On montre que le bord d’un espace d’orbites, ou plus généralement l’espace quotient d’un feuilletage riemannien singulier, est un espace d’Alexandrov muni de sa distance intrinsèque, et que la borne inférieure de sa courbure coincide avec celle de l’espace des feuilles. On établit aussi un théorème de rigidité pour les espaces de feuilles de courbure strictement positive maximisant le volume de leur bord, qui joue un rôle clef dans la preuve du théorème du bord.
We prove that the boundary of an orbit space or more generally a leaf space of a singular Riemannian foliation is an Alexandrov space in its intrinsic metric, and that its lower curvature bound is that of the leaf space. A rigidity theorem for positively curved leaf spaces with maximal boundary volume is also established and plays a key role in the proof of the boundary problem.
Keywords: Alexandrov Geometry, Singular Riemannian Foliations, Leaf Spaces, Lens Charaterization
Mot clés : Geométrie d’Alexandrov, feuilletage riemannien singulier, l’espace des feuilles, caractérisation des lentilles
Grove, Karsten 1 ; Moreno, Adam 1 ; Petersen, Peter 2
@article{AIF_2019__69_7_2941_0, author = {Grove, Karsten and Moreno, Adam and Petersen, Peter}, title = {The {Boundary} {Conjecture} for {Leaf} {Spaces}}, journal = {Annales de l'Institut Fourier}, pages = {2941--2950}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {7}, year = {2019}, doi = {10.5802/aif.3341}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3341/} }
TY - JOUR AU - Grove, Karsten AU - Moreno, Adam AU - Petersen, Peter TI - The Boundary Conjecture for Leaf Spaces JO - Annales de l'Institut Fourier PY - 2019 SP - 2941 EP - 2950 VL - 69 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3341/ DO - 10.5802/aif.3341 LA - en ID - AIF_2019__69_7_2941_0 ER -
%0 Journal Article %A Grove, Karsten %A Moreno, Adam %A Petersen, Peter %T The Boundary Conjecture for Leaf Spaces %J Annales de l'Institut Fourier %D 2019 %P 2941-2950 %V 69 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3341/ %R 10.5802/aif.3341 %G en %F AIF_2019__69_7_2941_0
Grove, Karsten; Moreno, Adam; Petersen, Peter. The Boundary Conjecture for Leaf Spaces. Annales de l'Institut Fourier, Tome 69 (2019) no. 7, pp. 2941-2950. doi : 10.5802/aif.3341. https://aif.centre-mersenne.org/articles/10.5802/aif.3341/
[1] An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds, Ill. J. Math., Volume 52 (2008) no. 3, pp. 1031-1033 | DOI | MR | Zbl
[2] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR
[3] A.D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv., Volume 47 (1992) no. 2, pp. 1-58 | DOI
[4] A Lens Rigidity Theorem in Alexandrov Geometry (2018) (https://arxiv.org/abs/1805.10221)
[5] Rigidity theorems for compact manifolds with boundary and positive Ricci curvature, J. Geom. Anal., Volume 19 (2009) no. 3, pp. 628-642 | DOI | MR | Zbl
[6] Curvature explosion in quotients and applications, J. Differ. Geom., Volume 85 (2010), pp. 117-139 | DOI | MR | Zbl
[7] A slice theorem for singular Riemannian foliations, with applications, Trans. Am. Math. Soc., Volume 371 (2019) no. 7, pp. 4931-4949 | DOI | MR | Zbl
[8] Riemannian foliations, Progress in Mathematics, 73, Birkhäuser, 1988 | MR | Zbl
[9] Isoparametrische Hyperflächen in Sphären, Math. Ann., Volume 251 (1980) no. 1, pp. 57-71 | DOI | Zbl
[10] Riemannian geometry, 171, Springer, 2016 | MR | Zbl
[11] Applications of quasigeodesics and gradient curves, Comparison geometry (1997), pp. 203-219 | Zbl
[12] A globalization for non-complete but geodesic spaces, Math. Ann., Volume 366 (2016) no. 1-2, pp. 387-393 | DOI | MR | Zbl
[13] Lecture notes on singular Riemannian foliations (https://www.marcoradeschi.com)
Cité par Sources :