On the corner contributions to the heat coefficients of geodesic polygons
Annales de l'Institut Fourier, Volume 69 (2019) no. 7, pp. 2827-2855.

Let 𝒪 be a compact Riemannian orbisurface. We compute formulas for the contribution of cone points of 𝒪 to the coefficient at t 2 of the asymptotic expansion of the heat trace of 𝒪, the contributions at t 0 and t 1 being known from the literature. As an application, we compute the coefficient at t 2 of the contribution of interior angles of the form γ=π/k in geodesic polygons in surfaces to the asymptotic expansion of the Dirichlet heat kernel of the polygon, under a certain symmetry assumption locally near the corresponding corner. The main novelty here is the determination of the way in which the Laplacian of the Gauss curvature at the corner point enters into the coefficient at t 2 . We finish with a conjecture concerning the analogous contribution of an arbitrary angle γ in a geodesic polygon.

Soit 𝒪 une orbisurface riemannienne compacte. Nous calculons des formules pour la contribution des singularités coniques de 𝒪 au coefficient de t 2 du développement asymptotique de la trace du noyau de la chaleur de 𝒪, les contributions de t 0 et t 1 étant connues. Comme application, nous calculons le coefficient de t 2 de la contribution d’un angle intérieur de la forme γ=π/k dans un polygone géodésique sur une surface au développement asymptotique du noyau de la chaleur de Dirichlet du polygone, sous une hypothèse locale de symétrie près du sommet correspondant. La principale nouveauté ici est la détermination de la façon dont le Laplacien de la courbure de Gauss au sommet en question entre dans le coefficient de t 2 . Nous terminons par une conjecture concernant la contribution analogue d’un angle γ arbitraire dans un polygone géodésique.

Published online:
DOI: 10.5802/aif.3338
Classification: 58J50
Keywords: Laplace operator, heat kernel, heat coefficients, orbifolds, cone points, corner contribution, distance function expansion
Mot clés : Laplacien, noyau de la chaleur, coefficients de la chaleur, orbifolds, points coniques, contributions des coins, développement de la fonction distance
Schueth, Dorothee 1

1 Institut für Mathematik Humboldt-Universität zu Berlin 10099 Berlin (Germany)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_7_2827_0,
     author = {Schueth, Dorothee},
     title = {On the corner contributions to the heat coefficients of geodesic polygons},
     journal = {Annales de l'Institut Fourier},
     pages = {2827--2855},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {7},
     year = {2019},
     doi = {10.5802/aif.3338},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3338/}
}
TY  - JOUR
AU  - Schueth, Dorothee
TI  - On the corner contributions to the heat coefficients of geodesic polygons
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2827
EP  - 2855
VL  - 69
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3338/
DO  - 10.5802/aif.3338
LA  - en
ID  - AIF_2019__69_7_2827_0
ER  - 
%0 Journal Article
%A Schueth, Dorothee
%T On the corner contributions to the heat coefficients of geodesic polygons
%J Annales de l'Institut Fourier
%D 2019
%P 2827-2855
%V 69
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3338/
%R 10.5802/aif.3338
%G en
%F AIF_2019__69_7_2827_0
Schueth, Dorothee. On the corner contributions to the heat coefficients of geodesic polygons. Annales de l'Institut Fourier, Volume 69 (2019) no. 7, pp. 2827-2855. doi : 10.5802/aif.3338. https://aif.centre-mersenne.org/articles/10.5802/aif.3338/

[1] van den Berg, Michiel; Srisatkunarajah, Sivakolundu Heat equation for a region in 2 , J. Lond. Math. Soc., Volume 37 (1988), pp. 119-127 | DOI | MR | Zbl

[2] Berger, Marcel Sur le spectre d’une variété riemannienne, C. R. Math. Acad. Sci. Paris, Volume 263 (1966), p. A13-A16 | Zbl

[3] Berger, Marcel Le spectre des variétés riemanniennes, Rev. Roum. Math. Pures Appl., Volume 13 (1968), pp. 915-931 | Zbl

[4] Berger, Marcel Eigenvalues of the Laplacian, Global Analysis (Proceedings of Symposia in Pure Mathematics), Volume 16, American Mathematical Society, 1970, pp. 121-125 | DOI | Zbl

[5] Berger, Marcel; Gauduchon, Paul; Mazet, Edmond Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971 | Zbl

[6] Branson, Thomas P.; Gilkey, Peter B. The asymptotics of the Laplacian on a manifold with boundary, Commun. Partial Differ. Equations, Volume 15 (1990) no. 2, pp. 245-272 | DOI | MR | Zbl

[7] Chu, Wenchang; Marini, Alberto Partial fractions and trigonometric identities, Adv. Appl. Math., Volume 23 (1999) no. 2, pp. 115-175 | MR | Zbl

[8] Donnelly, Harold Spectrum and the fixed points set of isometries. I, Math. Ann., Volume 224 (1976), pp. 161-170 | DOI | MR | Zbl

[9] Dryden, Emily B.; Gordon, Carolyn S.; Greenwald, Sarah J.; Webb, David L. Asymptotic expansion of the heat kernel for orbifolds, Mich. Math. J., Volume 56 (2008) no. 1, pp. 205-238 | DOI | MR | Zbl

[10] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Studies in Advanced Mathematics, CRC Press, 1995 | Zbl

[11] Hsu, Elton P. On the principle of not feeling the boundary for diffusion processes, J. Lond. Math. Soc., Volume 51 (1995) no. 2, pp. 373-382 | MR | Zbl

[12] Kac, Mark Can one hear the shape of a drum?, Am. Math. Mon., Volume 73 (1966) no. 4, pp. 1-23 | MR | Zbl

[13] Mazzeo, Rafe; Rowlett, Julie A heat trace anomaly on polygons, Math. Proc. Camb. Philos. Soc., Volume 159 (2015) no. 2, pp. 303-319 | DOI | MR | Zbl

[14] McKean, Henry P.; Singer, Isadore M. Curvature and the eigenvalues of the Laplacian, J. Differ. Geom., Volume 1 (1967) no. 1, pp. 43-69 | DOI | MR | Zbl

[15] Minakshisundaram, Subbaramiah; Pleijel, Åke Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Can. J. Math., Volume 1 (1949), pp. 242-256 | DOI | MR | Zbl

[16] Nicolaescu, Liviu I. Random Morse functions and spectral geometry (2012) (https://arxiv.org/abs/1209.0639)

[17] Sakai, Takashi On eigen-values of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., Volume 23 (1971), pp. 589-603 | DOI | MR | Zbl

[18] Uçar, Eren Spectral invariants for polygons and orbisurfaces, Ph. D. Thesis, Humboldt-Universität zu Berlin (2017) (dx.doi.org/10.18452/18463)

[19] Watson, Simon The trace function expansion for spherical polygons, N. Z. J. Math., Volume 34 (2005) no. 1, pp. 81-95 | MR | Zbl

Cited by Sources: