Il s’agit du problème de Dirichlet inhomogène :
sur une variété où est un opérateur différentiel « naturel » sur un domaine dans l’espace de 2-jets. Des opérateurs naturels viennent intrinsèquement d’une géometrie donnée sur . Un point important est que l’équation n’est pas nécessairement convexe et pourrait être très dégénérée. De plus, les valeurs de peuvent toucher .
Le nouvel outil principal est l’idée de jet-équivalence locale qui donne une comparaison faible locale, puis une comparaison sous conditions nécessaires globales.
Le théorème principal s’applique à plusieurs équations géometriques, par exemple : des opérateurs invariants orthogonalement sur une variété riemannienne, des opérateurs -invariants sur une -variété, des opérateurs sur une variété quasi-complexe ou symplectique. Il s’applique aussi à toutes les branches de ces équations. Des résultats d’existence et d’unicité sont établis.
Il y a aussi des résultats lorsque est une fonction delta.
We discuss the inhomogeneous Dirichlet problem written locally as:
where is a “natural” differential operator on a manifold , with a restricted domain in the space of 2-jets. “Naturality” refers to operators that arise intrinsically from a given geometry on . Importantly, the equation need not be convex and can be highly degenerate. Furthermore, can take the values of on .
A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption.
The main theorem covers many geometric equations, for example: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex and symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established.
There are also results where is a delta function.
Keywords: Inhomogenous Dirichlet Problem, Geometric Operators on Manifolds
Mot clés : Problème de Dirichlet inhomogène, Opérateurs géometriques sur les variétés
Harvey, F. Reese 1 ; Lawson, H. Blaine Jr 2
@article{AIF_2019__69_7_3017_0, author = {Harvey, F. Reese and Lawson, H. Blaine Jr}, title = {The {Inhomogeneous} {Dirichlet} problem for natural operators on manifolds}, journal = {Annales de l'Institut Fourier}, pages = {3017--3064}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3344}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3344/} }
TY - JOUR AU - Harvey, F. Reese AU - Lawson, H. Blaine Jr TI - The Inhomogeneous Dirichlet problem for natural operators on manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 3017 EP - 3064 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3344/ DO - 10.5802/aif.3344 LA - en ID - AIF_2019__69_7_3017_0 ER -
%0 Journal Article %A Harvey, F. Reese %A Lawson, H. Blaine Jr %T The Inhomogeneous Dirichlet problem for natural operators on manifolds %J Annales de l'Institut Fourier %D 2019 %P 3017-3064 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3344/ %R 10.5802/aif.3344 %G en %F AIF_2019__69_7_3017_0
Harvey, F. Reese; Lawson, H. Blaine Jr. The Inhomogeneous Dirichlet problem for natural operators on manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 3017-3064. doi : 10.5802/aif.3344. https://aif.centre-mersenne.org/articles/10.5802/aif.3344/
[1] Quaternionic Monge–Ampère equations, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 205-238 | DOI | Zbl
[2] Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds, Isr. J. Math., Volume 176 (2010), pp. 109-138 | DOI | Zbl
[3] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | Zbl
[4] Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 1735-1756 | DOI | Numdam | MR | Zbl
[5] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Am. Math. Soc., Volume 91 (1959), pp. 246-276 | MR
[6] The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301 | DOI | MR | Zbl
[7] On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., Barc., Volume 61 (2017) no. 2, pp. 529-575 | DOI | MR | Zbl
[8] Concavity of the Lagrangian phase operator and applications (2016) (https://arxiv.org/abs/1607.07194v1) | Zbl
[9] Viscosity solutions: a primer, Viscosity Solutions and Applications (Lecture Notes in Mathematics), Volume 1660, Springer, 1997, pp. 1-43 | DOI | MR | Zbl
[10] User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[11] A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations (2017) (https://arxiv.org/abs/1712.08572) | Zbl
[12] Moment maps and diffeomorphisms, Asian J. Math., Volume 3 (1999) no. 1, pp. 1-16 | DOI | MR | Zbl
[13] Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157 | DOI | MR | Zbl
[14] Dirichlet duality and the non-linear Dirichlet problem, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 396-443 | DOI | Zbl
[15] Hyperbolic polynomials and the Dirichlet problem (2009) (https://arxiv.org/abs/0912.5220)
[16] Dirichlet Duality and the Nonlinear Dirichlet Problem on Riemannian Manifolds, J. Differ. Geom., Volume 88 (2011), pp. 395-482 | DOI | MR | Zbl
[17] Geometric plurisubharmonicity and convexity - an introduction, Adv. Math., Volume 230 (2012) no. 4-6, pp. 2428-2456 | DOI | MR | Zbl
[18] The AE Theorem and Addition Theorems for quasi-convex functions, (2013) (https://arxiv.org/abs/1309.1770)
[19] The equivalence of viscosity and distributional subsolutions for convex subequations – the strong Bellman principle, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 621-652 | DOI | MR | Zbl
[20] Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, Geometry and topology (Surveys in Differential Geometry), Volume 18 (2013), pp. 102-156 | MR | Zbl
[21] Gårding’s theory of hyperbolic polynomials, Commun. Pure Appl. Math., Volume 66 (2013) no. 7, pp. 1102-1128 | DOI | Zbl
[22] Potential theory on almost complex manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 171-210 | DOI | Numdam | MR | Zbl
[23] Lagrangian potential theory and a Lagrangian equation of Monge–Ampère type (2017) (https://arxiv.org/abs/1712.03525) | Zbl
[24] Tangents to subsolutions – existence and uniqueness. I, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 4, pp. 777-848 | DOI | MR | Zbl
[25] The special Lagrangian potential equation (2020) (https://arxiv.org/abs/2001.09818)
[26] On the Dirichlet problem for Monge–Ampère type equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1223-1236 | DOI | Zbl
[27] On the general notion of fully nonlinear second-order elliptic equations, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 857-895 | DOI | MR | Zbl
[28] The Monge–Ampère equation on almost complex manifolds, Math. Z., Volume 276 (2014) no. 3-4, pp. 969-983 | DOI | MR | Zbl
[29] The Dirichlet problem for the multidimensional Monge–Ampère equation, Rocky Mt. J. Math., Volume 7 (1977), pp. 345-364 | DOI | Zbl
[30] Geometric aspects of the theory of fully nonlinear elliptic equations, Global theory of minimal surfaces (Clay Mathematics Proceedings), Volume 2 (2005), pp. 238-309 | MR | Zbl
[31] On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995), pp. 151-164 | DOI | MR | Zbl
[32] Weak solutions of Hessian equations, Commun. Partial Differ. Equations, Volume 22 (1997) no. 7-8, pp. 1251-1261 | MR | Zbl
[33] Hessian Measures I, Topol. Methods Nonlinear Anal., Volume 10 (1997) no. 2, pp. 225-239 | DOI | MR | Zbl
[34] Hessian Measures II, Ann. Math., Volume 150 (1999) no. 2, pp. 579-604 | DOI | MR | Zbl
[35] Hessian Measures III, J. Funct. Anal., Volume 193 (2002) no. 1, pp. 1-23 | DOI | MR | Zbl
[36] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148 | MR | Zbl
Cité par Sources :