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RIGIDITY OF OELJEKLAUS–TOMA MANIFOLDS

by Daniele ANGELLA,
Maurizio PARTON & Victor VULETESCU (*)

Abstract. — We prove that Oeljeklaus–Toma manifolds of simple type are
rigid, and that any line bundle on an Oeljeklaus–Toma manifold is flat.
Résumé. — Nous montrons que les variétés de Oeljeklaus–Toma de type simple

sont rigides, et que tous les fibrés en droites sur une variété de Oeljeklaus–Toma
sont plats.

Introduction

Oeljeklaus–Toma manifolds are complex non-Kähler manifolds. They
have been introduced in [11] as counterexamples to a conjecture by I.
Vaisman concerning locally conformally Kähler metrics. Because of their
construction using number fields techniques, many of their properties are
encoded in the algebraic structure [5, 11, 22], and their class is well-behaved
under such properties [19, 20]. They generalize Inoue–Bombieri surfaces in
class VII [6, 18], and they are in fact solvmanifolds [8].

For example, K. Oeljeklaus and M. Toma proved in [11, Proposition 2.5],
among other results, that the line bundles K⊗kX for k ∈ Z are flat. In this
note, we use tools both from the number theoretic construction and from
complex analysis and analytic geometry to prove more generally that:
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Theorem 2.1. — Any line bundle on an Oeljeklaus–Toma manifold
is flat.

Recently, A. Otiman and M. Toma [14] performed a precise and complete
study of the Dolbeault cohomology of certain domains contained in Cousin
groups, that includes our analysis below. We give here a self-contained proof
in our specific context, that actually fits in the same perspective as [14, 21].

With techniques very similar to those developed in [14], we get the fol-
lowing vanishing result:

Theorem 3.1. — Let X(K,U) be an Oeljeklaus–Toma manifold, and
ρ : U → C∗ be a faithful representation. Consider Lρ its associated flat
holomorphic line bundle. Then one has H1(X;Lρ) = 0 unless ρ = σ̄−1

i for
some i ∈ {t+ 1, . . . , t+ s}.

As a corollary, we get rigidity, in the sense of the theory of deforma-
tions of complex structures of Kodaira–Spencer–Nirenberg–Kuranishi, for
Oeljeklaus–Toma manifolds of simple type. Note that for the Inoue–
Bombieri surface SM , this is proven by Inoue in [6, Proposition 2]. Here, by
saying that the Oeljeklaus–Toma manifold X(K,U) associated to the alge-
braic number field K and to the admissible group U is of simple type,
we understand that there exists no proper intermediate field extension
Q ⊂ K ′ ⊂ K with U ⊆ O∗,+K′ , that is, there exists no holomorphic foli-
ation of X(K,U) with a leaf isomorphic to X(K ′, U) [11, Remark 1.7].

Corollary 3.3. — Oeljeklaus–Toma manifolds of simple type are rigid.
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1. Oeljeklaus–Toma manifolds

Oeljeklaus–Toma manifolds [11] provide a beautiful family of examples of
compact complex non-Kähler manifolds, generalizing Inoue–Bombieri sur-
faces [6]. In this section, we briefly recall the construction and main proper-
ties of Oeljeklaus–Toma manifolds from [11]. See [13] and [15, Section 6 of
arXiv version] for more details and algebraic number theory background.

Let K be an algebraic number field, namely, a finite extension of Q.
Then K ' Q[X]/(f) as Q-algebras, where f ∈ Q[X] is a monic irre-
ducible polynomial of degree n = [K : Q]. By mapping X mod (f) to
a root of f , the field K admits n = s + 2t embeddings in C, more pre-
cisely, s real embeddings σ1, . . . , σs : K → R, and 2t complex embeddings
σs+1, . . . , σs+t, σs+t+1 = σs+1, . . . , σs+2t = σs+t : K → C. Note that, for
any choice of natural numbers s and t, there is an algebraic number field
with s real embeddings and 2t complex embeddings, [11, Remark 1.1].
Denote by OK the ring of algebraic integers of K, namely, elements of K

satisfying monic polynomial equations with integer coefficients. Note that,
as a Z-module, OK is free of rank n. Denote by O∗K the multiplicative group
of units of OK , namely, invertible elements in OK . By the Dirichlet’s unit
theorem, O∗K is a finitely generated Abelian group of rank s+ t−1. Denote
by O∗,+K the subgroup of finite index of O∗K whose elements are totally
positive units, namely, units being positive in any real embedding: u ∈ O∗K
such that σj(u) > 0 for any j ∈ {1, . . . , s}.

Let H := {z ∈ C : Im z > 0} denote the upper half-plane. On Hs × Ct,
consider the following actions:

T : OK 	 Hs × Ct,
Ta(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 + σ1(a), . . . , zs+t + σs+t(a)),

(1.1)

and
R : O∗,+K 	 Hs × Ct,

Ru(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 · σ1(u), . . . , zs+t · σs+t(u)).
(1.2)

For any subgroup U ⊂ O∗,+K , one has the fixed-point-free actionOKoU 	
Hs×Ct. One can always choose an admissible subgroup [11, p. 162], namely,
a subgroup such that the above action is also properly discontinuous and
cocompact. In particular, the rank of admissible subgroups is s. Conversely,
when either s = 1 or t = 1, every subgroup U ofO∗,+K of rank s is admissible.
One defines the Oeljeklaus–Toma manifold associated to the algebraic

number field K and to the admissible subgroup U of O∗,+K as

X(K,U) := Hs × Ct
/
OK o U

TOME 70 (2020), FASCICULE 6
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In particular, for an algebraic number field K with s = 1 real embed-
dings and 2t = 2 complex embeddings, choosing U = O∗,+K we obtain that
X(K,U) is an Inoue–Bombieri surface of type SM [6].

The Oeljeklaus–Toma manifold X(K,U) is called of simple type when
there exists no proper intermediate field extension Q ⊂ K ′ ⊂ K with
U ⊆ O∗,+K′ , that is, there exists no holomorphic foliation of X(K,U) with
a leaf isomorphic to X(K ′, U) [11, Remark 1.7].
Oeljeklaus–Toma manifolds are non-Kähler solvmanifolds [8, §6], with

Kodaira dimension κ(X) = −∞ [11, Proposition 2.5]. Their first Betti
number is b1 = s, and their second Betti number in the case of simple
type is b2 =

(
s
2
)
[11, Proposition 2.3]. Their group of holomorphic au-

tomorphisms is discrete [11, Corollary 2.7]. The vector bundles Ω1
X , ΘX ,

K⊗kX for k ∈ Z are flat and admit no non-trivial global holomorphic sec-
tions [11, Proposition 2.5]. Other invariants are computed in [11, Proposi-
tion 2.5] and [17]. Recently, their Dolbeault cohomology is described in [14].
Oeljeklaus–Toma manifolds do not contain either any compact complex
curve [19, Theorem 3.9], or any compact complex surface except Inoue–
Bombieri surfaces [20, Theorem 3.5]. When t = 1, they admit a locally
conformally Kähler structure [11, p. 169], with locally conformally Kähler
rank either b1

2 or b1 [15, Theorem 5.4]. This is the Tricerri metric [18] in
case s = 1 and t = 1.

In the case t > 2, no locally conformally Kähler metrics are known to
exist, so far. The fact that such an Oeljeklaus–Toma manifold does not
carry a locally conformally Kähler metric was proven for s = 1 already in
the original paper [11, Proposition 2.9], later extended to the case s < t

by [22, Theorem 3.1], and eventually widely extended to almost all cases
by [5, Theorem 2]. Most likely, in the case t > 2, no Oeljeklaus–Toma
manifold carries a locally conformally Kähler metric. However, note that
Oeljeklaus–Toma manifolds admit no Vaisman metrics [8, Corollary 6.2].

2. Flatness of line bundles on Oeljeklaus–Toma manifolds

Let X = X(K,U) be the Oeljeklaus–Toma manifold associated to the
algebraic number field K and to the admissible subgroup U ⊆ O∗,+K . Let s
denote the number of real embeddings of K and 2t the number of complex
embeddings of K.

ANNALES DE L’INSTITUT FOURIER
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For a better understanding of the cohomology of X, we start from its
very definition, in the form of the following diagram of regular coverings:

(2.1)

X̃ := Hs × Ct

OK

**
π1(X)=OKoU

��

Xab := Hs × Ct/OK

Utt
X := Hs × Ct/OK o U

Theorem 2.1. — Any line bundle on an Oeljeklaus–Toma manifold
is flat.

Proof. — Equivalence classes of line bundles on X are given by
H1(X;O∗X), and the flat ones are given by the image of the map n :
H1(X;C∗X) → H1(X;O∗X) induced by CX ↪→ OX . The statement is then
equivalent to prove that the map

n : H1(X;C∗X)→ H1(X;O∗X)

is an isomorphism.
The map n appears naturally from the following morphism of short exact

sequences of sheaves:

0 // ZX // OX // O∗X // 0

0 // ZX // CX //?�

OO

C∗X //?�

OO

0

and the corresponding induced morphism of long exact sequences in coho-
mology:

(2.2)

H1(X;ZX) // H1(X;OX) // H1(X;O∗
X) // H2(X;ZX) // H2(X;OX)

H1(X;ZX) // H1(X;CX) //

m

OO

H1(X;C∗
X) //

n

OO

H2(X;ZX) // H2(X;CX).

q

OO

By the Five Lemma, it suffices to prove that, in diagram (2.2):
(H1) m is an isomorphism;
(H2) q is injective.

Remark 2.2. — Notice that both of the claims are now proven in [14,
Corollary 4.6, Corollary 4.9] as a consequence of a more general description
of Dolbeault cohomology of certain domains contained in Cousin groups.

TOME 70 (2020), FASCICULE 6
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For our aim, we will need a description of H1(Xab;OXab) as in [14, Theo-
rem 3.1]: for the sake of completeness, we give here below a self-contained
argument in our simpler case, in the same line of thought. Compare also
previous partial results by A. Tomassini and S. Torelli [17] for the case
s = 2 real places and 2t = 2 complex places.

Proof of Claim (H1). — To prove that m is an isomorphism, consider
the following exact sequence of sheaves:

0 // CX // OX // dOX // 0

and the induced exact sequence in cohomology:

H0(X; dOX) // H1(X;CX) m // H1(X;OX).

Note that H0(X; dOX) = 0, since H0(X; Ω1
X) = 0 by [11, Proposition 2.5].

Therefore m is injective. Using the fact that dimCH
1(X;CX) = s [11,

Proposition 2.3], it suffices to prove that dimCH
1(X;OX) = s.

In order to describe the cohomology ofX, we use diagram (2.1): we would
like to relate the cohomology of X with the U -invariant cohomology ofXab.
In what follows, we use group cohomology and the Lyndon–Hochschild–
Serre spectral sequence to accomplish this task.
In general, whenever one has a map π : X̃ → X = X̃/G, for a free and

properly discontinuous action of a group G on X̃, and a sheaf F on X,
there is an induced map

(2.3) Hp(G;H0(X̃;π∗F))→ Hp(X;F),

where the first is the group cohomology of G with coefficients in the G-
module H0(X̃;π∗F), see for instance [10, Appendix at p. 22]. If, moreover,
π∗F is acyclic over X̃, then the map (2.3) is an isomorphism.

Using the previous argument on the OK o U and the OK maps in dia-
gram (2.1), with F = OX and F = OXab respectively, and noting that OX̃
is acyclic over X̃, we obtain the isomorphisms

Hp(OK o U ;H0(X̃;OX̃)) ' Hp(X;OX)

and Hp(OK ;H0(X̃;OX̃)) ' Hp(Xab;OXab).

Hereafter, for the sake of clearness of notation, we denote the OK o U -
module R := H0(X̃;OX̃). The previous isomorphisms are then written
as

(2.4) Hp(OK o U ;R) ' Hp(X;OX) and Hp(OK ;R) ' Hp(Xab;OXab).

ANNALES DE L’INSTITUT FOURIER
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The extension OK ↪→ OK o U � U gives the associated Lyndon–
Hochschild–Serre spectral sequence

Ep,q2 = Hp(U ;Hq(OK ;R))⇒ Hp+q(OK o U ;R),

and the cohomology five-term exact sequence yields

0

uu
H1(U ;H0(OK ;R)) // H1(OK o U ;R)

rr
H1(OK ;R)U // H2(U ;H0(OK ;R)) // H2(OK o U ;R).

From (2.4), we get H0(OK ;R) ' H0(Xab;OXab) = C, see [11, Lemma 2.4],
whence H1(U ;H0(OK ;R)) = Crk(U) = Cs. Applying again (2.4), the co-
homology five-term exact sequence becomes

(2.5) 0 // Cs // H1(X;OX) // H1(Xab;OXab)U

ss
H2(U ;CU ) // H2(X;OX).

Therefore, the statement will follow by proving that

(H1′) H1(Xab;OXab)U = 0.

This is a consequence of the more general result in [14, Theorem 3.1], and
we give here below an argument.
More precisely, we first claim that any class in [α] ∈ H1(Xab;OXab) has

a unique flat representative, [α] 3
∑
j cjdz̄j , where cj ∈ C are constant, and

(z1, . . . , zt) denote the coordinates in Ct. Since U 3 u acts on [α] by (1.2),
namely, R∗u[α] = [

∑
j cj · σ̄j(u)dz̄j ] 6= [α] unless [α] = 0, then it follows that

H1(Xab;OXab)U = 0.
We prove now the claim. As suggested in [14, Proof of Lemma 3.2 at

p. 5], we look at Xab as a holomorphic fibre bundle over a complex torus
B = Ct/T with fibres F being logarithmically convex Reinhardt domains in
(C∗)s, whence Stein. Recall that the matrix T of periods of B is obtained
by putting the matrix P of Λ = {(σ1(a), . . . , σs+t(a)) | a ∈ OK} into a
more convenient form, see [1, p. 4]. We consider the Borel–Serre spectral
sequence for the Dolbeault cohomology of the holomorphic fibre bundle

TOME 70 (2020), FASCICULE 6
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F ↪→ Xab � B with Stein fibres [9]:
p,qEs,p+q−s2 '

⊕
`

H`,s−`
∂

(B;Hp−`,q−s+`
∂

(F ))⇒ Hp,q

∂
(Xab).

Since
0 = 0,0E−1,1

2
d2→ 0,1E1,0

2
d2→ 0,2E3,−1

2 = 0,
we compute

0,1E1,0
∞ = 0,1E1,0

2 ' H0,1
∂

(B;OF );
moreover,

0,1E0,1
2 ' H0,0

∂
(B;H0,1

∂
(F )) = 0.

Therefore, we can compute

H0,1
∂

(Xab) '
⊕
s+t=1

0,1Es,t∞ = 0,1E1,0
2 ' H0,1

∂
(B;OF ).

From now on, for simplicity of calculations, we will denote the elements
of Hs by w = (w1, . . . , ws) and respectively those in Ct by z = (z1, . . . , zt).
We then notice that a class in H0,1

∂
(Xab) is represented by

α =
∑
j

fj(w, z)dz̄j

where fj(w, z) are smooth functions in (w, z) ∈ Hs × Ct, periodic with
respect to T (as defined in (1.1)), and such that ∂α = 0; that is, fj are
holomorphic in w and satisfy ∂fj

∂z̄k
= ∂fk

∂z̄j
for any j 6= k. We claim that we

can find cj(Imw) ∈ C∞(ImHs) and g(w, z) ∈ C∞(Hs × Ct), holomorphic
in w and periodic with respect to T , such that

∂g

∂z̄j
(w, z) + cj(Imw) = fj(w, z).

Since cj(Imw) are holomorphic and periodic with respect to T , they are
constant, and we can take cj = fj(Imw, 0). We are then reduced to find g
such that

∂g

∂z̄j
= fj − cj .

We name coordinates (v, a) := (Imw, (Rew,Re z, Im z)) ∈ Rs × Rs+2t.
By using Fourier expansion, we can write

fj(v, a)− cj =
∑

L∈Zs+2t\0

fj,L(v) exp
(
2π
√
−1〈AL|a〉

)
where A is the matrix whose columns are the coefficients of the lattice OK
with respect to the standard basis of Rs+2t, so, A has algebraic coefficients.
Here L 6= 0 because of fj(Imw, 0)− cj = 0.

ANNALES DE L’INSTITUT FOURIER
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The condition ∂fj

∂z̄k
− ∂fk

∂z̄j
= 0 rewrites as: for any L, for any j 6= k,

(2.6) fj,L ·
(
(AL)s+k +

√
−1(AL)s+t+k

)
= fk,L ·

(
(AL)s+j +

√
−1(AL)s+t+j

)
.

Analogously, we expand

g(v, a) =
∑

L∈Zs+2t

gL(v) exp
(
2π
√
−1〈AL|a〉

)
.

Denoting zj by xj +
√
−1yj , we compute

∂g

∂z̄j
= 1

2

(
∂g

∂xj
+
√
−1 ∂g

∂yj

)
= 1

2

(
∂g

∂as+j
+
√
−1 ∂g

∂as+t+j

)
= π
√
−1 ·

∑
L∈Zs+2t

gL(v) exp
(
2π
√
−1〈A · L|a〉

)
·
(
(AL)s+j +

√
−1(AL)s+t+j

)
We notice that, for any L, there is at least one j such that (AL)s+j +√
−1(AL)s+t+j 6= 0, since the columns of A are linearly independent over

Q. Therefore we can set g0 = 0 (up to an additive constant) and, for
L ∈ Zs+2t \ 0,

gL := 1
π
√
−1
(
(AL)s+j +

√
−1(AL)s+t+j

)−1
fj,L,

and there is no ambiguity in the choice of such a j because of (2.6).
It remains to prove that the formal solution g =

∑
gL exp(2π

√
−1〈AL|a〉)

is actually smooth: that is, that the Fourier coefficients gL decay faster than
any power ‖L‖−N for N > 0, as ‖L‖ → ∞.

We make use of the following application of the Subspace Theorem [16],
generalizing the Roth Theorem for n = 1:

Theorem 2.3 (Schmidt [16], see e.g. [3, Thm. 7.3.2]). — Let α0, . . . , αn
be algebraic numbers. Then, for every ε > 0, the inequality

0 < |α0q0 + · · ·+ αnqn| < (max{|q0|, . . . , |qn|})−n−ε

has only finitely-many solution (q0, . . . , qn) ∈ Zn+1.

We recall that Ahk , for k ∈ {s + 1, . . . , s + 2t} and h ∈ {1, . . . , s + 2t},
are algebraic numbers. Moreover, once fixed L ∈ Zs+2t \ 0, there exists
j ∈ {1, . . . , t} such that (AL)s+j +

√
−1(AL)s+t+j 6= 0, namely, there

exists k ∈ {1, . . . , 2t} such that (AL)s+k 6= 0, and we can take any such

TOME 70 (2020), FASCICULE 6
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j’s for defining gL thanks to the compatibility condition (2.6). Then, for
L ∈ Zs+2t \ 0:

|gL| =
1
π

∣∣(AL)s+j +
√
−1(AL)s+t+j

∣∣−1 |fj,L|

6
1
π

1
|(AL)s+k|

|fj,L| =
1
π

1∣∣A1
s+kL1 + · · ·+As+2t

s+k Ls+2t
∣∣ |fj,L|

<
c

π
max{|L1|, . . . , |Ls+2t|}n+ε|fj,L|

6
c

π
‖L‖n+ε|fj,L|,

where c is a positive constant depending just on A and on the fixed ε > 0,
and independent of L and of the chosen j and k. We have then proven that
the Fourier coefficients gL decay as

(2.7) |gL| <
c

π
· ‖L‖n+ε · |fj,L|.

Since the form α is smooth, the fast decay is satisfied by the Fourier co-
efficients fj,L of the fj ’s, and together with formula (2.7) this implies the
fast decay also for the Fourier coefficients gL of g. Whence, g is a smooth
solution.
This finally proves that any class inH1(Xab;OXab) has a unique flat repr-

esentative, and by the above argument we get thatH1(Xab;OXab)U = 0. �

Proof of Claim (H2). — First of all, we argue as we did for diagram (2.5),
the only difference being that this time we forget the holomorphic structure.
Namely, we use F = CX instead of F = OX . Everything works the same
way, thanks toHj(X̃;CX̃) = 0 for any j > 1. Denoting by S := H0(X̃;CX̃),
the Lyndon–Hochschild–Serre spectral sequence reads

Ep,q2 = Hp(U ;Hq(OK ;S))⇒ Hp+q(π1(X);S) ,

and the associated cohomology five-term exact sequence yields

0 // Cs // H1(X;CX) // H1(Xab;CXab)U

ss
H2(U ;CU ) // H2(X;CX) .

ANNALES DE L’INSTITUT FOURIER
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The map CX̃ → OX̃ induces a map S → R, and hence a morphism of
exact sequences

0 // Cs // H1(X;CX) 0 //

��

H1(Xab;CXab)U //

��

H2(U ;CU ) // H2(X;CX)

q

��

// 0

0 // Cs // H1(X;OX)
0
// H1(Xab;OXab)U //

��

H2(U ;CU ) // H2(X;OX)

0

Here, we used that: by Claim (H1), we have that the map H1(X;OX) →
H1(Xab;OXab)U is the zero map; by [11, Proposition 2.3], we have b1 = s,
so the map H1(X;CX)→ H1(Xab;CXab)U is the zero map, too; again by
Claim (H1′), the map H1(Xab;CXab)U → H1(Xab;OXab)U is surjective.
Finally, the map H2(U ;CU ) → H2(X;CX) is surjective: indeed, we claim
that the map H2(U ;CU ) → E2,0

∞ is surjective and E0,2
2 = 0 = E1,1

2 . This
follows by [11, p. 166–167] in the case when X is of simple type. In fact,
thanks to [7, Theorem 3.1], we just need that there are no embeddings
σj and σk, for j, k ∈ {1, . . . , s + 2t} with j 6= k, such that σj(u)σk(u) =
1 for any u ∈ U ; Oeljeklaus–Toma manifolds of simple type satisfy this
condition, see [7, p. 16]. We claim that this latter property always holds
true, even when X is not of simple type. Indeed, consider K ′ := Q[U ].
Since U is still admissible for defining an Oeljeklaus–Toma manifold X ′ :=
X ′(K ′, U), see [11, Lemma 1.6], andX ′ is of simple type, therefore there are
no embeddings σj and σk of K ′, with j 6= k, such that σj(u)σk(u) = 1 for
any u ∈ U . Moreover, there is no embedding σj of K ′ such that σ2

j (u) = 1
for any u ∈ U . Since the embeddings of K ′ are just the restrictions of the
embeddings of K, we get the claim.
At the end, we get that q is injective by diagram chasing. �

This completes the proof of Theorem 2.1 by proving that any line bundle
on an Oeljeklaus–Toma manifold is flat. �

We note that the argument in the last lines of the previous proof shows
that ρ2 = 0 in the notation of [7, Theorem 3.1], therefore, thanks to Istrati
and Otiman’s result, we get the following, generalizing [11, Proposition 2.3]:

Proposition 2.4. — Any Oeljeklaus–Toma manifold has b2 =
(
s
2
)
,

where s is the number of real embeddings.

A well-known result by Ornea and Verbitsky [12] for t = 1 and, for any
s, t, by Battisti and Oeljeklaus [2], states that Oeljeklaus–Toma manifolds
have no divisors. In the following proposition, we show that this result
follows from Theorem 2.1.
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Proposition 2.5 (Battisti and Oeljeklaus [2, Theorem 3.5]). — Let
X = X(K,U) be an Oeljeklaus–Toma manifold. Then X has no divisors.

Proof. — Take any line bundle on X, which is then flat, and let ρ be the
associated representation. But any representation ρ : π1(X) → C∗ induces
the identity on OK [4, Proposition 6]. Therefore the pull-back of Lρ to Xab

is trivial, and its sections are constants. Therefore Lρ has no non-trivial
sections on X. �

3. Rigidity of Oeljeklaus–Toma manifolds

In this section we extensively apply techniques similar to the ones used
in Section 2, to prove the following vanishing result.

Theorem 3.1. — Let X = X(K,U) be an Oeljeklaus–Toma manifold.
Take any faithful representation ρ : U → C∗, and let Lρ be its associated
flat holomorphic line bundle on X. Then H1(X;Lρ) = 0 unless ρ = σ̄−1

i

for some i{t+ 1, . . . t+ s}.

Proof. — We use group cohomology, with the action of U 3 u on R =
H0(X̃;OX̃) given by

Lu(f) := ρ(u)f ◦Ru,
where Ru is the rotation given by equation (1.2), see Section 2. Since the
pull-back of Lρ to X̃ is trivial, we get

H1(OK o U ;R) ' H1(X;Lρ).

From the Lyndon–Hochschild–Serre spectral sequence and the cohomology
five-term exact sequence we obtain, as in diagram (2.5), the exact sequence

H1(U ;H0(OK ;R)) // H1(X;Lρ) // H1(OK ;R)U .

On the one side, H1(U ;H0(OK ;R)) = 0 since ρ is faithful and U is
free Abelian (this follows easily from the fact that, for a free cyclic group
U , one has H0(U ;C) = H1(U ;C) = 0 for any non-trivial representa-
tion ρ, and then performing induction on the rank of U using again the
Lyndon–Hochschild–Serre spectral sequence). On the other side, we have
H1(OK ;R)U = H1(Xab;OXab)U . But for any u ∈ U we have

L∗u(dz̄i) = ρ(u)σi(u)dz̄i,

hence the conclusion. �
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Remark 3.2. — Another possible argument for Theorem 3.1 may be
found on elliptic Hodge theory, as suggested in [17]. We just notice that, if ϑ
is the closed 1-form determined by ρ as ρ(γ) = exp

∫
γ
ϑ, then the (de Rham)

cohomology of X with values in the complex line bundle Lρ corresponds to
the cohomology of the trivial bundle X×C with respect to the flat connec-
tion dϑ := d+ϑ∧_. We split dϑ = ∂ϑ+∂ϑ where ∂ϑ := ∂+ϑ0,1∧_. Here,
ϑ0,1 is the (0, 1)-component of ϑ. The (Dolbeault) cohomology of X with
values in the holomorphic line bundle Lρ corresponds to the cohomology
of the trivial bundle with respect to the flat connection ∂ϑ. Elliptic Hodge
theory applies with the operator [∂ϑ, ∂

∗
ϑ]. Note indeed that the operator is

elliptic, since the second-order part of it is equal to the second-order part
of [∂, ∂∗]. We claim that the zeroth-order part of [∂ϑ, ∂

∗
ϑ] is positive (with

respect to the L2-pairing). Indeed, note that ∂∗ϑ = −∗ ∂−ϑ∗. Therefore the
zeroth-order term is given by ϑ0,1∧∗(ϑ0,1∧∗_)+∗(ϑ0,1∧∗(ϑ0,1∧_)). Note
that, on 1-forms γ, it holds

〈
ϑ0,1 ∧ ∗(ϑ0,1 ∧ ∗γ)

∣∣γ〉 =
∥∥ϑ0,1 ∧ ∗γ

∥∥2
> 0, and,

similarly,
〈
∗(ϑ0,1 ∧ ∗(ϑ0,1 ∧ γ))

∣∣γ〉 =
∥∥ϑ0,1 ∧ γ

∥∥2
> 0.

As a corollary, we get rigidity in the sense of the theory of deformations
of complex structures of Kodaira–Spencer–Nirenberg–Kuranishi. See [6,
Proposition 2] for rigidity in the case s = t = 1 of Inoue–Bombieri sur-
faces.

Corollary 3.3. — Oeljeklaus–Toma manifolds of simple type are rigid.

Proof. — Note that ΘHs×Ct =
〈

∂
∂w1 , . . . ,

∂
∂ws ,

∂
∂z1 , . . . ,

∂
∂zt

〉
, and OK o

U 3 (a, u) acts on ∂
∂wh , respectively ∂

∂zk , as multiplication by σh(u), respec-
tively σs+k(u). Whence the holomorphic tangent bundle of an Oeljeklaus–
Toma manifold splits as

ΘX =
s+t⊕
j=1

Lσ−1
j
,

where Lσj
are the line bundle associated to the embeddings σj . By The-

orem 3.1, we get H1(X; ΘX) = 0, unless σ−1
i (u) = σ−1

j (u) for some
i ∈ {1, . . . s + t}, j ∈ {s + 1, . . . , s + t} and any u ∈ U. But this would
imply that for all u ∈ U we have σi(u) = σj+t(u) hence all u ∈ U live in
a proper subfield of K, absurd since we assumed X to be of simple type.
This proves the claim. �

Remark 3.4. — For the case t = 1, a stronger result was obtained by
O. Braunling. He proves in [4, Proposition 1] that, if two Oeljeklaus–Toma
manifolds X ′ = X(K ′;O∗,+K′ ) and X ′′ = X(K ′′;O∗,+K′′ ), both having t = 1,
are homotopy equivalent, then they are isomorphic.
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