Harmonic measures on negatively curved manifolds
[Mesures harmoniques sur les variétés de courbure négative]
Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 2951-2971.

Nous prouvons que les mesures harmoniques sur les sphères des variétés Hadamard pincées admettent des bornes supérieures et infériueures uniformes.

We prove that the harmonic measures on the spheres of a pinched Hadamard manifold admit uniform upper and lower bounds.

Publié le :
DOI : 10.5802/aif.3342
Classification : 53C43, 53C24, 53C35, 58E20
Keywords: Harmonic function, Harmonic measure, Green function, Hadamard manifold, Negative curvature
Mot clés : Fonctions harmoniques, Mesure harmonique, Fonction de Green, Variétés de Hadamard, Courbure négative

Benoist, Yves 1 ; Hulin, Dominique 1

1 CNRS & Université Paris-Sud 91405 Orsay (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_7_2951_0,
     author = {Benoist, Yves and Hulin, Dominique},
     title = {Harmonic measures on negatively curved manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {2951--2971},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {7},
     year = {2019},
     doi = {10.5802/aif.3342},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3342/}
}
TY  - JOUR
AU  - Benoist, Yves
AU  - Hulin, Dominique
TI  - Harmonic measures on negatively curved manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2951
EP  - 2971
VL  - 69
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3342/
DO  - 10.5802/aif.3342
LA  - en
ID  - AIF_2019__69_7_2951_0
ER  - 
%0 Journal Article
%A Benoist, Yves
%A Hulin, Dominique
%T Harmonic measures on negatively curved manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 2951-2971
%V 69
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3342/
%R 10.5802/aif.3342
%G en
%F AIF_2019__69_7_2951_0
Benoist, Yves; Hulin, Dominique. Harmonic measures on negatively curved manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 2951-2971. doi : 10.5802/aif.3342. https://aif.centre-mersenne.org/articles/10.5802/aif.3342/

[1] Ancona, Alano Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. Math., Volume 125 (1987), pp. 495-536 | DOI | MR | Zbl

[2] Anderson, Michael; Schoen, Richard Positive harmonic functions on complete manifolds of negative curvature, Ann. Math., Volume 121 (1985), pp. 429-461 | DOI | MR | Zbl

[3] Benoist, Yves; Hulin, Dominique Harmonic quasi-isometric maps between negatively curved spaces (2017) (https://arxiv.org/abs/1702.04369) | Zbl

[4] Benoist, Yves; Hulin, Dominique Harmonic quasi-isometric maps between rank-one symmetric spaces, Ann. Math., Volume 185 (2017), pp. 895-917 | DOI | MR | Zbl

[5] Caffarelli, Luis; Salsa, Sandro A geometric approach to free boundary problems, Graduate Studies in Mathematics, 68, American Mathematical Society, 2005 | MR | Zbl

[6] Kifer, Yuri; Ledrappier, François Hausdorff dimension of harmonic measures on negatively curved manifolds, Trans. Am. Math. Soc., Volume 318 (1990) no. 2, pp. 685-704 | DOI | MR | Zbl

[7] Ledrappier, François; Lim, Seonhee Local Limit Theorem in negative curvature, 2015 (https://arxiv.org/abs/1503.04156)

[8] Li, Peter; Wang, Jiaping Complete manifolds with positive spectrum. II, J. Differ. Geom., Volume 62 (2002), pp. 143-162 | MR | Zbl

[9] Yau, Shing Tung Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl

Cité par Sources :