Le rang de certaines variétés closes
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 1-19.

Soit M une n-variété close et connexe munie d’une action localement libre ϕ de R n-1 sur M, on démontre : si π 1 (M) ne contient pas d’éléments d’ordre fini, l’inclusion de toute feuille de ϕ dans M induit un monomorphisme des groupes fondamentaux.

Comme application on prouve que le rang de S 3 ×T n-3 est n-2.

Let M be a closed and connected n-manifold with a locally free action ϕ of R n-1 on M, we prove : if π 1 (M) has no element of finite order the inclusion of a leaf of ϕ into M induces a monomorphism between the fundamentals groups.

As an application we prove that the rank of S 3 ×T n-3 is n-2.

@article{AIF_1970__20_1_1_0,
     author = {Garan\c{c}on, Maurice},
     title = {Le rang de certaines vari\'et\'es closes},
     journal = {Annales de l'Institut Fourier},
     pages = {1--19},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {1},
     year = {1970},
     doi = {10.5802/aif.336},
     zbl = {0187.20402},
     mrnumber = {42 #1142},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.336/}
}
TY  - JOUR
AU  - Garançon, Maurice
TI  - Le rang de certaines variétés closes
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 1
EP  - 19
VL  - 20
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.336/
DO  - 10.5802/aif.336
LA  - fr
ID  - AIF_1970__20_1_1_0
ER  - 
%0 Journal Article
%A Garançon, Maurice
%T Le rang de certaines variétés closes
%J Annales de l'Institut Fourier
%D 1970
%P 1-19
%V 20
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.336/
%R 10.5802/aif.336
%G fr
%F AIF_1970__20_1_1_0
Garançon, Maurice. Le rang de certaines variétés closes. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 1-19. doi : 10.5802/aif.336. https://aif.centre-mersenne.org/articles/10.5802/aif.336/

[1] E. Lima, “Commuting vector fields on S3”, Annals of Math. 8, (1965). | MR | Zbl

[2] E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110. | MR | Zbl

[3] S.P. Novikov, 1) “The Topology Summer inst. Seattle 1963”. Russiom Math. Surveys, vol. 20 (1965). | MR | Zbl

2) “Topology of Foliations”, Trudy mosk. math. Obshlch 14, n° 513.83.

[4] H. Rosenberg, “Action of Rn on manifolds” Comm. Math. Helvetici vol. 41 (3) (1966-1967). | MR | Zbl

[5] H. Rosenberg, “Rank of S2 x S1” American J. of Math., vol. 87 (1965). | MR | Zbl

[6] H. Rosenberg, “Foliations by planes” Topology, vol. 7 (1968). | MR | Zbl

[7] H. Rosenberg, “Singularities of R2 actions” Topology, vol. 7 (1968). | MR | Zbl

[8] R. Thom, “Un lemme sur les applications différentiables”. Bol. Soc. Math. Mex. (2) (1956) 59-71. | MR | Zbl

Cité par Sources :