We prove that the harmonic measures on the spheres of a pinched Hadamard manifold admit uniform upper and lower bounds.
Nous prouvons que les mesures harmoniques sur les sphères des variétés Hadamard pincées admettent des bornes supérieures et infériueures uniformes.
Keywords: Harmonic function, Harmonic measure, Green function, Hadamard manifold, Negative curvature
Mot clés : Fonctions harmoniques, Mesure harmonique, Fonction de Green, Variétés de Hadamard, Courbure négative
Benoist, Yves 1; Hulin, Dominique 1
@article{AIF_2019__69_7_2951_0, author = {Benoist, Yves and Hulin, Dominique}, title = {Harmonic measures on negatively curved manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2951--2971}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3342}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3342/} }
TY - JOUR AU - Benoist, Yves AU - Hulin, Dominique TI - Harmonic measures on negatively curved manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 2951 EP - 2971 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3342/ DO - 10.5802/aif.3342 LA - en ID - AIF_2019__69_7_2951_0 ER -
%0 Journal Article %A Benoist, Yves %A Hulin, Dominique %T Harmonic measures on negatively curved manifolds %J Annales de l'Institut Fourier %D 2019 %P 2951-2971 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3342/ %R 10.5802/aif.3342 %G en %F AIF_2019__69_7_2951_0
Benoist, Yves; Hulin, Dominique. Harmonic measures on negatively curved manifolds. Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 2951-2971. doi : 10.5802/aif.3342. https://aif.centre-mersenne.org/articles/10.5802/aif.3342/
[1] Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. Math., Volume 125 (1987), pp. 495-536 | DOI | MR | Zbl
[2] Positive harmonic functions on complete manifolds of negative curvature, Ann. Math., Volume 121 (1985), pp. 429-461 | DOI | MR | Zbl
[3] Harmonic quasi-isometric maps between negatively curved spaces (2017) (https://arxiv.org/abs/1702.04369) | Zbl
[4] Harmonic quasi-isometric maps between rank-one symmetric spaces, Ann. Math., Volume 185 (2017), pp. 895-917 | DOI | MR | Zbl
[5] A geometric approach to free boundary problems, Graduate Studies in Mathematics, 68, American Mathematical Society, 2005 | MR | Zbl
[6] Hausdorff dimension of harmonic measures on negatively curved manifolds, Trans. Am. Math. Soc., Volume 318 (1990) no. 2, pp. 685-704 | DOI | MR | Zbl
[7] Local Limit Theorem in negative curvature, 2015 (https://arxiv.org/abs/1503.04156)
[8] Complete manifolds with positive spectrum. II, J. Differ. Geom., Volume 62 (2002), pp. 143-162 | MR | Zbl
[9] Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl
Cited by Sources: