We prove that Oeljeklaus–Toma manifolds of simple type are rigid, and that any line bundle on an Oeljeklaus–Toma manifold is flat.
Nous montrons que les variétés de Oeljeklaus–Toma de type simple sont rigides, et que tous les fibrés en droites sur une variété de Oeljeklaus–Toma sont plats.
Revised:
Accepted:
Published online:
Keywords: Oeljeklaus–Toma manifold, flat line bundle, deformation, rigidity
Mot clés : variétés de Oeljeklaus–Toma, fibré en droites plat, déformation, rigidité
Angella, Daniele 1; Parton, Maurizio 2; Vuletescu, Victor 3
@article{AIF_2020__70_6_2409_0, author = {Angella, Daniele and Parton, Maurizio and Vuletescu, Victor}, title = {Rigidity of {Oeljeklaus{\textendash}Toma} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2409--2423}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {6}, year = {2020}, doi = {10.5802/aif.3387}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3387/} }
TY - JOUR AU - Angella, Daniele AU - Parton, Maurizio AU - Vuletescu, Victor TI - Rigidity of Oeljeklaus–Toma manifolds JO - Annales de l'Institut Fourier PY - 2020 SP - 2409 EP - 2423 VL - 70 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3387/ DO - 10.5802/aif.3387 LA - en ID - AIF_2020__70_6_2409_0 ER -
%0 Journal Article %A Angella, Daniele %A Parton, Maurizio %A Vuletescu, Victor %T Rigidity of Oeljeklaus–Toma manifolds %J Annales de l'Institut Fourier %D 2020 %P 2409-2423 %V 70 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3387/ %R 10.5802/aif.3387 %G en %F AIF_2020__70_6_2409_0
Angella, Daniele; Parton, Maurizio; Vuletescu, Victor. Rigidity of Oeljeklaus–Toma manifolds. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2409-2423. doi : 10.5802/aif.3387. https://aif.centre-mersenne.org/articles/10.5802/aif.3387/
[1] Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, Lecture Notes in Mathematics, 1759, Springer, 2001, viii+133 pages | DOI | MR | Zbl
[2] Holomorphic line bundles over domains in Cousin groups and the algebraic dimension of Oeljeklaus–Toma manifolds, Proc. Edinb. Math. Soc., II. Ser., Volume 58 (2015) no. 2, pp. 273-285 | DOI | MR | Zbl
[3] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | DOI | MR | Zbl
[4] Oeljeklaus–Toma manifolds and arithmetic invariants, Math. Z., Volume 286 (2017) no. 1-2, pp. 291-323 | DOI | MR | Zbl
[5] Nonreciprocal units in a number field with an application to Oeljeklaus–Toma manifolds, New York J. Math., Volume 20 (2014), pp. 257-274 | MR | Zbl
[6] On surfaces of Class , Invent. Math., Volume 24 (1974), pp. 269-310 | DOI | MR | Zbl
[7] De Rham and twisted cohomology of Oeljeklaus–Toma manifolds, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2037-2066 | DOI | Numdam | MR | Zbl
[8] Vaisman metrics on solvmanifolds and Oeljeklaus–Toma manifolds, Bull. Lond. Math. Soc., Volume 45 (2013) no. 1, pp. 15-26 | DOI | MR | Zbl
[9] On the spectral sequence for the -cohomology of a holomorphic bundle with Stein fibres, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., Volume 72 (1982) no. 6, pp. 301-307 | MR | Zbl
[10] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Tata Institute of Fundamental Research, 2008, xii+263 pages With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition | MR | Zbl
[11] Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 161-171 | DOI | Numdam | MR | Zbl
[12] Oeljeklaus–Toma manifolds admitting no complex subvarieties, Math. Res. Lett., Volume 18 (2011) no. 4, pp. 747-754 | DOI | MR | Zbl
[13] Oeljeklaus–Toma manifolds and locally conformally Kähler metrics. A state of the art, Stud. Univ. Babeş-Bolyai Math., Volume 58 (2013) no. 4, pp. 459-468 | MR | Zbl
[14] Hodge decomposition for Cousin groups and for Oeljeklaus–Toma manifolds (2018) https://arxiv.org/abs/1811.02541, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) | DOI
[15] Examples of non-trivial rank in locally conformal Kähler geometry, Math. Z., Volume 270 (2012) no. 1-2, pp. 179-187 (arXiv version: https://arxiv.org/abs/1001.4891) | DOI | MR | Zbl
[16] Simultaneous approximation to algebraic numbers by rationals, Acta Math., Volume 125 (1970), pp. 189-201 | DOI | MR | Zbl
[17] On the cohomology of Oeljeklaus–Toma manifolds (2015) (preprint)
[18] Some examples of locally conformal Kähler manifolds, Rend. Semin. Mat., Torino, Volume 40 (1982) no. 1, pp. 81-92 | MR | Zbl
[19] Curves on Oeljeklaus–Toma manifolds, Funkts. Anal. Prilozh., Volume 48 (2014) no. 3, pp. 84-88 translation in Funct. Anal. Appl. 48 (2014), no. 3, 223–226 | DOI | MR | Zbl
[20] Surfaces on Oeljeklaus–Toma Manifolds (2013) (https://arxiv.org/abs/1306.2456)
[21] Line bundles on toroidal groups, J. Reine Angew. Math., Volume 335 (1982), pp. 197-215 | DOI | MR | Zbl
[22] LCK metrics on Oeljeklaus–Toma manifolds versus Kronecker’s theorem, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 57(105) (2014) no. 2, pp. 225-231 | MR | Zbl
Cited by Sources: