Harmonic measures on negatively curved manifolds
Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 2951-2971.

We prove that the harmonic measures on the spheres of a pinched Hadamard manifold admit uniform upper and lower bounds.

Nous prouvons que les mesures harmoniques sur les sphères des variétés Hadamard pincées admettent des bornes supérieures et infériueures uniformes.

Published online:
DOI: 10.5802/aif.3342
Classification: 53C43, 53C24, 53C35, 58E20
Keywords: Harmonic function, Harmonic measure, Green function, Hadamard manifold, Negative curvature
Mot clés : Fonctions harmoniques, Mesure harmonique, Fonction de Green, Variétés de Hadamard, Courbure négative

Benoist, Yves 1; Hulin, Dominique 1

1 CNRS & Université Paris-Sud 91405 Orsay (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_7_2951_0,
     author = {Benoist, Yves and Hulin, Dominique},
     title = {Harmonic measures on negatively curved manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {2951--2971},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {7},
     year = {2019},
     doi = {10.5802/aif.3342},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3342/}
}
TY  - JOUR
AU  - Benoist, Yves
AU  - Hulin, Dominique
TI  - Harmonic measures on negatively curved manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2951
EP  - 2971
VL  - 69
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3342/
DO  - 10.5802/aif.3342
LA  - en
ID  - AIF_2019__69_7_2951_0
ER  - 
%0 Journal Article
%A Benoist, Yves
%A Hulin, Dominique
%T Harmonic measures on negatively curved manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 2951-2971
%V 69
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3342/
%R 10.5802/aif.3342
%G en
%F AIF_2019__69_7_2951_0
Benoist, Yves; Hulin, Dominique. Harmonic measures on negatively curved manifolds. Annales de l'Institut Fourier, Riemannian Geometry. Past, Present and Future an homage to Marcel Berger December 6–9, 2017, IHES, Bures-sur-Yvette, Volume 69 (2019) no. 7, pp. 2951-2971. doi : 10.5802/aif.3342. https://aif.centre-mersenne.org/articles/10.5802/aif.3342/

[1] Ancona, Alano Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. Math., Volume 125 (1987), pp. 495-536 | DOI | MR | Zbl

[2] Anderson, Michael; Schoen, Richard Positive harmonic functions on complete manifolds of negative curvature, Ann. Math., Volume 121 (1985), pp. 429-461 | DOI | MR | Zbl

[3] Benoist, Yves; Hulin, Dominique Harmonic quasi-isometric maps between negatively curved spaces (2017) (https://arxiv.org/abs/1702.04369) | Zbl

[4] Benoist, Yves; Hulin, Dominique Harmonic quasi-isometric maps between rank-one symmetric spaces, Ann. Math., Volume 185 (2017), pp. 895-917 | DOI | MR | Zbl

[5] Caffarelli, Luis; Salsa, Sandro A geometric approach to free boundary problems, Graduate Studies in Mathematics, 68, American Mathematical Society, 2005 | MR | Zbl

[6] Kifer, Yuri; Ledrappier, François Hausdorff dimension of harmonic measures on negatively curved manifolds, Trans. Am. Math. Soc., Volume 318 (1990) no. 2, pp. 685-704 | DOI | MR | Zbl

[7] Ledrappier, François; Lim, Seonhee Local Limit Theorem in negative curvature, 2015 (https://arxiv.org/abs/1503.04156)

[8] Li, Peter; Wang, Jiaping Complete manifolds with positive spectrum. II, J. Differ. Geom., Volume 62 (2002), pp. 143-162 | MR | Zbl

[9] Yau, Shing Tung Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl

Cited by Sources: