Rigidity of Oeljeklaus–Toma manifolds
Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2409-2423.

We prove that Oeljeklaus–Toma manifolds of simple type are rigid, and that any line bundle on an Oeljeklaus–Toma manifold is flat.

Nous montrons que les variétés de Oeljeklaus–Toma de type simple sont rigides, et que tous les fibrés en droites sur une variété de Oeljeklaus–Toma sont plats.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3387
Classification: 32J18, 32L10, 58H15
Keywords: Oeljeklaus–Toma manifold, flat line bundle, deformation, rigidity
Mot clés : variétés de Oeljeklaus–Toma, fibré en droites plat, déformation, rigidité

Angella, Daniele 1; Parton, Maurizio 2; Vuletescu, Victor 3

1 Dipartimento di Matematica e Informatica “Ulisse Dini” Università degli Studi di Firenze viale Morgagni 67/a 50134 Firenze (Italy)
2 Dipartimento di Economia Università di Chieti-Pescara viale della Pineta 4 65129 Pescara (Italy)
3 Faculty of Mathematics and Informatics University of Bucharest Academiei st. 14 Bucharest (Romania)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_6_2409_0,
     author = {Angella, Daniele and Parton, Maurizio and Vuletescu, Victor},
     title = {Rigidity of {Oeljeklaus{\textendash}Toma} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {2409--2423},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {6},
     year = {2020},
     doi = {10.5802/aif.3387},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3387/}
}
TY  - JOUR
AU  - Angella, Daniele
AU  - Parton, Maurizio
AU  - Vuletescu, Victor
TI  - Rigidity of Oeljeklaus–Toma manifolds
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 2409
EP  - 2423
VL  - 70
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3387/
DO  - 10.5802/aif.3387
LA  - en
ID  - AIF_2020__70_6_2409_0
ER  - 
%0 Journal Article
%A Angella, Daniele
%A Parton, Maurizio
%A Vuletescu, Victor
%T Rigidity of Oeljeklaus–Toma manifolds
%J Annales de l'Institut Fourier
%D 2020
%P 2409-2423
%V 70
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3387/
%R 10.5802/aif.3387
%G en
%F AIF_2020__70_6_2409_0
Angella, Daniele; Parton, Maurizio; Vuletescu, Victor. Rigidity of Oeljeklaus–Toma manifolds. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2409-2423. doi : 10.5802/aif.3387. https://aif.centre-mersenne.org/articles/10.5802/aif.3387/

[1] Abe, Yukitaka; Kopfermann, Klaus Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, Lecture Notes in Mathematics, 1759, Springer, 2001, viii+133 pages | DOI | MR | Zbl

[2] Battisti, Laurent; Oeljeklaus, Karl Holomorphic line bundles over domains in Cousin groups and the algebraic dimension of Oeljeklaus–Toma manifolds, Proc. Edinb. Math. Soc., II. Ser., Volume 58 (2015) no. 2, pp. 273-285 | DOI | MR | Zbl

[3] Bombieri, Enrico; Gubler, Walter Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | DOI | MR | Zbl

[4] Braunling, Olivier Oeljeklaus–Toma manifolds and arithmetic invariants, Math. Z., Volume 286 (2017) no. 1-2, pp. 291-323 | DOI | MR | Zbl

[5] Dubickas, Artūras Nonreciprocal units in a number field with an application to Oeljeklaus–Toma manifolds, New York J. Math., Volume 20 (2014), pp. 257-274 | MR | Zbl

[6] Inoue, Masahisa On surfaces of Class VII 0 , Invent. Math., Volume 24 (1974), pp. 269-310 | DOI | MR | Zbl

[7] Istrati, Nicolina; Otiman, Alexandra De Rham and twisted cohomology of Oeljeklaus–Toma manifolds, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2037-2066 | DOI | Numdam | MR | Zbl

[8] Kasuya, Hisashi Vaisman metrics on solvmanifolds and Oeljeklaus–Toma manifolds, Bull. Lond. Math. Soc., Volume 45 (2013) no. 1, pp. 15-26 | DOI | MR | Zbl

[9] Lupacciolu, Guido On the spectral sequence for the ¯-cohomology of a holomorphic bundle with Stein fibres, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., Volume 72 (1982) no. 6, pp. 301-307 | MR | Zbl

[10] Mumford, David Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Tata Institute of Fundamental Research, 2008, xii+263 pages With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition | MR | Zbl

[11] Oeljeklaus, Karl; Toma, Matei Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 161-171 | DOI | Numdam | MR | Zbl

[12] Ornea, Liviu; Verbitsky, Misha Oeljeklaus–Toma manifolds admitting no complex subvarieties, Math. Res. Lett., Volume 18 (2011) no. 4, pp. 747-754 | DOI | MR | Zbl

[13] Ornea, Liviu; Vuletescu, Victor Oeljeklaus–Toma manifolds and locally conformally Kähler metrics. A state of the art, Stud. Univ. Babeş-Bolyai Math., Volume 58 (2013) no. 4, pp. 459-468 | MR | Zbl

[14] Otiman, Alexandra; Toma, Matei Hodge decomposition for Cousin groups and for Oeljeklaus–Toma manifolds (2018) https://arxiv.org/abs/1811.02541, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) | DOI

[15] Parton, Maurizio; Vuletescu, Victor Examples of non-trivial rank in locally conformal Kähler geometry, Math. Z., Volume 270 (2012) no. 1-2, pp. 179-187 (arXiv version: https://arxiv.org/abs/1001.4891) | DOI | MR | Zbl

[16] Schmidt, Wolfgang M. Simultaneous approximation to algebraic numbers by rationals, Acta Math., Volume 125 (1970), pp. 189-201 | DOI | MR | Zbl

[17] Tomassini, Adriano; Torelli, Sara On the cohomology of Oeljeklaus–Toma manifolds (2015) (preprint)

[18] Tricerri, Franco Some examples of locally conformal Kähler manifolds, Rend. Semin. Mat., Torino, Volume 40 (1982) no. 1, pp. 81-92 | MR | Zbl

[19] Verbitskaya, S. M. Curves on Oeljeklaus–Toma manifolds, Funkts. Anal. Prilozh., Volume 48 (2014) no. 3, pp. 84-88 translation in Funct. Anal. Appl. 48 (2014), no. 3, 223–226 | DOI | MR | Zbl

[20] Verbitsky, Sima Surfaces on Oeljeklaus–Toma Manifolds (2013) (https://arxiv.org/abs/1306.2456)

[21] Vogt, Christian Line bundles on toroidal groups, J. Reine Angew. Math., Volume 335 (1982), pp. 197-215 | DOI | MR | Zbl

[22] Vuletescu, Victor LCK metrics on Oeljeklaus–Toma manifolds versus Kronecker’s theorem, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 57(105) (2014) no. 2, pp. 225-231 | MR | Zbl

Cited by Sources: