We discuss the inhomogeneous Dirichlet problem written locally as:
where is a “natural” differential operator on a manifold , with a restricted domain in the space of 2-jets. “Naturality” refers to operators that arise intrinsically from a given geometry on . Importantly, the equation need not be convex and can be highly degenerate. Furthermore, can take the values of on .
A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption.
The main theorem covers many geometric equations, for example: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex and symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established.
There are also results where is a delta function.
Il s’agit du problème de Dirichlet inhomogène :
sur une variété où est un opérateur différentiel « naturel » sur un domaine dans l’espace de 2-jets. Des opérateurs naturels viennent intrinsèquement d’une géometrie donnée sur . Un point important est que l’équation n’est pas nécessairement convexe et pourrait être très dégénérée. De plus, les valeurs de peuvent toucher .
Le nouvel outil principal est l’idée de jet-équivalence locale qui donne une comparaison faible locale, puis une comparaison sous conditions nécessaires globales.
Le théorème principal s’applique à plusieurs équations géometriques, par exemple : des opérateurs invariants orthogonalement sur une variété riemannienne, des opérateurs -invariants sur une -variété, des opérateurs sur une variété quasi-complexe ou symplectique. Il s’applique aussi à toutes les branches de ces équations. Des résultats d’existence et d’unicité sont établis.
Il y a aussi des résultats lorsque est une fonction delta.
Keywords: Inhomogenous Dirichlet Problem, Geometric Operators on Manifolds
Mots-clés : Problème de Dirichlet inhomogène, Opérateurs géometriques sur les variétés
Harvey, F. Reese 1; Lawson, H. Blaine Jr 2
@article{AIF_2019__69_7_3017_0, author = {Harvey, F. Reese and Lawson, H. Blaine Jr}, title = {The {Inhomogeneous} {Dirichlet} problem for natural operators on manifolds}, journal = {Annales de l'Institut Fourier}, pages = {3017--3064}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3344}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3344/} }
TY - JOUR AU - Harvey, F. Reese AU - Lawson, H. Blaine Jr TI - The Inhomogeneous Dirichlet problem for natural operators on manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 3017 EP - 3064 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3344/ DO - 10.5802/aif.3344 LA - en ID - AIF_2019__69_7_3017_0 ER -
%0 Journal Article %A Harvey, F. Reese %A Lawson, H. Blaine Jr %T The Inhomogeneous Dirichlet problem for natural operators on manifolds %J Annales de l'Institut Fourier %D 2019 %P 3017-3064 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3344/ %R 10.5802/aif.3344 %G en %F AIF_2019__69_7_3017_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The Inhomogeneous Dirichlet problem for natural operators on manifolds. Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 3017-3064. doi : 10.5802/aif.3344. https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
[1] Quaternionic Monge–Ampère equations, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 205-238 | DOI | Zbl
[2] Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds, Isr. J. Math., Volume 176 (2010), pp. 109-138 | DOI | Zbl
[3] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | Zbl
[4] Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 1735-1756 | DOI | Numdam | MR | Zbl
[5] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Am. Math. Soc., Volume 91 (1959), pp. 246-276 | MR
[6] The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301 | DOI | MR | Zbl
[7] On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., Barc., Volume 61 (2017) no. 2, pp. 529-575 | DOI | MR | Zbl
[8] Concavity of the Lagrangian phase operator and applications (2016) (https://arxiv.org/abs/1607.07194v1) | Zbl
[9] Viscosity solutions: a primer, Viscosity Solutions and Applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 1-43 | DOI | MR | Zbl
[10] User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[11] A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations (2017) (https://arxiv.org/abs/1712.08572) | Zbl
[12] Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-16 | DOI | MR | Zbl
[13] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl
[14] Dirichlet duality and the non-linear Dirichlet problem, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | Zbl
[15] Hyperbolic polynomials and the Dirichlet problem (2009) (https://arxiv.org/abs/0912.5220)
[16] Dirichlet Duality and the Nonlinear Dirichlet Problem on Riemannian Manifolds, J. Differ. Geom., Volume 88 (2011), pp. 395-482 | DOI | MR | Zbl
[17] Geometric plurisubharmonicity and convexity - an introduction, Adv. Math., Volume 230 (2012) no. 4-6, pp. 2428-2456 | DOI | MR | Zbl
[18] The AE Theorem and Addition Theorems for quasi-convex functions, (2013) (https://arxiv.org/abs/1309.1770)
[19] The equivalence of viscosity and distributional subsolutions for convex subequations – the strong Bellman principle, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 621-652 | DOI | MR | Zbl
[20] Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Geometry and topology (Surveys in Differential Geometry), Volume 18 (2013), pp. 102-156 | MR | Zbl
[21] Gårding’s theory of hyperbolic polynomials, Commun. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1102-1128 | DOI | Zbl
[22] Potential theory on almost complex manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 171-210 | DOI | Numdam | MR | Zbl
[23] Lagrangian potential theory and a Lagrangian equation of Monge–Ampère type (2017) (https://arxiv.org/abs/1712.03525) | Zbl
[24] Tangents to subsolutions – existence and uniqueness. I, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 4, pp. 777-848 | DOI | MR | Zbl
[25] The special Lagrangian potential equation (2020) (https://arxiv.org/abs/2001.09818)
[26] On the Dirichlet problem for Monge–Ampère type equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1223-1236 | DOI | Zbl
[27] On the general notion of fully nonlinear second-order elliptic equations, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR | Zbl
[28] The Monge–Ampère equation on almost complex manifolds, Math. Z., Volume 276 (2014) no. 3-4, pp. 969-983 | DOI | MR | Zbl
[29] The Dirichlet problem for the multidimensional Monge–Ampère equation, Rocky Mt. J. Math., Volume 7 (1977), pp. 345-364 | DOI | Zbl
[30] Geometric aspects of the theory of fully nonlinear elliptic equations, Global theory of minimal surfaces (Clay Mathematics Proceedings), Volume 2 (2005), pp. 238-309 | MR | Zbl
[31] On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995), pp. 151-164 | DOI | MR | Zbl
[32] Weak solutions of Hessian equations, Commun. Partial Differ. Equations, Volume 22 (1997) no. 7-8, pp. 1251-1261 | MR | Zbl
[33] Hessian Measures I, Topol. Methods Nonlinear Anal., Volume 10 (1997) no. 2, pp. 225-239 | DOI | MR | Zbl
[34] Hessian Measures II, Ann. Math., Volume 150 (1999) no. 2, pp. 579-604 | DOI | MR | Zbl
[35] Hessian Measures III, J. Funct. Anal., Volume 193 (2002) no. 1, pp. 1-23 | DOI | MR | Zbl
[36] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148 | MR | Zbl
Cited by Sources: