The Inhomogeneous Dirichlet problem for natural operators on manifolds
[Le Problème de Dirichlet Inhomogène pour les opérateurs naturels sur variétés]
Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3017-3064.

Il s’agit du problème de Dirichlet inhomogène  :

f(x,u,Du,D2u)=ψ(x)

sur une variété Xf est un opérateur différentiel « naturel » sur un domaine F dans l’espace de 2-jets. Des opérateurs naturels viennent intrinsèquement d’une géometrie donnée sur X. Un point important est que l’équation n’est pas nécessairement convexe et pourrait être très dégénérée. De plus, les valeurs de ψ peuvent toucher f(F).

Le nouvel outil principal est l’idée de jet-équivalence locale qui donne une comparaison faible locale, puis une comparaison sous conditions nécessaires globales.

Le théorème principal s’applique à plusieurs équations géometriques, par exemple  : des opérateurs invariants orthogonalement sur une variété riemannienne, des opérateurs G-invariants sur une G-variété, des opérateurs sur une variété quasi-complexe ou symplectique. Il s’applique aussi à toutes les branches de ces équations. Des résultats d’existence et d’unicité sont établis.

Il y a aussi des résultats lorsque ψ est une fonction delta.

We discuss the inhomogeneous Dirichlet problem written locally as:

f(x,u,Du,D2u)=ψ(x)

where f is a “natural” differential operator on a manifold X, with a restricted domain F in the space of 2-jets. “Naturality” refers to operators that arise intrinsically from a given geometry on X. Importantly, the equation need not be convex and can be highly degenerate. Furthermore, ψ can take the values of f on F.

A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption.

The main theorem covers many geometric equations, for example: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex and symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established.

There are also results where ψ is a delta function.

Publié le :
DOI : 10.5802/aif.3344
Classification : 35A99, 53C15, 53C38
Keywords: Inhomogenous Dirichlet Problem, Geometric Operators on Manifolds
Mot clés : Problème de Dirichlet inhomogène, Opérateurs géometriques sur les variétés
Harvey, F. Reese 1 ; Lawson, H. Blaine Jr 2

1 Department of Mathematics RICE University Houston, TX 77005-1982 (USA)
2 Department of Mathematics Stony Brook University Stony Brook, NY 11794-3651 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_7_3017_0,
     author = {Harvey, F. Reese and Lawson, H. Blaine Jr},
     title = {The {Inhomogeneous} {Dirichlet} problem for natural operators on manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {3017--3064},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {7},
     year = {2019},
     doi = {10.5802/aif.3344},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3344/}
}
TY  - JOUR
AU  - Harvey, F. Reese
AU  - Lawson, H. Blaine Jr
TI  - The Inhomogeneous Dirichlet problem for natural operators on manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 3017
EP  - 3064
VL  - 69
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
DO  - 10.5802/aif.3344
LA  - en
ID  - AIF_2019__69_7_3017_0
ER  - 
%0 Journal Article
%A Harvey, F. Reese
%A Lawson, H. Blaine Jr
%T The Inhomogeneous Dirichlet problem for natural operators on manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 3017-3064
%V 69
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
%R 10.5802/aif.3344
%G en
%F AIF_2019__69_7_3017_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The Inhomogeneous Dirichlet problem for natural operators on manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3017-3064. doi : 10.5802/aif.3344. https://aif.centre-mersenne.org/articles/10.5802/aif.3344/

[1] Alesker, Semyon Quaternionic Monge–Ampère equations, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 205-238 | DOI | Zbl

[2] Alesker, Semyon; Verbitsky, Misha Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds, Isr. J. Math., Volume 176 (2010), pp. 109-138 | DOI | Zbl

[3] Bedford, Eric; Taylor, Bert A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | Zbl

[4] Blocki, Zbigniew Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 1735-1756 | DOI | Numdam | MR | Zbl

[5] Bremermann, Hans J. On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Am. Math. Soc., Volume 91 (1959), pp. 246-276 | MR

[6] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301 | DOI | MR | Zbl

[7] Cirant, Marco; Payne, Kevin On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., Barc., Volume 61 (2017) no. 2, pp. 529-575 | DOI | MR | Zbl

[8] Collins, Tristan C.; Picard, Sebastien; Wu, Xuan Concavity of the Lagrangian phase operator and applications (2016) (https://arxiv.org/abs/1607.07194v1) | Zbl

[9] Crandall, Michael G. Viscosity solutions: a primer, Viscosity Solutions and Applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 1-43 | DOI | MR | Zbl

[10] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[11] Dinew, Slawomir; Do, Hoang-Son; Tô, Tat Dat A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations (2017) (https://arxiv.org/abs/1712.08572) | Zbl

[12] Donaldson, Simon K. Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-16 | DOI | MR | Zbl

[13] Harvey, F. Reese; Lawson Jr., H. Blaine Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl

[14] Harvey, F. Reese; Lawson Jr., H. Blaine Dirichlet duality and the non-linear Dirichlet problem, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | Zbl

[15] Harvey, F. Reese; Lawson Jr., H. Blaine Hyperbolic polynomials and the Dirichlet problem (2009) (https://arxiv.org/abs/0912.5220)

[16] Harvey, F. Reese; Lawson Jr., H. Blaine Dirichlet Duality and the Nonlinear Dirichlet Problem on Riemannian Manifolds, J. Differ. Geom., Volume 88 (2011), pp. 395-482 | DOI | MR | Zbl

[17] Harvey, F. Reese; Lawson Jr., H. Blaine Geometric plurisubharmonicity and convexity - an introduction, Adv. Math., Volume 230 (2012) no. 4-6, pp. 2428-2456 | DOI | MR | Zbl

[18] Harvey, F. Reese; Lawson Jr., H. Blaine The AE Theorem and Addition Theorems for quasi-convex functions, (2013) (https://arxiv.org/abs/1309.1770)

[19] Harvey, F. Reese; Lawson Jr., H. Blaine The equivalence of viscosity and distributional subsolutions for convex subequations – the strong Bellman principle, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 621-652 | DOI | MR | Zbl

[20] Harvey, F. Reese; Lawson Jr., H. Blaine Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Geometry and topology (Surveys in Differential Geometry), Volume 18 (2013), pp. 102-156 | MR | Zbl

[21] Harvey, F. Reese; Lawson Jr., H. Blaine Gårding’s theory of hyperbolic polynomials, Commun. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1102-1128 | DOI | Zbl

[22] Harvey, F. Reese; Lawson Jr., H. Blaine Potential theory on almost complex manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 171-210 | DOI | Numdam | MR | Zbl

[23] Harvey, F. Reese; Lawson Jr., H. Blaine Lagrangian potential theory and a Lagrangian equation of Monge–Ampère type (2017) (https://arxiv.org/abs/1712.03525) | Zbl

[24] Harvey, F. Reese; Lawson Jr., H. Blaine Tangents to subsolutions – existence and uniqueness. I, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 4, pp. 777-848 | DOI | MR | Zbl

[25] Harvey, F. Reese; Lawson Jr., H. Blaine The special Lagrangian potential equation (2020) (https://arxiv.org/abs/2001.09818)

[26] Jiang, Feida; Trudinger, Neil S.; Yang, Xiao-Ping On the Dirichlet problem for Monge–Ampère type equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1223-1236 | DOI | Zbl

[27] Krylov, Nikolai V. On the general notion of fully nonlinear second-order elliptic equations, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR | Zbl

[28] Pliś, Szymon The Monge–Ampère equation on almost complex manifolds, Math. Z., Volume 276 (2014) no. 3-4, pp. 969-983 | DOI | MR | Zbl

[29] Rauch, Jeffrey B.; Taylor, Bert A. The Dirichlet problem for the multidimensional Monge–Ampère equation, Rocky Mt. J. Math., Volume 7 (1977), pp. 345-364 | DOI | Zbl

[30] Spruck, Joel Geometric aspects of the theory of fully nonlinear elliptic equations, Global theory of minimal surfaces (Clay Mathematics Proceedings), Volume 2 (2005), pp. 238-309 | MR | Zbl

[31] Trudinger, Neil S. On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995), pp. 151-164 | DOI | MR | Zbl

[32] Trudinger, Neil S. Weak solutions of Hessian equations, Commun. Partial Differ. Equations, Volume 22 (1997) no. 7-8, pp. 1251-1261 | MR | Zbl

[33] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures I, Topol. Methods Nonlinear Anal., Volume 10 (1997) no. 2, pp. 225-239 | DOI | MR | Zbl

[34] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures II, Ann. Math., Volume 150 (1999) no. 2, pp. 579-604 | DOI | MR | Zbl

[35] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures III, J. Funct. Anal., Volume 193 (2002) no. 1, pp. 1-23 | DOI | MR | Zbl

[36] Walsh, John B. Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148 | MR | Zbl

Cité par Sources :