The Inhomogeneous Dirichlet problem for natural operators on manifolds
Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 3017-3064.

We discuss the inhomogeneous Dirichlet problem written locally as:

f(x,u,Du,D2u)=ψ(x)

where f is a “natural” differential operator on a manifold X, with a restricted domain F in the space of 2-jets. “Naturality” refers to operators that arise intrinsically from a given geometry on X. Importantly, the equation need not be convex and can be highly degenerate. Furthermore, ψ can take the values of f on F.

A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption.

The main theorem covers many geometric equations, for example: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex and symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established.

There are also results where ψ is a delta function.

Il s’agit du problème de Dirichlet inhomogène  :

f(x,u,Du,D2u)=ψ(x)

sur une variété Xf est un opérateur différentiel « naturel » sur un domaine F dans l’espace de 2-jets. Des opérateurs naturels viennent intrinsèquement d’une géometrie donnée sur X. Un point important est que l’équation n’est pas nécessairement convexe et pourrait être très dégénérée. De plus, les valeurs de ψ peuvent toucher f(F).

Le nouvel outil principal est l’idée de jet-équivalence locale qui donne une comparaison faible locale, puis une comparaison sous conditions nécessaires globales.

Le théorème principal s’applique à plusieurs équations géometriques, par exemple  : des opérateurs invariants orthogonalement sur une variété riemannienne, des opérateurs G-invariants sur une G-variété, des opérateurs sur une variété quasi-complexe ou symplectique. Il s’applique aussi à toutes les branches de ces équations. Des résultats d’existence et d’unicité sont établis.

Il y a aussi des résultats lorsque ψ est une fonction delta.

Published online:
DOI: 10.5802/aif.3344
Classification: 35A99, 53C15, 53C38
Keywords: Inhomogenous Dirichlet Problem, Geometric Operators on Manifolds
Mots-clés : Problème de Dirichlet inhomogène, Opérateurs géometriques sur les variétés

Harvey, F. Reese 1; Lawson, H. Blaine Jr 2

1 Department of Mathematics RICE University Houston, TX 77005-1982 (USA)
2 Department of Mathematics Stony Brook University Stony Brook, NY 11794-3651 (USA)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_7_3017_0,
     author = {Harvey, F. Reese and Lawson, H. Blaine Jr},
     title = {The {Inhomogeneous} {Dirichlet} problem for natural operators on manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {3017--3064},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {7},
     year = {2019},
     doi = {10.5802/aif.3344},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3344/}
}
TY  - JOUR
AU  - Harvey, F. Reese
AU  - Lawson, H. Blaine Jr
TI  - The Inhomogeneous Dirichlet problem for natural operators on manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 3017
EP  - 3064
VL  - 69
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
DO  - 10.5802/aif.3344
LA  - en
ID  - AIF_2019__69_7_3017_0
ER  - 
%0 Journal Article
%A Harvey, F. Reese
%A Lawson, H. Blaine Jr
%T The Inhomogeneous Dirichlet problem for natural operators on manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 3017-3064
%V 69
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
%R 10.5802/aif.3344
%G en
%F AIF_2019__69_7_3017_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The Inhomogeneous Dirichlet problem for natural operators on manifolds. Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 3017-3064. doi : 10.5802/aif.3344. https://aif.centre-mersenne.org/articles/10.5802/aif.3344/

[1] Alesker, Semyon Quaternionic Monge–Ampère equations, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 205-238 | DOI | Zbl

[2] Alesker, Semyon; Verbitsky, Misha Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds, Isr. J. Math., Volume 176 (2010), pp. 109-138 | DOI | Zbl

[3] Bedford, Eric; Taylor, Bert A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | Zbl

[4] Blocki, Zbigniew Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 1735-1756 | DOI | Numdam | MR | Zbl

[5] Bremermann, Hans J. On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Am. Math. Soc., Volume 91 (1959), pp. 246-276 | MR

[6] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301 | DOI | MR | Zbl

[7] Cirant, Marco; Payne, Kevin On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., Barc., Volume 61 (2017) no. 2, pp. 529-575 | DOI | MR | Zbl

[8] Collins, Tristan C.; Picard, Sebastien; Wu, Xuan Concavity of the Lagrangian phase operator and applications (2016) (https://arxiv.org/abs/1607.07194v1) | Zbl

[9] Crandall, Michael G. Viscosity solutions: a primer, Viscosity Solutions and Applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 1-43 | DOI | MR | Zbl

[10] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[11] Dinew, Slawomir; Do, Hoang-Son; Tô, Tat Dat A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations (2017) (https://arxiv.org/abs/1712.08572) | Zbl

[12] Donaldson, Simon K. Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-16 | DOI | MR | Zbl

[13] Harvey, F. Reese; Lawson Jr., H. Blaine Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl

[14] Harvey, F. Reese; Lawson Jr., H. Blaine Dirichlet duality and the non-linear Dirichlet problem, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | Zbl

[15] Harvey, F. Reese; Lawson Jr., H. Blaine Hyperbolic polynomials and the Dirichlet problem (2009) (https://arxiv.org/abs/0912.5220)

[16] Harvey, F. Reese; Lawson Jr., H. Blaine Dirichlet Duality and the Nonlinear Dirichlet Problem on Riemannian Manifolds, J. Differ. Geom., Volume 88 (2011), pp. 395-482 | DOI | MR | Zbl

[17] Harvey, F. Reese; Lawson Jr., H. Blaine Geometric plurisubharmonicity and convexity - an introduction, Adv. Math., Volume 230 (2012) no. 4-6, pp. 2428-2456 | DOI | MR | Zbl

[18] Harvey, F. Reese; Lawson Jr., H. Blaine The AE Theorem and Addition Theorems for quasi-convex functions, (2013) (https://arxiv.org/abs/1309.1770)

[19] Harvey, F. Reese; Lawson Jr., H. Blaine The equivalence of viscosity and distributional subsolutions for convex subequations – the strong Bellman principle, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 621-652 | DOI | MR | Zbl

[20] Harvey, F. Reese; Lawson Jr., H. Blaine Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Geometry and topology (Surveys in Differential Geometry), Volume 18 (2013), pp. 102-156 | MR | Zbl

[21] Harvey, F. Reese; Lawson Jr., H. Blaine Gårding’s theory of hyperbolic polynomials, Commun. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1102-1128 | DOI | Zbl

[22] Harvey, F. Reese; Lawson Jr., H. Blaine Potential theory on almost complex manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 171-210 | DOI | Numdam | MR | Zbl

[23] Harvey, F. Reese; Lawson Jr., H. Blaine Lagrangian potential theory and a Lagrangian equation of Monge–Ampère type (2017) (https://arxiv.org/abs/1712.03525) | Zbl

[24] Harvey, F. Reese; Lawson Jr., H. Blaine Tangents to subsolutions – existence and uniqueness. I, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 4, pp. 777-848 | DOI | MR | Zbl

[25] Harvey, F. Reese; Lawson Jr., H. Blaine The special Lagrangian potential equation (2020) (https://arxiv.org/abs/2001.09818)

[26] Jiang, Feida; Trudinger, Neil S.; Yang, Xiao-Ping On the Dirichlet problem for Monge–Ampère type equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1223-1236 | DOI | Zbl

[27] Krylov, Nikolai V. On the general notion of fully nonlinear second-order elliptic equations, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR | Zbl

[28] Pliś, Szymon The Monge–Ampère equation on almost complex manifolds, Math. Z., Volume 276 (2014) no. 3-4, pp. 969-983 | DOI | MR | Zbl

[29] Rauch, Jeffrey B.; Taylor, Bert A. The Dirichlet problem for the multidimensional Monge–Ampère equation, Rocky Mt. J. Math., Volume 7 (1977), pp. 345-364 | DOI | Zbl

[30] Spruck, Joel Geometric aspects of the theory of fully nonlinear elliptic equations, Global theory of minimal surfaces (Clay Mathematics Proceedings), Volume 2 (2005), pp. 238-309 | MR | Zbl

[31] Trudinger, Neil S. On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995), pp. 151-164 | DOI | MR | Zbl

[32] Trudinger, Neil S. Weak solutions of Hessian equations, Commun. Partial Differ. Equations, Volume 22 (1997) no. 7-8, pp. 1251-1261 | MR | Zbl

[33] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures I, Topol. Methods Nonlinear Anal., Volume 10 (1997) no. 2, pp. 225-239 | DOI | MR | Zbl

[34] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures II, Ann. Math., Volume 150 (1999) no. 2, pp. 579-604 | DOI | MR | Zbl

[35] Trudinger, Neil S.; Wang, Xu-Jia Hessian Measures III, J. Funct. Anal., Volume 193 (2002) no. 1, pp. 1-23 | DOI | MR | Zbl

[36] Walsh, John B. Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148 | MR | Zbl

Cited by Sources: