |γ1(t)| →
∞ as t → ∞, and γ1(0,∞) ∩ Γ = ∅. Setting D1 := γ1((0,∞)), we orient
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D1 according to its parameterization γ1 (i.e., in the direction of increasing
t’s). Since R2 \ D1 is simply connected, we can find a smooth map ϕ1 :
R2 \D1 → R which is smooth up to D1 from both sides, has a constant
(oriented, pointwise defined) jump across D1 equal to 2π, and such that
eiϕ1(x) = (x− x1)/|x− x1|. We then set u1 := eiϕ1/m.
Since Γ is a tree, for each k ∈ {2, . . . ,md} there is a unique injective

polygonal curve γk : [0, 1] → Γ such that γk(0) = xk and γk(1) = x1.
Setting Dk := γk((0, 1)), we orient Dk according to the curve γk. Notice
that for k 6= l, the orientation of Dk coincides with the orientation of Dl

on Dk ∩ Dl. Moreover, one has Γ =
⋃
k>2Dk by minimality of Γ. As a

consequence, Γ inherits the orientation induced by the Dk’s.
Since R2 \ (D1 ∪ Dk) is simply connected, we can find a smooth map

ϕk : R2 \ (D1 ∪ Dk) → R, smooth up to D1 ∪ Dk from both sides, with
a constant (oriented) jump across D1 ∪ Dk equal to 2π, and such that
eiϕk(x) = (x− xk)/|x− xk|. We consider

uΓ := exp
(
i

m

[
ϕµ +

md∑
k=1

ϕk

])
,

where ϕµ is the map defined in (2.14). By construction, we have uΓ ∈
SBV(Ω; S1) and umΓ = vµ, i.e., uΓ is an admissible competitor for L(µ).
In addition, uΓ is smooth outside Γ ∪ D1. Since 1

m

∑
k ϕk has a constant

jump equal to 2πd across D1, we infer that uΓ is actually smooth in Ω \Γ,
and u = ajg on ∂Ω for some j ∈ {0, . . . ,m − 1}. Replacing uΓ by a−juΓ
if necessary, we can assume that uΓ = g on ∂Ω. Now consider an arbitrary
point x ∈ Γ \ sptµ. By Remark 4.2, the number of xk’s before x, according
to the orientation of Γ, is not a multiple of m. This shows that the jump of
1
m

∑
k ϕk across Γ at x is not a multiple of 2π, and consequently x ∈ JuΓ .

Therefore JuΓ = Γ, and L(µ) 6 H1(JuΓ) = Λ(µ).
Step 2. — We now prove that

(4.5) L(µ) > Λ(µ).

Let us consider an arbitrary minimizer u of L(µ), and assume without loss
of generality that 0 ∈ Ω. We shall first prove in this step that

(4.6) u = g on ∂Ω , and dist(Ju, ∂Ω) > 0 .

To show that (4.6) holds, we consider Γ a Λ(µ)-minimizer, and uΓ the
map constructed in Step 1. We extend u and uΓ to R2 by setting ũ(x) =
g ◦ Π(x) and ũΓ(x) = g ◦ Π(x) for x ∈ R2 \ Ω, where Π denotes the
orthogonal projection on the convex set Ω. Then, Jũ ⊆ Ω, JũΓ ⊆ Γ, and
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H1(Jũ) = H1(Ju) + H1({u 6= g}
)
. We can thus from now on identify u

(respectively uΓ) and ũ (respectively ũΓ). We define

w := u/uΓ .

Since um = vµ = umΓ , we have w ∈ SBV loc(R2; Gm) with w = 1 in R2 \ Ω
and we can find a Caccioppoli partition {Ek}m−1

k=0 of R2 such that

w =
m−1∑
k=0

akχEk ,

with Ek ⊆ Ω for k = 1, . . . ,m, and R2 \ Ω ⊆ E0. Since uΓ is smooth in
Ω \ Γ, we deduce that

(4.7) Ju ∩ (R2 \ Γ) =
m−1⋃
k=0

∂Ek \ Γ up to an H1-null set .

Let K be the convex envelope of sptµ. The set K is then a closed polygonal
subset of Ω. By an elementary geometric construction, we can find a strictly
convex open set ω with C1-boundary satisfying K ⊆ ω and Ω ⊆ Ω, and
such that the Hausdorff distance between K and Ω is arbitrarily small.
Given such ω, we consider the mapping Φ : R2 → R2 defined by Φ(x) :=
1
2 (x + Πω(x)), where Πω denotes the orthogonal projection on Ω. Then Φ
is a (global) C1-diffeomorphism of R2 satisfying Φ(x) = x for every x ∈ Ω.
Consider now the sets Êk := Φ(Ek) for k = 1, . . . ,m−1, so that {Êk}m−1

k=0
defines a Caccioppoli partition of R2. As a consequence, the map

û :=
(
m−1∑
k=0

akχÊk

)
uΓ

is an admissible competitor for L(µ). By the chain rule formula for BV -
functions and (4.7), we have Jû \ Ω = Φ(Ju \ Ω) and Jû ∩ Ω = Ju ∩ Ω.
The minimality of u together with the area formula (see [4, Theorem 2.91])
then leads to

(4.8) H1(Ju \ Ω) 6 H1(Jû \ Ω) 6
∫
Ju\Ω

|∇Φ|dH1 .

Our assumption on ω implies that |∇Φ(x)| 6 1 − cω dist(x,Ω) for every
x ∈ Ω and some constant cω > 0 depending only on ω and Ω. Inserting this
estimate in (4.8) shows that H1(Ju \ Ω) = 0, which clearly implies (4.6).

Step 3. — In this final step we show (4.5). Let us fix an arbitrary ball
B2r(y) ⊆ Ω \ sptµ. Since vµ is smooth in B2r(y), we can find a smooth
function ϕ on Br(y) such that vµ = eiϕ in Br(y). The map u? := eiϕ/m is
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then smooth on Br(y), and satisfies um? = vµ in Br(y). Arguing as above,
it implies that any competitor ucomp for L(µ) can be written as

ucomp =
(

m∑
k=0

akχFk

)
u? in Br(y) ,

for some Caccioppoli partition {Fk}m−1
k=0 of Br(y), and

Jucomp ∩Br(y) =
m−1⋃
k=0

∂Fk ∩Br(y) up to an H1-null set .

In addition,

(4.9) H1(Jucomp ∩Br(y)
)

= 1
2

m−1∑
k=0
H1(∂Fk ∩Br(y)

)
.

As a consequence, the minimizer u of L(µ) that we consider can be written
as u =

(∑
k akχEk

)
u?, for some Caccioppoli partition {Ek}m−1

k=0 of Br(y)
minimizing the right-hand side of (4.9). By classical results on minimal
planar clusters (see for instance [23, Theorem 5.2]),

⋃
k ∂Ek ∩ Br(y) is

locally a finite union of segments meeting at triple junctions. Since u? is
smooth in Br(y), it implies that Ju ∩ Br/2(y) =

⋃
k ∂Ek ∩ Br/2(y), and

u ∈ C∞(Br/2(y) \ Ju).
We are now ready to prove that Ju is a Λ(µ)-minimizer. Let us fix for a

moment σ > 0 such that Bσ(xk) ∩ Bσ(xl) = ∅ for k 6= l, and Bσ(µ) ⊆ Ω.
By the discussion above, u ∈ C∞

(
Ω \ (Ju ∪ Bσ/2(µ))

)
, and Ju \ Bσ/2(µ)

is a finite union of segments. Hence, Ju ∪ Bσ(µ) is a compact subset of
Ω. Since Ju ∪ Bσ(µ) converges to Ju ∪ sptµ as σ → 0 in the Hausdorff
distance, we infer from Blaschke’s theorem that Ju ∪ sptµ is a compact
subset of Ω. Moreover, we have Ju ⊇ sptµ since um = vµ. Therefore Ju
is a compact subset of Ω, and u ∈ C∞(Ω \ Ju). To complete the proof, it
now only remains to prove that any connected component of Ju contains a
multiple of m vortices (possibly equal to zero). Indeed, this would lead to
L(µ) = H1(Ju) > Λ(µ), and (4.5) would be proven. Furthermore, by Step
1, we would also obtain that Ju is a minimizer of Λ(µ).

Let us consider Σ a connected component of Ju, and A ⊆ Ω a connected
smooth open neighborhood of Σ such that (Ju \ Σ) ∩ A = ∅. We may
write A = A0 \

⋃N
n=1An where the An are connected and simply connected

smooth open sets satisfying An ⊆ A0 for n = 1, . . . , N , and An are pairwise
disjoint. Since vµ and u are smooth on ∂An for n = 0, . . . , N , and um = vµ,

deg(vµ, ∂An) = m deg(u, ∂An) ∈ mN
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and thus

Card(Σ ∩ sptµ) = deg(vµ, ∂A0)−
N∑
n=1

deg(vµ, ∂An) ∈ mN,

concluding the proof. �

Remark 4.4. — The proof of Theorem 4.3 shows that every L(µ)-minim-
izer u is smooth on both sides of Ju away from sptµ. More precisely, one can
find a radius r > 0 such that if Br(x) ⊆ Ω \ sptµ, then Br(x) \ Ju is made
of at most three connected sets and vµ = eiϕ in Br(x) for some smooth
function ϕ. In each connected region of Br(x) \ Ju, we have u = akeiϕ/m
for some k ∈ {0, . . . ,m− 1}.

Remark 4.5. — When Ω is simply connected but not convex, (4.4) still
holds true if one adds the condition Γ ⊆ Ω for the admissible sets for
Λ(µ). For minimizers, the set Γ ∩ ∂Ω can then be non-empty. The proof
would follow the same lines as in the convex case using boundary regularity
of minimizers for the constrained Steiner and constrained minimal cluster
problems.

Remark 4.6. — Given a reference map u? which is an admissible com-
petitor for L(µ), we have seen that any other competitor u can be written as
u = (

∑m−1
k=0 akχEk)u? for some Caccioppoli partition {Ek}m−1

k=0 of Ω. This
allows to rephrase the minimization problem defining L(µ) as an optimal
partition problem. Notice however that H1(Ju) does not coincide in gen-
eral with the boundary length of the partition plus H1(Ju?) since possible
cancellations have to be taken into account (see Figure 4.1).

4.1. Structure of Λ(µ)-minimizers.

We now move on to the study of the Λ(µ)-minimizers. In the case m = 2,
it reduces to a variant of the classical minimal connection problem (see for
instance [20]). We recall that if P := {p1, . . . , pd} and Q := {q1, . . . , qd}
are two sets of given points in R2, then the length of a minimal connection
between P and Q is defined as

min
σ

d∑
k=1
|pk − qσ(k)| ,

where the minimum runs over all permutations σ of {1, . . . , d}.
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E

E

Ju?

Ju?

u?

u

Ju

Ju Ju

Figure 4.1. Cancellations in the case m = 2 (E1 = E, E0 = Ω \ E).

Proposition 4.7. — Assume that m = 2. Let µ ∈ Ad and Γ be a
Λ(µ)-minimizer. Then, Γ is made of exactly d disjoint segments Γ1, . . . ,Γd,
and each Γk ∩ sptµ contains exactly two points {pk, qk}. In particular,
Γk = [pk, qk] for each k, and H1(Γ) is the length of a minimal connection
between P = {p1, . . . , pd} and Q = {n1, . . . , qd}.

Proof. — Let Γ be a Λ(µ)-minimizer, and let us prove that every con-
nected component Γk of Γ contains exactly two points of sptµ. It would
obviously imply that each Γk is a segment, and that H1(Γ) is the length of
minimal connection by the definition (4.3) of Λ(µ).
To prove the claim, we start with the following observation. By Theo-

rem 4.3, we can find a map u achieving L(µ) and such that Ju = Γ. Then,
consider an arbitrary open ball B2r(x) ⊆ Ω\sptµ. Since vµ = u2 is smooth
in that ball and deg(vµ, ∂B2r(x)) = 0, we can find u? ∈ C∞(B2r(x); S1)
such that u2

? = vµ. Arguing as in the proof of Theorem 4.3, we infer that
u = (χE − χEc)u? in Br(x) for some set E having a minimizing perimeter
in Br(x). By minimality, ∂E ∩ Br/2(x) = Ju ∩ Br/2(x) = Γ ∩ Br/2(x) is
smooth, and thus Γ∩Br/2(x) does not contain triple junctions. Hence Γ is
a finite union of segments, only intersecting at points of sptµ.
Let us now consider Γk a connected component of Γ. Assume by con-

tradiction that there is a point x ∈ Γk ∩ spt µ such that J > 2 segments
meet at x (if J = 1 for every point of Γk ∩ spt µ, then there is nothing to
prove). For j ∈ {1, . . . , J}, let Cj := [x, yj ] be the segments in Γk depart-
ing from x. Denote by nj the number of points in sptµ belonging to the
connected component of Γk \ {x} containing Cj \ {x}. Notice that each nj
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x y2C2

C1

y1

Figure 4.2. Construction of a competitor.

must be odd (otherwise one could remove the corresponding segment Cj
from Γ, thus contradicting minimality). Moreover, the cardinal of sptµ∩Γk
is even, and since it is equal to 1+

∑J
j=1 nj , we deduce that J is odd. Hence

J > 3, and among the segments Cj , at least two of them are not collinear.
Assume without loss of generality that C1 and C2 are not collinear. Then
we can replace C1 and C2 by the segment [y1, y2] to obtain a competitor
with strictly lower length than Γ (see Figure 4.2), which again contradicts
minimality. This establishes that J = 1, and concludes the proof. �

The case m > 3 is more involved, and it is no longer true that any
Λ(µ)-minimizer is a disjoint union of d Steiner trees.

Proposition 4.8. — Assume that d ∈ {2, 3, 4} and m > d + 1. There
exists µ ∈ Ad such that every Λ(µ)-minimizer is connected.

Proof. — For clarity reason, we shall start by giving full details of the
proof for d = 2 and m = 3. We will then explain how to extend this
construction to the other cases. Let Y1, Y2, and Y3 be three equidistant
points on the unit circle. The unique solution to the Steiner problem for
connecting these three points is given by the triple junction Σ. Given ε� 1,
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Y1

x2x1

x6
Y3

x5

Y2

x4

x3

Γ1
ε

Γ2
ε

x2x1

x6

x5x4

x3

Figure 4.3. An example of a connected minimizer with six vortices of
degree 1/3.

let {x1, . . . , x6} be such that (see Figure 4.3)
|x1 − Y1| = |x2 − Y1| = |x3 − Y2| = |x4 − Y2| = |x5 − Y3| = |x6 − Y3| = ε .

Consider the measure µε := 2π
∑6
k=1 δxk , and let Γε be a Λ(µε)-minimizer.

Set Σε to be the union of Σ with the segments connecting each xj to the
closest Yi. By minimality,
(4.10) H1(Γε) 6 H1(Σε) 6 H1(Σ) + 6ε .
If Γε is not connected, then it is has two connected components Γ1

ε and
Γ2
ε, each of them containing exactly three points among the xj ’s. Then, at

least one of the pairs {x1, x2}, {x3, x4} and {x5, x6}, intersects both Γ1
ε

and Γ2
ε, say {x1, x2}. Up to a subsequence, we have that each Γiε converges

to a connected set Γi with Γ := Γ1 ∪Γ2 admissible for the Steiner problem
related to Y1, Y2 and Y3. Therefore, by (4.10)

H1(Σ) > lim inf
ε→0

H1(Γε) > H1(Γ) > H1(Σ).

Hence, the above inequalities are actually equalities and since
lim inf
ε→0

H1(Γε) = H1(Γ1) +H1(Γ2),

we have H1(Γ1 ∪ Γ2) = H1(Γ1) +H1(Γ2) so that Γ1 and Γ2 only intersect
at Y1. We have thus obtained a connected graph Γ containing Y1, Y2 and
Y3 but for which the degree of Y1 is two. Since Σ is the only minimizer of
the Steiner problem for (Y1, Y2, Y3),

H1(Γ) > H1(Σ) ,
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contradicting (4.10) for ε small enough.

Figure 4.4. Minimizers of the Steiner problem for the vertices of the
square on the left and of the regular pentagon on the right.

If now m > 3, we can repeat the same construction placing m − 1 points
close to Y1, m− 1 close to Y2 and two close to Y3 to construct an example
where the minimizer is connected for 2m points.
For d = 3, 4 and m = d + 1, the construction is similar to the case

d = 2. For this we let (Y1, . . . , Ym) be the vertices of a regular m−gone(1)

inscribed in the unit circle and consider (x1, . . . , xmd) points such that for
every k ∈ [1,m], there are exactly d of these points at distance ε from Yk.
Let Σ be the minimizer of the Steiner problem for (Y1, . . . , Ym). Then, as
for the case d = 2,

(4.11) Λ(µ) 6 H1(Σ) +mdε .

As above, let Γε be a minimizer for Λ(µ) and assume that it is not con-
nected. Let Γ̂ε be the set made of Γε and the union of the segments joining
the points xj to the nearest Yk. Since every connected component of Γε
contains a multiple of m points among the points xj , it must also be the
same for the connected components of Γ̂ε. However, at the same time, it
should also be a multiple of m− 1 since each Yk is connected to the m− 1
closest points xj . Therefore, Γ̂ε must be connected. Letting ε→ 0, we ob-
tain a set Γ̂ which is admissible for the Steiner problem for (Y1, . . . , Ym)

(1)That is a square if m = 4 and a regular pentagon if m = 5.
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but for which at least one of the points Yk has degree at least two. Since
all the points Yk have degree one for the minimizer of the Steiner problem
for the m−gone with m = 4, 5 (see for instance [31] and Figure 4.4), we
reach a contradiction with (4.11). The extension to d = 4, 5 and m > d+ 1
is obtained as before by placing m−1 points xj at distance ε from d points
Yk and d points xj at distance ε from the last Yk. �

Remark 4.9. — For m > 6, the solution of the Steiner problem for the
vertices of a regular m−gone is known to be the m−gone itself minus
one of its side [31]. For this reason our construction does not work for
d > 5. It would be interesting to understand if it is possible to find another
construction which works for every d ∈ N.

In light of Proposition 4.8, one could conjecture that the maximum num-
ber of points that a Λ(µ)-minimizer can carry is equal tom(m−1). However,
as the following example shows, this is again not the case.

Proposition 4.10. — Assume that m = d = 3. There exists µ ∈ Ad
such that every Λ(µ)-minimizer is connected.

Proof. — The idea is to iterate the construction made above (see Fig-
ure 4.5). Let 1 � ε � δ. We first fix the points (Y1, Y2, Y3) as before and
then choose the points (X1, X2, X3, X4) so that

|X1 − Y1| = |X2 − Y1| = |X3 − Y2| = |X4 − Y2| = ε ,

and that all the angles are of 120°. Let (x1, . . . , x8) be such that each
Xk is at distance δ of exactly two xj ’s and let finally x9 = Y3. Let Γ be
a minimizer of the corresponding Λ(µ). As above, by comparing with a
connected competitor, it holds
(4.12) H1(Γ) 6 3 + 4ε+ 8δ .
If Γ is not connected, then it can have either two or three connected compo-
nents. Arguing as in the proof of Proposition 4.8, we see that the connected
component containing x9 must also contain at least one of the vortices
close to Y1, say x1 and one of the vortices close to Y2 say x8 (otherwise Γ
would be very close to a non-optimal competitor for the Steiner problem for
(Y1, Y2, Y3)). Let Γ1 be this connected component. If Γ has three connected
components, then each of them must contain exactly three points. Up to
relabeling, this means that Γ2 contains x2, x3 and x4 and Γ3 contains x5, x6
and x7. Letting Σ1 be the triple junction connecting x9, X1 and X4 (see
Figure 4.5), we obtain that,

H1(Γ) > H1(Σ1) + |X1 −X2|+ |X3 −X4|+O(δ) .
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X2
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Figure 4.5. An example of a connected minimizer with nine vortices
of degree 1/3.

A simple computation gives |X1−X2| = |X3−X4| =
√

3ε and H1(Σ1) =
3 + ε so that H1(Γ) > 3 + (1 + 2

√
3)ε−O(δ), which contradicts (4.12) for

δ and ε small enough. The cases when Σ1 must be the triple junction
connecting X2, x9 and X3 or X1, x9 and X3 can be treated analogously.
If now Γ is made of only two components, then Γ1 must contain six

points and the other connected component Γ2 must contain the remaining
three points. Without loss of generality, we can assume that {x1, x2, x3, x4,

x8, x9} ⊆ Γ1 and {x5, x6, x7} ⊆ Γ2. Let Σ2 be the optimal Steiner tree
connecting X1, X2 x9 and X4 (see Figure 4.6). We then have

H1(Γ) > H1(Σ2) + |X4 −X3| −O(δ) .

In order to compute H1(Σ2), we notice that since at first order, it must
have length 3, it must have at least one triple junction. If it has only one,
then we are basically back to the situation of Figure 4.5. Otherwise, it
has exactly two triple junctions and we can obtain H1(Σ2) by constructing
the two equilateral triangles X1X2S1 and X4x9S2 (see Figure 4.6) and
computing the distance S1S2 (see [51]). After some computations using for
instance complex numbers, we find that H1(Σ2) = 3 + 5

2ε+ o(ε) so that

H1(Γ) > 3 +
(

5
2 +
√

3
)
ε+ o(ε)−O(δ) ,

contradicting (4.12) again. �

Remark 4.11. — In light of these examples, it would be interesting to
understand what is the maximal number of vortices which can be carried
by a single tree, given m > 3.
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Figure 4.6. The set Σ2.

5. Structure of minimizers at small ε > 0

The aim of this final section is to use the structure of the minimizers of
the limiting functional F0,g given by Theorem 4.3 to prove that minimizers
of F 0

ε,g have the same structure for ε > 0 small enough. In turn, this
gives an improved convergence result for minimizers as ε ↓ 0 (compare to
Corollary 3.4). Since we will use some tools developed for the analysis of
the Mumford–Shah functional, we will only focus on the sharp interface
functional F 0

ε,g. It would be interesting to understand if similar results can
be obtained for the “phase field approximation” F ηε .

As in the previous section, we shall assume that Ω is a convex domain.
The main results of this section can be summarized in the following the-
orem. We recall that the L1-convergence of minimizers of F 0

εh,g
towards

minimizers of F0,g is given by Corollary 3.4.

Theorem 5.1. — Let εh → 0, and let uh be a minimizer of F 0
εh,g

over
Gg(Ω). Assume that uh → u in L1(Ω) as h → ∞ for some minimizer u of
F0,g. Setting µ := curl j(um), for every σ > 0 small enough, and every h
large enough (depending on σ), the following holds:

(i) Juh \Bσ(µ) is a compact subset of Ω\Bσ(µ) made of finitely many
segments, meeting at triple junctions.

(ii) uh ∈ C∞
(
Ω \ (Bσ(µ) ∪ Juh)

)
and uh = g on ∂Ω.

(iii) If Br(x) ⊆ Ω \Bσ(µ), then there exists φh ∈ BV (Br(x); Gm) such
that uh/φh ∈ C∞(Br(x)).

In addition,
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(iv) Juh converges in the Hausdorff distance to Ju.
(v) uh → u in Ckloc(Ω\Ju)∩C1,α

loc (Ω\Ju) for every k ∈ N and α ∈ (0, 1).
(vi) If Br(x) ⊆ Ω \ Bσ(µ), then there exists φ ∈ BV (Br(x); Gm) such

that uh/φh → u/φ in Ckloc(Br(x)) for every k ∈ N.

Remark 5.2. — In the proof of Theorem 5.1, we are actually going to
prove a stronger result on the structure of uh (see Section 5.1). As a con-
sequence, it solves in Ω \ Bσ(µ) the Ginzburg–Landau system with free
discontinuities

−∆uh = 1
ε2
h

(1− |uh|2)uh in Ω \ (Bσ(µ) ∪ Juh) ,
(u+
h )m = (u−h )m on Juh \Bσ(µ) ,

uh = g on ∂Ω .

Remark 5.3. — As a consequence of items (iii) and (vi) above, we have
p(uh) ∈ C∞(Ω \ Bσ(µ)) for h large enough, and p(uh) → um in Ckloc(Ω \
Bσ(µ)) ∩ C1,α(Ω \Bσ(µ)).

Remark 5.4. — In the case m = 2, Ju is made of d disjoint segments
connecting points of sptµ, see Proposition 4.7. In particular, Ju contains
no triple junctions. Concerning the minimizer uh of F 0

ε,g, it implies that
(for h large enough), the set Juh \ Bσ(µ) is made of d disjoint segments
connecting components of Bσ(µ).

Remark 5.5. — Let us notice that in the case deg(g, ∂Ω) = 0, Theo-
rem 5.1 shows that for ε small enough, the minimizer of F 0

ε,g is unique and
smooth, i.e. there is no jump set, and it coincides with the unique minimizer
of Eε over W 1,2

g (Ω) (see [56]). For the classical Mumford–Shah functional,
similar results were obtained using calibration methods [1] (see also [33,
Theorem 3.1] for a simple proof originally due to Chambolle).

Remark 5.6. — Theorem 5.1 does not provide regularity results near
sptµ. Nevertheless, repeating verbatim the proof of [22, Theorem 3.1], one
can prove that for every ε > 0 and every minimizer u of F 0

ε,g, the jump set
is essentially closed, that is H1(Ju\Ju) = 0. Since Ω ⊆ R2, the proof of this
result only requires the simplest forms of [22, Lemma 2.3 and Lemma 2.4].

Remark 5.7. — It would be interesting to study the behavior of the min-
imizers uh close to the vortices, i.e., in Bσ(µ). One could expect that there
is only one point in each component of Bσ(µ) where uh vanishes, and that
the jump set of uh is a union of Steiner trees connecting those zeroes in the
spirit of the Λ(µ) minimization problem. In this direction, a first step may
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consist in understanding the optimal profile problem

γ#
m(ε,R) := min

{
Eε
(
P(u), BR

)
+H1(Ju ∩BR)− π

m2 log R
ε

:

u ∈ G(BR) , P(u)(z) = 1
m

(
z

|z|
,
√
m2 − 1

)
on ∂BR

}
.

Considering a solution u of this problem, one may ask if |u| is radial, in-
creasing, vanishing at the origin, and if Ju is just a segment joining the
origin to the boundary. It seems to be a difficult question since it combines
both issues related to the presence of an expected singularity in the jump
set in the spirit of the so called crack tip (see for instance [27]) for the
Mumford–Shah functional, with the fact that P(u) should have the same
regularity as minimizing harmonic maps with values into the singular cone
N . Such harmonic maps satisfy non standard elliptic equations, and are
usually more singular than minimizing harmonic maps with values into a
smooth target [36, 44, 37, 3](2).

5.1. Sketch of the proof of Theorem 5.1.

Before starting the proof of Theorem 5.1, let us explain the strategy.
Away from sptµ, the limiting function vµ is smooth. Therefore, if we con-
sider a small enough ball Br(x) outside Bσ(µ), then the oscillation of vµ on
this ball is very small. By the strong convergence in W 1,2(Br(x)) of vh to
vµ (recall Theorem 3.2), this will still be true for vh on ∂Br(x) (actually, on
∂Bρh(x) for some ρh ∼ r). Hence(3), we can find gh ∈ W 1,2(∂Br(x)) such
that p(gh) = vh on ∂Br(x). Considering wh a solution of the Ginzburg–
Landau equation

(5.1)
{
−∆wh = 1

εh2 (1− |wh|2)wh in Br(x)
wh = gh in ∂Br(x),

we aim at proving that in Br(x), uh =
(∑m−1

k=0 akχEk
h

)
wh where the Ekh

are pairwise disjoint and satisfy (up to a relabeling)
(i) if Br(x) ∩ Ju = ∅, then E0

h = Br(x) i.e. uh = wh in Br(x);
(ii) if Br(x) ∩ Ju is a segment then uh = (χE0

h
+ ak(1 − χE0

h
))wh for

some k 6= 0 with ∂E0
h ∩Br(x) a segment;

(2)quoting [44]: “Unfortunately, the equations satisfied by s and u are so bad that no
existing result can be applied”.
(3)Notice that actually, some care is needed in the choice of gh to guarantee that no
jump is created at the boundary.
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(iii) if Br(x) ∩ Ju contains a triple point then uh = (χE0
h

+ ak1χ
E
k1
h

+
ak2χE2

h
)wh with 0 < k1 < k2 6 m − 1 and ∂E0

h ∪ ∂E
k1
h ∪ ∂E

k2
h a

triple junction in Br(x).
In order to show that indeed uh is of this form, a powerful tool that we
introduce in the next section is the Lassoued–Mironescu decomposition ar-
gument [41] which allows to conveniently split the energy into a Ginzburg–
Landau term and a Mumford–Shah type energy.

5.2. Ginzburg–Landau minimizers and energy splitting

In this section, we consider a radius r > 0, a sequence εh → 0, and a
sequence of boundary conditions {gh} ⊆W 1,2(∂Br) ∩ L∞(∂Br) satisfying

‖gh‖L∞(∂Br) 6 1 ,(5.2) ∫
∂Br

|∂τgh|2 + 1
ε2
h

(1− |gh|2)2 dH1 6 C ,(5.3)

for some constant C > 0 independent of εh. We further assume that
(5.4) gh → g? uniformly on ∂Br as h→∞ ,
for some g? ∈W 1,2(∂Br; S1) satisfying
(5.5) deg(g?, ∂Br) = 0 .
From this last assumption, we can write g? = eiϕ? for some harmonic
function ϕ? ∈W 1,2(Br) (which is unique up to a constant multiple of 2π).
As in [12], the map

w? := eiϕ? ∈W 1,2
g? (Br; S1)

is the unique solution of the minimization problem

(5.6) min
W 1,2
g? (Br;S1)

∫
Br

|∇w|2 dx .

We are now interested in the minimization problem
(5.7) min

w∈W 1,2
gh

(Br)
Eεh(w,Br) .

We recall that minimizers of (5.7) are in particular solutions of (5.1). We
shall make an essential use of the following proposition. It constitutes a
slight extension of [12, Theorem 2] to the case of a boundary condition
which merely belongs to W 1,2(∂Br). Since the estimates obtained in [12,
Theorem 2] only depend on the W 1,2(∂Br) bounds satisfied by gh, the
proof of Proposition 5.8 readily follows from [12, Theorem 2] together with
an approximation argument (to regularize the boundary condition).
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Proposition 5.8. — Assume that (5.2), (5.3), (5.4), and (5.5) hold.
There exists {wh} ⊆ W 1,2(Br) ∩ C0(Br) ∩ C∞(Br) such that wh solves
(5.7), and

wh → w? strongly in W 1,2(Br) ,
|wh| → 1 uniformly in Br ,

wh → w? in Ckloc(Br) for every k ∈ N .

For the rest of this subsection, we still denote by wh a solution of (5.7)
obtained from Proposition 5.8. We continue with a very useful energy de-
composition, originally introduced in [41].

Lemma 5.9. — Let u ∈ G(Br) ∩ L∞(Br) be such that p(u) = p(gh) on
∂Br. For εh small enough, we have u = whφ for some φ ∈ G(Br)∩L∞(Br)
satisfying p(φ) = 1 on ∂Br,

(5.8) Eεh
(
P(u), Br

)
= Eεh(wh, Br)

+ 1
2

∫
Br

|wh|2|∇φ|2 + |wh|
4

2ε2
h

(1− |φ|2)2 + 2
m
j(p(φ)) · j(wh) dx ,

and H1(Ju ∩Br) = H1(Jφ ∩Br).

Proof. — By Proposition 5.8, we have |wh|2 > 1/2 for εh small enough.
Setting φ := u/wh, we have φ ∈ SBV2(Br)∩L∞(Br) and P(φ) ∈W 1,2(Br),
thus φ ∈ G(Br)∩L∞(Br). Since |wh|2 and |φ|2 belong toW 1,2(Br), by chain
rule we have

|∇u|2 = |φ|2|∇wh|2 + |wh|2|∇φ|2 + 1
2∇(|φ|2) · ∇(|wh|2) + 2j(φ) · j(wh)

a.e. in Br .

Recalling that mj(φ) = j(p(φ)) (see Lemma 2.3), and since |φ|2 = |p(φ)|2,
we obtain

(5.9)
∫
Br

|∇u|2 dx =
∫
Br

|p(φ)|2|∇wh|2 + |wh|2|∇φ|2

+ 1
2∇(|p(φ)|2) · ∇(|wh|2) + 2

m
j(p(φ)) · j(wh) dx .

Testing equation (5.1) with |p(φ)|2wh ∈W 1,2(Br), we derive

(5.10)
∫
Br

|p(φ)|2|∇wh|2 + 1
2∇(|p(φ)|2) · ∇(|wh|2) dx

=
∫
∂Br

∂νwh · wh dH1 +
∫
Br

1
ε2
h

(1− |wh|2)|wh|2|p(φ)|2 dx ,
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where the first integral in the right hand side is understood in theW−1/2,2−
W 1/2,2 sense. Here we have also used the fact |p(φ)|2 = 1 on ∂Br (so that
|p(φ)|2wh = wh on ∂Br). Testing now (5.1) with wh yields∫

∂Br

∂νwh · wh dH1 =
∫
Br

|∇wh|2 −
1
ε2
h

(1− |wh|2)|wh|2 dx .

Putting together this identity with (5.9) and (5.10) leads to∫
Br

|∇u|2 + 1
2ε2
h

(1− |u|2)2 dx

=
∫
Br

|∇wh|2 + |wh|2|∇φ|2 + 2
m
j(p(φ)) · j(wh)

+ 1
ε2
h

[
1
2(1− |wh|2|p(φ)|2)2 − (1− |wh|2)|wh|2

+ (1− |wh|2)|wh|2|p(φ)|2
]

dx .

In view of the algebraic identity

1
2(1− a2b2)2 − (1− a2)a2 + (1− a2)a2b2

= 1
2(1− a2)2 + a4

2 (1− b2)2 for a, b > 0 ,

we have obtained
1
2

∫
Br

|∇u|2 + 1
2ε2
h

(1− |u|2)2 dx = Eεh(wh, Br)

+ 1
2

∫
Br

{
|wh|2|∇φ|2 + |wh|

4

2ε2
h

(1− |φ|2)2 + 2
m
j(p(φ)) · j(wh)

}
dx .

Finally, since wh ∈W 1,2(Br) we have Ju ∩Br = Jφ ∩Br (up to an H1-null
set), and the conclusion follows. �

We now use Lemma 5.9 to derive a lower bound on the energy. In par-
ticular, we want to be able to control the last term in (5.8), which is the
purpose of the following lemma.

Lemma 5.10. — There exists a universal constant C? > 0 such that if

(5.11)
∫
Br

|∇wh|2 dx 6 δ ,

and

(5.12) r1/2
(∫

∂Br

|∂τgh|2 + (1− |gh|2)2

2ε2
h

dH1
)1/2

6 δ,
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for some constant δ > 0, then for every Φ ∈ W 1,2(Br) satisfying Φ = 1 on
∂Br, there holds∣∣∣∣∫

Br

j(Φ) · j(wh) dx
∣∣∣∣ 6 C?δ ∫

Br

|∇Φ|2 dx.

Proof. — Rescaling variables we may assume that r = 1. Arguing by
approximation as in Proposition 5.8, we may assume that wh is smooth.
First, using equation (5.1) we derive that div j(wh) = wh∧∆wh = 0. By

Hodge decomposition, we can find a smooth scalar function H such that
j(wh) = ∇⊥H. Notice that H is defined up to an additive constant that
we shall fix later on.
By approximation, we may assume that the test function Φ is smooth.

Since Φ is constant on ∂B1, the vector field j(Φ) satisfies j⊥(Φ) · ν = 0
on ∂B1. Since curl j(Φ) = 2 det∇Φ,∫

B1

j(Φ) · j(wh) dx = −
∫
B1

j⊥(Φ) · ∇H dx = −
∫
B1

2H det(∇Φ) dx .

We may now estimate∣∣∣∣∫
B1

j(Φ) · j(wh) dx
∣∣∣∣ 6 ∫

B1

|H||∇Φ|2 dx 6 ‖H‖L∞(B1)

∫
B1

|∇Φ|2 dx ,

and we are left to prove that ‖H‖L∞(B1) is controlled by δ. We consider
the function H1 solving{

∆H1 = 2 det(∇wh) in B1 ,

H1 = 0 on ∂B1 ,

and set H2 := H −H1. Then, H2 is harmonic in B1 since

∆H2 = − div j⊥(wh)− 2 det(∇wh) = curl j(wh)− 2 det(∇wh) = 0 .

In addition,

(5.13) ∂τH2 = ∂τH = −ν · j(wh) on ∂B1 .

Thanks to Wente’s estimate (see [55] or [19, Lemma A.1]), there exists a
universal constant C] > 0 such that

‖H1‖L∞(B1) 6 C]

∫
B1

|∇wh|2 dx 6 C]δ .

Moreover, by the maximum principle,

inf
B1
H2 = inf

∂B1
H2 and sup

B1

H2 = sup
∂B1

H2 .
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We now fix the additive constant for H so that supB1 H2 + infB1 H2 = 0.
This yields

‖H2‖L∞(B1) = 1
2

[
sup
∂B1

H2 − inf
∂B1

H2

]
6

1
4

∫
∂B1

|∂τH2|dH1 .

Recalling that |wh| 6 1, we have by (5.13) |∂τH2| 6 |wh||∂νwh| 6 |∂νwh|,
so that by Cauchy–Schwarz inequality,

‖H2‖L∞(B1) 6

√
2π
4

(∫
∂B1

|∂νwh|2 dH1
)1/2

.

Let us now recall that the Pohozaev identity applied to equation (5.1) (see
e.g. [54, (5.2)]) leads to∫

B1

(1− |wh|2)2

ε2
h

dx =
∫
∂B1

|∂τwh|2 − |∂νwh|2 + (1− |wh|2)2

2ε2
h

dH1 .

Hence, ∫
∂B1

|∂νwh|2 dH1 6
∫
∂B1

|∂τwh|2 + (1− |wh|2)2

2ε2
h

dH1 ,

which then implies

‖H2‖L∞(B1) 6

√
2π
4

(∫
∂B1

|∂τwh|2 + (1− |wh|2)2

2ε2
h

dH1
)1/2 (5.12)

6

√
2π
4 δ .

The conclusion now follows with C? := C] +
√

2π/4. �

Combining Lemma 5.9 and Lemma 5.10 yields the following lower bound
for the energy.
Proposition 5.11. — Let C? be the constant given by Proposition 5.10,

and let δ > 0 be such that C?δ 6 1
16m . For εh small enough, if wh satis-

fies (5.11) and (5.12), then

(5.14) F 0
ε (u,Br) > Eεh(wh, Br) + 1

8

∫
Br

|∇φ|2 dx+H1(Jφ ∩Br)

for every u ∈ G(Br) ∩ L∞(Br) satisfying p(u) = p(gh) on ∂Br, where
φ := u/wh ∈ G(Br) ∩ L∞(Br).
Proof. — By Proposition 5.8 and Lemma 5.9, identity (5.8) holds and

|wh|2 > 1/2 for εh small enough. Applying Lemma 5.10 with Φ := p(φ),
we derive that

Eεh
(
P(u), Br

)
> Eεh(wh, Br) + 1

4

∫
Br

|∇φ|2 + 1
4ε2
h

(1− |φ|2)2 dx

− 1
8m2

∫
Br

|∇p(φ)|2 dx .
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By Lemma 2.3 we have
1
m2

∫
Br

|∇p(φ)|2 dx 6
∫
Br

|∇P(φ)|2 dx =
∫
Br

|∇φ|2 dx ,

and the conclusion follows. �

Remark 5.12. — Under the assumptions of Proposition 5.11, we can ob-
tain that the minimizer of (5.7) is unique. Indeed, any solution w̃h of (5.7)
satisfies ‖w̃h‖L∞(Br) 6 1 by minimality. Applying (5.14) to w̃h then yields

Eεh(w̃h, Br) > Eεh(wh, Br) + 1
8

∫
Br

|∇φ|2 dx

with φ := w̃h/wh. Since Eεh(w̃h, Br) = Eεh(wh, Br), we deduce that φ ≡ 1,
that is w̃h = wh. A similar idea was used in [32] to prove uniqueness results,
extending those from [56].

5.3. Proof of Theorem 5.1

This section is devoted to the proof of Theorem 5.1. We fix a sequence
εh → 0, and minimizers uh of F 0

εh,g
over Gg(Ω). We assume that uh → u

strongly in L1(Ω) as h → ∞, where u is a minimizer of F0,g over Lg(Ω).
We recall that by Theorem 3.2 vh := p(uh)→ um strongly in W 1,p(Ω) for
every p < 2 and in W 1,2

loc (Ω \ sptµ), where µ := curl j(um) ∈ Ad. According
to Section 4, the compact set Γ := Ju ⊆ Ω is a Λ(µ)-minimizer in the sense
of Definition 4.1, and thus a union of at most d Steiner trees. We denote by
T ⊆ Ω the (finite) set of Steiner points of Γ \ sptµ, i.e., the triple junctions
of Γ away from sptµ. We finally recall that u ∈ C∞(Ω \ Γ), u = g on ∂Ω,
and that um = vµ ∈ C∞(Ω \ sptµ).
Writing sptµ =: {x1, . . . , xmd} and T := {y1, . . . , yq}, we now fix σ0 > 0

satisfying

σ0 <
1
2 min

{
min
k 6=l
|xk − xl| ,min

k 6=l
|yk − yl| ,dist(Γ, ∂Ω) ,dist(T, sptµ)

}
,

and we set for σ ∈ (0, σ0),

(5.15) Kσ := ‖∇vµ‖L∞(Ω\Bσ/4(µ)) .

Moreover we fix the positive constant δ to be

δ := min
{

1/(4
√
πm), 1/(16mC?)

}
,
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C? being the constant given by Proposition 5.10. For σ ∈ (0, σ0), we finally
set

rσ := min
{ σ

10 ,
δ

8
√
πKσ

}
.

Theorem 5.1 is a consequence of a covering argument combined with Propo-
sition 5.13, Proposition 5.16 and Proposition 5.18 which respectively give
the structure of uh away from Γ, close to Γ but away from the triple junc-
tions and at the triple junctions.

5.3.1. Smoothness and convergence away from Γ

Proposition 5.13. — Let σ ∈ (0, σ0). For h large enough, uh ∈W 1,2
g (Ω\

Bσ(Γ)) and uh minimizes Eεh( · ,Ω \ Bσ(Γ)) under its own boundary con-
dition. In addition, uh ∈ C∞(Ω \ Bσ(Γ)) and uh → u in C1,α(Ω \ Bσ(Γ))
and Ckloc(Ω \Bσ(Γ)) for every α ∈ (0, 1) and k ∈ N.

The proof of Proposition 5.13 is a direct consequence of Lemma 5.14 and
Lemma 5.15 below, together with a suitable covering argument.

Lemma 5.14. — For σ ∈ (0, σ0), let r ∈ (0, rσ) and x0 ∈ Ω be such
that B2r(x0) ⊆ Ω \Bσ(Γ). For h large enough, uh ∈W 1,2(Br(x0)), and uh
minimizes Eεh( · , Br(x0)) under its own boundary condition. In addition,
uh ∈ C∞(Br(x0)) and uh → u in Ckloc(Br(x0)) for every k ∈ N.

Proof.
Step 1. — Without loss of generality, we may assume that x0 = 0. Set

γh :=
∫
B2r

|∇vh −∇vµ|2 + |vh − vµ|2 dx+ 1
2εh2

∫
B2r

(1− |uh|2)2 dx .

By Theorem 3.2 and Corollary 3.4, γh → 0 as h→∞. Since Γ ∩ B2r = ∅,
(3.9) shows that

(5.16) H1(Juh ∩B2r) 6
r

2
for h large enough. From now on, we assume that (5.16) holds.
By the coarea formula (see [47, Theorem II.7.7]), we have∫ 2r

r

H0(Juh ∩ ∂Bt) dt 6 H1(Juh ∩B2r) 6
r

2 .

Setting
Ah :=

{
t ∈ (r, 2r) : Juh ∩ ∂Bt = ∅

}
,
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we deduce that H1(Ah) > r/2. Notice that uh ∂Bt ∈ W 1,2(∂Bt) for a.e.
t ∈ Ah. Since∫

Ah

[∫
∂Bt

|∇vh −∇vµ|2 + |vh − vµ|2 + 1
2εh2 (1− |uh|2)2 dH1

]
dt 6 γh ,

we can find a radius ρh ∈ Ah such that uh ∂Bρh ∈W 1,2(∂Bρh ; C) and

(5.17)
∫
∂Bρh

|∇vh −∇vµ|2 + |vh − vµ|2 + 1
2εh2 (1− |uh|2)2 dH1 6

2γh
r
.

By definition of p, |∇uh| 6 |∇vh| and thus∫
∂Bρh

|∇uh|2 dH1 6
∫
∂Bρh

|∇vh|2 dH1

6 2
∫
∂Bρh

|∇vh −∇vµ|2 dH1 + 4πρh‖∇vµ‖2L∞(B2r)

6
4γh
r

+ 8πrK2
σ ,

which leads to

(5.18) ρ
1/2
h

(∫
∂Bρh

|∇uh|2 + 1
2εh2 (1− |uh|2)2 dH1

)1/2

6 δ

for h large enough since ρh 6 2rσ.
Step 2. — We select a subsequence such that ρh → ρ ∈ [r, 2r]. Define

gh(x) := uh(ρhx) for x ∈ ∂B1. Then gh ∈ W 1,2(∂B1) ∩ L∞(B1) satisfies
|gh| 6 1, and

(5.19)
(∫

∂B1

|∂τgh|2 + 1
2ε̃2
h

(1− |gh|2)2 dH1
)1/2

6 δ ,

where ε̃h := εh/ρh. Extracting a further subsequence if necessary, we may
thus assume that gh → g? uniformly of ∂B1 for some g? ∈ W 1,2(∂B1; S1).
Estimate (5.17) yields

(5.20) gm? (x) = lim
h→∞

p(gh)(x) = lim
h→∞

vh(ρhx) = vµ(ρx) ∀ x ∈ ∂B1 .

Since deg(vµ, ∂Bρ) = 0, we deduce that deg(g?, ∂B1) = 0. We are now in
position to apply Proposition 5.8 to produce minimizers wh of Eε̃h( · , B1)
overW 1,2

gh
(B1). Then wh → w? strongly inW 1,2(B1) where w? is the unique

solution of (5.6). We claim that

wm? (x) = vµ(ρx) ∀ x ∈ B1 .

Indeed, recalling (2.14), vµ(ρx) = eiψµ(x) for x ∈ B1 and a smooth har-
monic function ψµ (which is unique up to a constant multiple of 2π).
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Moreover, w? = eiϕ? for some harmonic function ϕ? ∈ W 1,2(B1). In view
of (5.20), we have mϕ? = ψµ + 2kπ on ∂B1 for some constant k ∈ N. By
uniqueness of the harmonic extension, we infer that mϕ? = ψµ + 2kπ in
B1, and the claim follows.
As a consequence of this last identity, we deduce that∫

B1

|∇w?|2 dx = 1
m2

∫
Bρh

|∇vµ|2 dx 6 4πr2K2
σ

m2 6
δ

2 .

Since wh → w? strongly in W 1,2(B1), we thus have for h large enough

(5.21)
∫
B1

|∇wh|2 dx 6 δ .

Step 3. — Let us define ŵh(x) := wh(x/ρh), and consider the competitor
ûh ∈ Gg(Ω) given by

ûh :=
{
uh in Ω \Bρh ,
ŵh in Bρh .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Bρh = ∅,
we deduce that

F 0
εh

(uh, Bρh) 6 Eεh(ŵh, Bρh) .

Setting ũh(x) := uh(ρhx) and rescaling variables, we obtain

(5.22) Eε̃h
(
P(ũh), B1

)
+ ρhH1(Jũh ∩B1) 6 Eε̃h(wh, B1) .

In view of (5.19) and (5.21) (and our choice of δ), we can apply Lemma 5.9
and Proposition 5.11 to derive that

(5.23) Eε̃h
(
P(ũh), B1

)
+ ρhH1(Jũh ∩B1)

> Eε̃h(wh, B1) + 1
8

∫
B1

|∇φh|2 dx+ ρhH1(Jφh ∩B1)

for h large enough, where φh := ũh/wh satisfies φh = 1 on ∂B1. Putting
(5.22) and (5.23) together leads to

∫
B1
|∇φh|2 dx = 0 = H1(Jφh ∩B1), and

thus φh ≡ 1. In other words, ũh ≡ wh for h large enough.
Scaling back to the original variables (and recalling that uh → u in

L1(Ω)), we conclude from Proposition 5.8 that for h large enough, uh min-
imizes Eεh( · , Br) in W 1,2(Br) under its own boundary condition, uh ∈
C∞(Br) and uh → u in Ckloc(Br) for every k ∈ N. Since the limit is unique,
we deduce that these facts actually hold for the full sequence (and not only
for a subsequence). �
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The next lemma is devoted to smoothness and convergence of uh near
the boundary of Ω. Since ∂Ω is assumed to be smooth, we can find a radius
rΩ > 0 such that

(5.24) H1(∂Ω ∩Br(x)) 6 3r ∀ r ∈ (0, rΩ) , ∀ x ∈ ∂Ω .

For the sake of variety, in the proof below, we do not use the energy split-
ting argument. Notice that, either way, it could be possible to adapt this
alternative argument to prove Lemma 5.14, or to adapt the energy splitting
approach to treat boundary points.

Lemma 5.15. — For σ ∈ (0, σ0), let r ∈ (0,min{rσ, rΩ}) and x0 ∈ ∂Ω.
For h large enough, uh ∈ W 1,2(Br(x0) ∩ Ω) with uh = g on ∂Ω ∩ Br(x0)
and uh minimizes Eεh( · , Br(x0) ∩ Ω) under its own boundary conditions.
In addition, uh ∈ C∞(Br(x0) ∩ Ω) and uh → u in C1,α

loc (Br(x0) ∩ Ω) and
Ckloc(Br(x0) ∩ Ω) for every α ∈ (0, 1) and k ∈ N.

Proof. — Without loss of generality, we may assume that x0 = 0. As
in the proof of Proposition 5.14, it is enough to find ρh ∈ (r, 2r) such
that (5.18) holds (with ∂Bρh ∩ Ω in place of ∂Bρh), Juh ∩ (Bρh ∩ Ω) = ∅
(so that uh ∈ W 1,2(Bρh ∩ Ω)), and uh = g on ∂Ω ∩ Bρh , for h large
enough. Indeed, for any w ∈ W 1,2

uh
(Bρh), one can consider the competitor

ûh ∈ Gg(Ω) given by ûh = w in Bρh ∩ Ω, and ûh = uh in Ω \ Bρh . By
minimality, F 0

εh,g
(uh) 6 F 0

εh,g
(ûh), which then leads to

Eεh(uh, Bρh∩Ω) = F 0
εh

(uh, Bρh∩Ω) 6 F 0
εh

(w,Bρh∩Ω) = Eεh(w;Bρh∩Ω) .

Hence uh minimizes Eεh( · , Bρh) in W 1,2(Bρh ∩Ω) under its own boundary
condition. Then the remaining conclusions follow from [12] (see also [13,
Theorem A.3]) together with the fact that uh → u in L1(Ω).
We select the radius ρh by repeating the Fubini type argument used in

Step 1 of the proof of Proposition 5.14. The main additional point is to
select ρh so that uh belongs to W 1,2(∂Bρh ∩Ω) with uh = g on ∂Bρh ∩∂Ω.
This is possible via the coarea formula since (3.9) implies that for h large
enough

H1(Juh ∩B2r ∩ Ω) +H1({uh 6= g} ∩ ∂Ω ∩B2r) 6
r

2 .

By our choice of ρh, the map gh defined by gh := uh in ∂Bρh ∩ Ω, and
gh := g in Bρh ∩ ∂Ω, belongs to W 1,2(∂(Bρh ∩Ω)). In view of (5.18), for h
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large enough we have |gh| > 1/2 on ∂(Bρh ∩ Ω), and

osc∂(Bρh∩Ω) gh 6
(
H1(∂(Bρh ∩ Ω))

)1/2(∫
∂(Bρh∩Ω)

|∂τgh|2 dH1

)1/2

6
√

2πρh

(∫
Bρh∩∂Ω

|∂τg|2 dH1 +
∫
∂Bρh∩Ω

|∇uh|2 dH1

)1/2

(5.15),(5.24)&(5.18)
6

√
2πρh

(
3ρhK2

σ + δ2/ρh
)1/2

6
√

2π
(
6r2K2

σ + δ2)1/2
6

1
2m .

Rotating coordinates in the image if necessary, we may assume that gh(0) =
1, which in turn yields

(5.25) |p(gh(x))− 1| 6 1
2 ∀ x ∈ ∂(Bρh ∩ Ω) .

We claim that

(5.26) min
v∈W 1,2

p(gh)(Bρh∩Ω)
Gεh(v,Bρh ∩Ω) = min

u∈W 1,2
gh

(Bρh∩Ω)
Eεh(u,Bρh ∩Ω) .

Before proving this claim, let us show how (5.26) leads to the conclusion.
By minimality of uh (and our choice of ρh), we have

min
u∈W 1,2

gh
(Bρh∩Ω)

Eεh(u,Bρh ∩ Ω)

= min
u∈W 1,2

gh
(Bρh∩Ω)

F 0
εh

(u,Bρh ∩ Ω)

> min
u∈Ggh (Bρh∩Ω)

{
F 0
εh

(u,Bρh ∩ Ω) +H1({u 6= gh} ∩ ∂(Bρh ∩ Ω)
)}

= Gεh(vh, Bρh ∩ Ω) +H1(Juh ∩ (Bρh ∩ Ω))
+H1({uh 6= g} ∩ (∂Ω ∩Bρh))

> min
v∈W 1,2

p(gh)(Bρh∩Ω)
Gεh(v,Bρh ∩ Ω) .

Then, (5.26) implies that all the inequalities above are in fact equalities
and as a consequence

H1(Juh ∩ (Bρh ∩ Ω)) +H1({uh 6= g} ∩ (∂Ω ∩Bρh)) = 0 .

Hence Juh ∩ (Bρh ∩ Ω) is empty, and uh = g on ∂Ω ∩Bρh .
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In view of the above chain of inequalities, to prove (5.26) it is enough to
show that

(5.27) min
v∈W 1,2

p(gh)(Bρh∩Ω)
Gεh(v,Bρh ∩Ω) > min

u∈W 1,2
gh

(Bρh∩Ω)
Eεh(u,Bρh ∩Ω) .

We consider v a minimizer of the left-hand side. To establish (5.27), it is
enough to construct u ∈ W 1,2

gh
(Bρh ∩ Ω) satisfying p(u) = v since, in this

case, Gεh(v,Bρh ∩ Ω) = Eεh(u,Bρh ∩ Ω). Let Π : C→ C the map defined
by Π(z) := |Re(z)| + i Im(z). By (5.25) we have Π(p(gh)) = p(gh) and
Π(v) ∈W 1,2

p(gh)(Bρh∩Ω). In addition,Gεh(Π(v), Bρh∩Ω) = Gεh(v, , Bρh∩Ω).
Replacing v by Π(v) if necessary, we may thus assume that the real part of v
is nonnegative in Bρh ∩Ω. Now, let us introduce the map q : C∩{Re(z) >
0} → C defined by q(z) = |z|eiθ/m for z = |z|eiθ with θ ∈ [−π/2, π/2].
Then, q is Lipschitz continuous left inverse of p. In view of (5.25) we have
q(p(gh)) = gh, and as a consequence u := q(v) ∈ W 1,2

gh
(Bρh ∩ Ω) with

p(u) = v. �

5.3.2. Smoothness and convergence away from triple junctions

We continue our asymptotic analysis by considering the local behavior of
uh near Γ, but away from T ∪sptµ. In the statement below, we understand
the convergence of half spaces in the sense of local Hausdorff convergence.
Let us write

cm := |1− a|2.

Proposition 5.16. — For σ ∈ (0, σ0), let r ∈ (0,min{rσ, cm/32}) and
x0 ∈ Γ \ Bσ(T ∪ sptµ). For h large enough, there exist a half space Hh

and k ∈ {1, . . . ,m − 1} such that uh =: (χHh + akχHc
h
)wh with wh ∈

W 1,2(Br(x0)), and wh minimizes Eεh( · , Br(x0)) under its own boundary
conditions. In addition, wh ∈ C∞(Br(x0)), Hh → H for some half space
H satisfying ∂H ∩ Br(x0) = Γ ∩ Br(x0), and wh → (χH + a−kχHc)u in
C`loc(Br(x0)) for every ` ∈ N.

Proof.
Step 1. — Once again we may assume that x0 = 0. We follow the

strategy used in the proof of Lemma 5.14 considering

γh :=
∫
B5r

|∇vh −∇vµ|2 + |vh − vµ|2 dx+ 1
2εh2

∫
B5r

(1− |uh|2)2 dx −→
h→∞

0 .

By Theorem 3.2 and Corollary 3.4 we have (3.9), and thus H1(Juh∩B5r)→
H1(Γ ∩ B5r) = 10r. As a consequence, H1(Juh ∩ B5r) 6 11r for h large
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enough, which in turn leads to

(5.28)
∫ 5r

r

H0(Juh ∩ ∂Bt) dt 6 H1(Juh ∩B5r) 6 11r .

Setting

Ah := A0
h ∪A1

h ∪A2
h with Akh :=

{
t ∈ (r, 5r) : H0(Juh ∩ ∂Bt) = k

}
,

we infer from (5.28) that H1(Ah) > r/3 for h large enough. Notice that
uh ∈W 1,2(∂Bt) for a.e. t ∈ A0

h, and uh ∈ SBV2(∂Bt) for a.e. t ∈ A1
h ∪A2

h.
We claim that H1(A0

h) 6 r/6 for h large enough. Indeed, assume by
contradiction that H1(A0

h) > r/6 for some subsequence. Then, we could
apply the proof of Lemma 5.14 (choosing a good radius ρh ∈ A0

h) to infer
that uh is smooth in Br for h large enough, and thus that Juh ∩ Br = ∅.
However (3.9) tells us that H1(Juh ∩Br)→ 2r as h→∞, a contradiction.
We have thus proved that H1(A1

h ∪ A2
h) > r/6 for h large enough. Now

we claim that for h even larger, we have H1(A1
h) 6 r/12. By contradiction

again, assume that H1(A1
h) > r/12 for some subsequence. Then, we can

find a good radius ρh ∈ A1
h such that uh ∈ SBV2(∂Bρh) and

(5.29)
∫
∂Bρh

|∇vh −∇vµ|2 + |vh − vµ|2 + 1
2εh2 (1− |uh|2)2 dH1 6

12γh
r

.

By our choice of ρh, there is a single point xh ∈ ∂Bρh such that uh ∈
W 1,2(∂Bρh\{xh}). Rescaling variables if necessary, we may assume without
too much loss of generality that the radius ρh = ρ is independent of h.
By (5.29), vh → vµ uniformly on ∂Bρ. As a consequence, |uh| = |vh| > 1/2
on ∂Bρ, and deg(vh, ∂Bρ) = 0 for h large enough. In particular, we can
write uh = |uh|eiϕh on ∂Bρb \ {xh} for some ϕh ∈ W 1,2(∂Bρb \ {xh}).
Let ϕ±h be the traces of ϕh at xh. Since vh = |uh|eimϕh ∈ W 1,2(∂Bρ), we
have m(ϕ+

h − ϕ
−
h ) = 2π deg(vh, ∂Bρ) = 0. Hence ϕ+

h = ϕ−h , which yields
ϕh ∈W 1,2(∂Bρ). We obtain that uh ∈W 1,2(∂Bρ) contradicting our choice
ρ ∈ A1

h.
We may now assume that h is sufficiently large so that H1(A2

h) > r/12.
Arguing as in the proof of Lemma 5.14, we select a good radius ρh ∈ A2

h so
that uh ∈ SBV2(∂Bρh) and (5.18) holds together with (5.29). Here again we
shall assume for simplicity ρh = ρ is independent of h (otherwise we rescale
variables as in the proof of Lemma 5.14). We write {xh, yh} := Juh ∩ ∂Bρ,
and then Ch1 and Ch2 the two (open) arcs in ∂Bρ joining xh and yh. As above,
we infer from (5.29) that |uh| = |vh| > 1/2 on ∂Bρ, and deg(vh, ∂Bρ) = 0
for h large enough. Since uh ∈W 1,2(Chj ) for j = 1, 2, we deduce that there
exist ϕjh ∈ W 1,2(Chj ) such that uh = |uh|eiϕ

j
h on Chj . Denote by ϕj,1h the

TOME 70 (2020), FASCICULE 6



2666 Michael GOLDMAN, Benoit MERLET & Vincent MILLOT

trace of ϕjh at xh, and ϕj,2h the trace of ϕjh at yh. Since vh ∈ W 1,2(∂Bρ),
and vh = |uh|eimϕ

j
h on Chj , we obtain the relation

m(ϕ2,1
h − ϕ

1,1
h ) = 2πkh1 and m(ϕ2,2

h − ϕ
1,2
h ) = 2πkh2

for some kh1 , kh2 ∈ Z \ {0}. Define kh ∈ {1, . . . ,m − 1} to be such that
akh = e2iπkh2 /m, and consider the map

gh :=
{
uh in Ch1 ,
a−khuh in Ch2 .

By construction we have p(gh) = vh and gh ∈ W 1,2(∂Bρ \ {xh}). How-
ever, since deg(vh, ∂Bρ) = 0, we can argue as above (when proving that
H1(A1

h) 6 r/12) to show that gh ∈W 1,2(∂Bρ). In addition, (5.18) yields

(5.30) ρ1/2

(∫
∂Bρ

|∂τgh|2 + (1− |gh|2)2

2ε2
h

dH1

)1/2

6 δ .

We also notice that ‖gh‖L∞(Bρ) 6 1 since |uh| 6 1.
Step 2. — Define Hh to be the half space containing Ch1 and such that

xh, yh ∈ ∂Hh. We claim that kh = k ∈ {1, . . . ,m − 1} is independent
of h for h sufficiently large, that Hh → H for some half space H such
that Γ ∩ ∂Bρ = ∂H ∩ ∂Bρ, and that gh → g? uniformly on ∂Bρ where
g? ∈W 1,2(∂Bρ; S1) is given by

(5.31) g? :=
{
u in ∂Bρ ∩H ,

a−ku in ∂Bρ \H .

First observe that lim infh |xh−yh| > 0. Indeed, if for some subsequence we
have |xh−yh| → 0, then either χHh → 0 in L1(∂Bρ) or χHc

h
→ 0 in L1(∂Bρ).

Assume that χHc
h
→ 0 in L1(∂Bρ) (the other case being analogous). From

Proposition 5.13, we infer that uh → u in L1(∂Bρ), so that gh → u in
L1(∂Bρ). In view of (5.30), we deduce that u belongs to W 1,2(∂Bρ), a
contradiction. Next, by Proposition 5.13 again, uh → u in C0

loc(∂Bρ \ Γ),
which now implies that {xh, yh} → Γ ∩ ∂Bρ as h→∞. Writing Γ ∩Bρ =:
{x?, y?}, we may assume that xh → x? and yh → y?. In the same way, we
may assume that Ch1 → C1 where C1 is an arc of ∂Bρ joining x? and y?. This
clearly implies that Hh → H where H is the half space containing C1 and
such that x?, y? ∈ ∂H. In view of Remark 4.4, there exists a unique k ∈
{1, . . . ,m− 1} such that the map defined in (5.31) belongs to W 1,2(∂Bρ).
Combining this fact with (5.30) and the convergence of uh toward u in
L1(∂Bρ), we deduce that gh → g? uniformly in ∂Bρ, and that kh = k for
h large enough.
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Since gm? = um = vµ on ∂Bρ, and deg(vµ, ∂Bρ) = 0, we derive that
deg(g?, ∂Bρ) = 0. We can now apply Proposition 5.8 to produce minimizers
wh of Eεh( · , Bρ) over W 1,2

gh
(Bρ). Then wh → w? strongly in W 1,2(B1)

where w? is the unique solution of (5.6). Arguing as in the proof of Lem-
ma 5.14 (Step 2), we obtain that wm? = vµ in Bρ, which leads for h large
enough to

(5.32)
∫
Bρ

|∇wh|2 dx 6 δ .

Step 3. — Consider the competitor ûh ∈ Gg(Ω) given by

ûh :=
{
uh in Ω \Bρ ,
(χHh + akχHc

h
)wh in Bρ .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Bρ =
{xh, yh}, we deduce that

(5.33) F 0
εh

(uh, Bρ) 6 F 0
εh

(ûh, Bρ) = Eεh(wh, Bρ) + Lh ,

where Lh := |xh − yh|. Since p(uh) = p(gh) on ∂Bρ, and in view of (5.30)
and (5.32) (and our choice of δ), we can apply Lemma 5.9 and Proposi-
tion 5.11 to derive that

(5.34) F 0
εh

(uh, Bρ) > Eεh(wh, Bρ) + 1
8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ) ,

where φh := uh/wh satisfies φh = χHh+akχHc
h
on ∂Bρ (and thus p(φh) = 1

on ∂Bρ). Putting (5.33) and (5.34) together leads to

(5.35) Lh >
1
8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ) .

Let us now prove that

(5.36) H1(Jφh ∩Bρ) = Lh .

Up to a rotation, we assume that xh = (a, t) and yh = (b, t) with b−a = Lh.
For s ∈ (a, b), we write Vs := {s} ×R. Now, assume by contradiction that
H1(Jφh ∩ Bρ) = Lh − γ for some γ > 0. Then we infer from the coarea
formula [47, Theorem II.7.7] that

(5.37) Lh − γ = H1(Jφh ∩Bρ) >
∫ b

a

H0(Jφh ∩Bρ ∩ Vs) ds .

Set Ãh :=
{
s ∈ (a, b) : Jφh ∩Bρ ∩ Vs = ∅

}
, and recall that φh ∈W 1,2(Bρ ∩

Vs) for a.e. s ∈ Ãh. From (5.37) we deduce that H1(Ãh) > γ. Since, φh =
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χHh + akχHc
h
on ∂Bρ, we have φh = 1 on Ch1 ∩ Vs and φh = ak on Ch2 ∩ Vs

for a.e. s ∈ (a, b). Therefore,∫
Bρ∩Vs

|∂τφh|2 dH1 >
|1− ak|2

2ρ >
cm
10r for a.e. s ∈ (a, b) .

Integrating with respect to s (and recalling that r < cm/80) yields

1
8

∫
Bρ

|∇φh|2 dx+H1(Jφh ∩Bρ)

>
1
8

∫
Ãh

∫
Bρ∩Vs

|∂τφh|2 dH1 dx+ Lh − γ

> Lh +
( cm

80r − 1
)
γ > Lh ,

which contradicts (5.35).
By combining (5.35) and (5.36) we deduce that |∇p(φh)| 6 m|∇φh| = 0

in Bρ. Since p(φh) = 1 on ∂Bρ, we conclude that p(φh) = 1 in Bρ. In
other words, φh takes values in Gm. Hence, there is a Caccioppoli partition
{Ej}m−1

j=0 of Bρ such that

φh =
m−1∑
j=0

ajχEj .

Recalling [4, Section 4.4], we have

(5.38) Lh = H1(Jφh ∩Bρ)

= H1(∂E0 ∩Bρ) + 1
2

m−1∑
j,`=1, j 6=`

H1(∂Ej ∩ ∂E` ∩Bρ) .

Using that χE0 = χHh on ∂Bρ, we have that H1(∂E0 ∩ Bρ) > Lh with
equality if and only if E0 = Hh ∩ Bρ. Therefore E0 = Hh ∩ Bρ and the
sum on the right-hand side of (5.38) vanishes. Since χEk = χHc

h
on ∂Bρ,

we conclude that Ek = Hc
h ∩Bρ and Ej = ∅ for j 6∈ {0, k}. In other words,

φh = χHh + akχHc
h
in Bρ, and thus uh = (χHh + akχHc

h
)wh in Bρ.

To conclude, we observe that wh = (χHh + a−kχHc
h
)uh. Since uh → u in

L1(Ω) and Hh → H, Proposition 5.8 tells us that wh → (χH? + a−kχHc?)u
in C`loc(Bρ) for every ` ∈ N. �

Remark 5.17. — In order to prove (5.36) one could also use a calibration
argument (see [1, 49]). However since our proof is elementary, we have
decided to keep it this way.
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5.3.3. Smoothness and convergence near triple junctions

We now focus on the behavior of uh near the points of T , i.e., triple
junctions. It will be convenient to describe a triple junction in the following
way. First write for j = 0, 1, 2, Y jref :=

{
z ∈ C\{0} : arg(z) ∈ (2jπ/3, 2(j+

1)π/3)
}
. We say that an ordered triplet of open sets (Y 0, Y 1, Y 2) is a triple

junction if there are x0 ∈ C and θ ∈ [0, 2π) such that Y j = x0 + eiθY jref
for j = 0, 1, 2. Then, we say that x0 is the center of the triple junction
(Y 0, Y 1, Y 2). In the statement below, we understand the convergence of
triple junctions in the sense of local Hausdorff convergence.

Proposition 5.18. — For σ ∈ (0, σ0), let r ∈ (0,min{rσ, cm/128}) and
x0 ∈ T . For h large enough, there exist a triple junction (Y 0

h , Y
1
h , Y

2
h ) and

distinct k1, k2 ∈ {1, . . . ,m−1} such that uh =: (χY 0
h

+ak1χY 1
h

+ak2χY 2
h

)wh
with wh ∈ W 1,2(Br(x0)), and wh minimizes Eεh( · , Br(x0)) under its own
boundary conditions. In addition, wh ∈ C∞(Br(x0)), (Y 0

h , Y
1
h , Y

2
h ) →

(Y 0, Y 1, Y 2) for some triple junction satisfying
⋃
j ∂Y

j ∩ Br(x0) = Γ ∩
Br(x0), and wh → (χY 0

h
+ a−k1χY 1

h
+ a−k2χY 2

h
)u in C`loc(Br(x0)) for every

` ∈ N.

Proof.
Step 1. — Without loss of generality, we may assume that x0 = 0.

From Remark 4.4, we infer that there exist a triple junction (Y 0, Y 1, Y 2)
centered in 0 and distinct k1, k2 ∈ {1, . . . ,m−1} such that the map (χY 0 +
a−k1χY 1 + a−k2χY 2)u is smooth in B2r, and

⋃
j ∂Y

j ∩ B2r = Γ ∩ B2r.
Since the values of k1 and k2 play no role we will assume that k1 = 1
and k2 = 2 to keep notation simpler. We write {a} := ∂Y 2 ∩ ∂Y 0 ∩ ∂Br,
{b} := ∂Y 0 ∩ ∂Y 1 ∩ ∂Br, and {c} := ∂Y 1 ∩ ∂Y 2 ∩ ∂Br.

Choosing a sufficiently small radius 0 < κ < r/2, we can apply Propo-
sition 5.16 in the balls B2κ(a), B2κ(b), and B2κ(c), and infer that there
exist half spaces H0

h, H1
h, and H2

h such that H0
h ∩ B2κ(a) → Y 0 ∩ B2κ(a),

H1
h ∩B2κ(b)→ Y 1 ∩B2κ(b), H2

h ∩B2κ(c)→ Y 2 ∩B2κ(c), and
(χH0

h
+ a−2χ(H0

h
)c)uh → (χY 0 + a−2χY 2)u in Ckloc(B2κ(a)) ,(5.39)

(χ(H1
h

)c + a−1χH1
h
)uh → (χY 0 + a−1χY 1)u in Ckloc(B2κ(b)) ,(5.40)

(a−1χ(H2
h

)c+a−2χH2
h
)uh → (a−1χY 1 +a−2χY 2)u in Ckloc(B2κ(c)) .(5.41)

In view of Proposition 5.13, we deduce that for h large enough, Juh∩(Br+κ\
Br−κ) is made of three (disjoint) segments, each of them intersecting ∂Bt
almost orthogonally (in particular at a single point) for every t ∈ (r − κ,
r+κ). As a consequence, for h large enough the open set (Br+κ\Br−κ)\Juh
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has three connected components Z0
h, Z1

h, and Z2
h satisfying Zjh → (Br+κ \

Br−κ)∩Y j . Combining (5.39)–(5.41) with Proposition 5.16, we derive that

(χZ0
h

+ a−1χZ1
h

+ a−2χZ2
h
)uh → (χY 0 + a−1χY 1 + a−2χY 2)u

in Ckloc(Br+κ \Br−κ) .

Step 2. — Arguing as the proof of Lemma 5.14 (Step 1), we find a good
radius ρh ∈ (r, r+κ/2) such that (5.18) holds (for h even larger). Rescaling
variables if necessary, we may assume without too much loss of generality
that ρh = ρ is independent of h. To simplify, we will further assume that
actually ρ = r. Setting

gh := (χZ0
h

+ a−1χZ1
h

+ a−2χZ2
h
)uh ∈ C∞(∂Br) ,

estimate (5.30) holds, ‖gh‖L∞(Br) 6 1, and gh → g? := (χY 0 + a−1χY 1 +
a−2χY 2)u uniformly on ∂Br. Once again, since gm? = vµ we have
deg(g?, ∂Br) = 0. Then, we apply Proposition 5.8 to produce minimizers
wh of Eεh( · , Br) overW 1,2

gh
(Br), and wh → w? strongly inW 1,2(Br) where

w? is the unique solution of (5.6). Again, as in the proof of Lemma 5.14
(Step 2), we obtain that wm? = vµ in Br, which leads to (5.32) for h large
enough.
Step 3. — By Step 1, we have Juh ∩ ∂Br = {xh, yh, zh} for h large

enough, with xh → a, yh → b, and zh → c. For h large enough, we can
then find a triple junction (Y 0

h , Y
1
h , Y

2
h ) (which might not be centered at

the origin) such that {xh} = ∂Y 2
h ∩ ∂Y 0

h ∩ ∂Br, {yh} = ∂Y 0
h ∩ ∂Y 1

h ∩ ∂Br,
and {zh} := ∂Y 1

h ∩ ∂Y 2
h ∩ ∂Br. Obviously, Y jh → Y j as h→∞. Notice also

that gh = (χY 0
h

+ a−1χY 1
h

+ a−2χY 2
h

)uh on ∂Br.
Next, we consider the competitor ûh ∈ Gg(Ω) given by

ûh :=
{
uh in Ω \Br ,
(χY 0

h
+ aχY 1

h
+ a2χY 2

h
)wh in Br .

By minimality we have F 0
εh,g

(uh) 6 F 0
εh,g

(ûh), and since Juh ∩ ∂Br =
{xh, yh, zh}, we deduce that

(5.42) F 0
εh

(uh, Br) 6 F 0
εh

(ûh, Br) = Eεh(wh, Br) +H1(Yh ∩Br) ,

where we have set Yh :=
⋃
j ∂Y

j
h . Once again p(uh) = p(gh) on ∂Br, and

by (5.30) and (5.32), we can apply Lemma 5.9 and Proposition 5.11 to
derive that (5.34) holds, where φh := uh/wh satisfies φh = χY 0

h
+ ak1χY 1

h
+

ak2χY 2
h

on ∂Br (and p(φh) = 1 on ∂Br). Combining (5.34) with (5.42)

ANNALES DE L’INSTITUT FOURIER



A G.L. MODEL WITH FREE DISCONTINUITIES 2671

leads to

(5.43) H1(Yh ∩Br) >
1
8

∫
Br

|∇φh|2 dx+H1(Jφh ∩Br) .

Our choice of r (small compare to cm) allows us to use the calibration
in [49, Example 5.4] (with α = 16) to deduce that for h large enough the
map χY 0

h
+ aχY 1

h
+ a2χY 2

h
is a Dirichlet minimizer of the Mumford–Shah

functional(4) [49, Definition 3.1]. As a consequence,

(5.44) 1
16

∫
Br

|∇φh|2 dx+H1(Jφh ∩Br) > H1(Yh ∩Br) .

Putting together (5.43) and (5.44) yields∫
Br

|∇φh|2 dx = 0 and H1(Jφh ∩Br) = H1(Yh ∩Br) .

Arguing as in the proof of Proposition 5.16 (Step 3), we deduce that

φh =
m−1∑
k=0

akχEk

for a Caccioppoli partition {Ek}m−1
k=0 of Br satisfying

(5.45) E0 ∩ (Br \Br−κ) = Zh0 ∩Br , E1 ∩ (Br \Br−κ)
= Zh1 ∩Br , E2 ∩ (Br \Br−κ) = Zh2 ∩Br ,

and Ek ⊆ Br−κ for k 6∈ {0, 1, 2}.
Let us now consider an arbitrary Caccioppoli partition {Fk}m−1

k=0 of Br
such that each Fk4Ek is compactly contained in Br, and define the com-
petitor ũh ∈ Gg(Ω) by

ũh :=
{
uh in Ω \Br ,
φwh in Br ,

with φ :=
m−1∑
k=0

akχFk .

By minimality F 0
εh,g

(uh) 6 F 0
εh,g

(ũh), which leads as before to

H1(Jφh ∩Br) 6 H1(Jφ ∩Br) .

As in the proof of Theorem 4.3 (Step 3), it implies that {Ek}m−1
k=0 is a

minimal partition of Br, so that Jφh ∩ Br =
⋃
k ∂Ek ∩ Br is locally a

finite union of segments (see [23, Theorem 5.2]). Since we already know
that Jφh is made of three segments in a neighborhood of ∂Br, we conclude
that

⋃
k ∂Ek ∩Br is made of finitely many segments with

⋃
k ∂Ek ∩ ∂Br =

(4)Even though the calibrations defined in [49] (see also [1]) are given for centered triple
junctions, we can consider restrictions to Br of calibrations defined on a larger ball
centered at the center of Yh.
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{xh, yh, zh}(5). In view of (5.45), we have {xh, yh} ⊆ ∂E0 ∩ Br, and the
connected component of ∂E0∩Br containing xh is a polygonal curve joining
xh to yh. Similarly, ∂E2 ∩Br contains a polygonal curve connecting xh to
zh. Set Γh to be the union of these two curves. Then Γh is a connected set
containing {xh, yh, zh}, and contained in Jφh ∩Br. Since Yh ∩ Br is the
unique solution of the Steiner problem relative to the points {xh, yh, zh},
we have

H1(Yh ∩Br) = H1(Jφh ∩Br) > H1(Γh) > H1(Yh ∩Br) ,
and it follows that Jφh ∩Br = Γh∩Br = Yh∩Br. From (5.45) we conclude
that

φh = χY 0
h

+ aχY 1
h

+ a2χY 2
h
,

that is uh = (χY 0
h

+ aχY 1
h

+ a2χY 2
h

)wh in Br.
Since uh → u in L1(Ω) and Y jh → Y j , Proposition 5.8 implies that

wh → (χY 0 + a−1χY 1 + a−2χY 2)u in Ckloc(Br) for every k ∈ N, and the
proof is complete. �
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