Soit une variété Riemannienne complète orientée, de dimension et de volume finie. Supposons que la courbure de soit contenue dans , et soit la décomposition en sa partie épaisse et sa partie mince. Soit la -ième valeur propre de l’opérateur Laplacien, avec conditions au bord de Neumann. Nous démontrons que pour tout tel que . Si est hyperbolique et de dimension 3, alors pour un nombre fixé pourvu que .
Let be a finite volume oriented complete Riemannian manifold of dimension and curvature in , with thick-thin decomposition . Denote by the -th eigenvalue for the Laplacian on , with Neumann boundary conditions. We show that for all for which . If is hyperbolic and of dimension 3 then for a fixed number provided that .
Keywords: Spectrum of the Laplacian, Neumann boundary conditions, manifolds of pinched negative curvature, thick-thin decomposition
Mot clés : Spectre du Laplacien, conditions au bord Neumann, variétés de courbure négative pincée, décomposition en parties épaisse et mince
Hamenstädt, Ursula 1
@article{AIF_2019__69_7_3065_0, author = {Hamenst\"adt, Ursula}, title = {Small eigenvalues and thick-thin decomposition in negative curvature}, journal = {Annales de l'Institut Fourier}, pages = {3065--3093}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3345}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3345/} }
TY - JOUR AU - Hamenstädt, Ursula TI - Small eigenvalues and thick-thin decomposition in negative curvature JO - Annales de l'Institut Fourier PY - 2019 SP - 3065 EP - 3093 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3345/ DO - 10.5802/aif.3345 LA - en ID - AIF_2019__69_7_3065_0 ER -
%0 Journal Article %A Hamenstädt, Ursula %T Small eigenvalues and thick-thin decomposition in negative curvature %J Annales de l'Institut Fourier %D 2019 %P 3065-3093 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3345/ %R 10.5802/aif.3345 %G en %F AIF_2019__69_7_3065_0
Hamenstädt, Ursula. Small eigenvalues and thick-thin decomposition in negative curvature. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3065-3093. doi : 10.5802/aif.3345. https://aif.centre-mersenne.org/articles/10.5802/aif.3345/
[1] The smallest positive eigenvalue of fibered hyperbolic 3-manifolds, Proc. Lond. Math. Soc., Volume 120 (2020) no. 5, pp. 704-741 | DOI | MR | Zbl
[2] Counting hyperbolic manifolds, Geom. Funct. Anal., Volume 12 (2002) no. 6, pp. 1161-1173 | DOI | MR | Zbl
[3] Volume, diameter and the first eigenvalue of locally symmetric spaces of rank one, J. Differ. Geom., Volume 26 (1987), pp. 273-284 | DOI | MR | Zbl
[4] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser, 1992 | MR | Zbl
[5] Tubes and eigenvalues for negatively curved manifolds, J. Geom. Anal., Volume 3 (1993) no. 1, pp. 1-26 | DOI | MR | Zbl
[6] Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984 | MR | Zbl
[7] Laplacians on graphs and Cheeger inequality, Combinatorics, Paul Erdős is eighty. Vol. 2 (Bolyai Society Mathematical Studies), Volume 2, János Bolyai Mathematical Society, 1996, pp. 157-172 | Zbl
[8] A lower bound for the first eigenvalue of a finite-volume negatively curved manifold, Bol. Soc. Bras. Mat., Volume 18 (1987) no. 2, pp. 23-34 | DOI | MR | Zbl
[9] Lower bounds for on a finite-volume hyperbolic manifold, J. Differ. Geom., Volume 24 (1986), pp. 133-139 | DOI | MR | Zbl
[10] Comparison theorems and applications, Manuscr. Math., Volume 59 (1987), pp. 295-323 | DOI | Zbl
[11] Comparison theorems in Riemannian geometry, Lecture Notes Series, 3, Università degli Studi Trento, 1994
[12] Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | DOI | MR | Zbl
[13] Small eigenvalues of geometrically finite manifolds, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 281-290 | DOI | MR | Zbl
[14] Small eigenvalues of random 3-manifolds (2019) (https://arxiv.org/abs/1903.08031)
[15]
(in preparation)[16] Diameter and spectral gap for planar graphs (2012) (https://arxiv.org/abs/1204.4435v2)
[17] Discretization of Compact Riemannian Manifolds Applied to the Spectrum of Laplacian, Ann. Global Anal. Geom., Volume 27 (2005) no. 1, pp. 33-46 | DOI | MR | Zbl
[18] Pour toute surface hyperbolique de genre , , Duke Math. J., Volume 150 (2009) no. 1, pp. 101-155 | DOI | MR | Zbl
[19] A lower bound for the first eigenvalue of a negatively curved manifold, J. Differ. Geom., Volume 17 (1982) no. 2, pp. 233-238 | DOI | MR | Zbl
[20] Spectral bounds on closed hyperbolic 3-manifolds, J. Lond. Math. Soc., Volume 87 (2013) no. 3, pp. 837-853 | DOI | MR | Zbl
Cité par Sources :