For positive integers and let be the projective indefinite special-orthogonal group of signature . We study counting problems in the Riemannian symmetric space of and in the pseudo-Riemannian hyperbolic space . Let be a totally geodesic copy of . We look at the orbit of under the action of a projective Anosov subgroup of . For certain choices of such a geodesic copy we show that the number of points in this orbit which are at distance at most from is finite and asymptotic to a purely exponential function as goes to infinity. We provide an interpretation of this result in , as the asymptotics of the amount of space-like geodesic segments of maximum length in the orbit of a point.
Pour des entiers positifs et soit le groupe projectif spécial-orthogonal indéfini de signature . Nous étudions des problèmes de comptage dans l’espace symétrique Riemannien de et dans l’espace hyperbolique pseudo-Riemannien . Soit une copie totalement géodésique de . Nous examinons l’orbite de sous l’action d’un sous-groupe de de type projectivement Anosov. Pour certains choix d’une telle copie géodésique, nous montrons que le nombre de points dans cette orbite qui se trouvent à une distance maximale de est fini et asymptotiquement purement exponentiel lorsque tend vers l’infini. Nous fournissons une interprétation de ce résultat dans , comme l’asymptotique de la quantité de segments géodésiques de type espace de longueur maximale dans l’orbite d’un point.
Revised:
Accepted:
Published online:
Keywords: Anosov representations, counting, symmetric spaces
Mot clés : Représentations d’Anosov, comptage, espaces symétriques
@article{AIF_2020__70_3_1199_0, author = {Carvajales, Le\'on}, title = {Counting problems for special-orthogonal {Anosov} representations}, journal = {Annales de l'Institut Fourier}, pages = {1199--1257}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {3}, year = {2020}, doi = {10.5802/aif.3333}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3333/} }
TY - JOUR AU - Carvajales, León TI - Counting problems for special-orthogonal Anosov representations JO - Annales de l'Institut Fourier PY - 2020 SP - 1199 EP - 1257 VL - 70 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3333/ DO - 10.5802/aif.3333 LA - en ID - AIF_2020__70_3_1199_0 ER -
%0 Journal Article %A Carvajales, León %T Counting problems for special-orthogonal Anosov representations %J Annales de l'Institut Fourier %D 2020 %P 1199-1257 %V 70 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3333/ %R 10.5802/aif.3333 %G en %F AIF_2020__70_3_1199_0
Carvajales, León. Counting problems for special-orthogonal Anosov representations. Annales de l'Institut Fourier, Volume 70 (2020) no. 3, pp. 1199-1257. doi : 10.5802/aif.3333. https://aif.centre-mersenne.org/articles/10.5802/aif.3333/
[1] Points entiers et groupes discrets : de l’analyse aux systèmes dynamiques, Rigidité, groupe fondamental et dynamique (Panoramas et Synthèses), Volume 13, Société Mathématique de France, 2002, pp. 1-119
[2] Actions propres sur les espaces homogènes réductifs, Ann. Math., Volume 144 (1996) no. 2, pp. 315-347
[3] Propriétés asymptotiques des groupes linéares, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47
[4] Propriétés asymptotiques des groupes linéares II, Analysis on homogeneous spaces and representation theory of Lie groups (Okayama–Kyoto, 1997) (Advanced Studies in Pure Mathematics), Volume 26, Mathematical Society of Japan, 2000, pp. 33-48
[5] Convexes divisibles I, Algebraic groups and arithmetic. Proceedings of the international conference, (Mumbai, India, December 17–22, 2001) (Studies in Mathematics. Tata Institute of Fundamental Research), Volume 17, Narosa Publishing House/Published for the Tata Institute of Fundamental Research, 2004, pp. 339-374 | Zbl
[6] Anosov representations and dominated splittings, J. Eur. Math. Soc., Volume 21 (2019) no. 11, pp. 3343-3414
[7] Convergence groups and configuration spaces, Geometric group theory down under. Proceedings of a Special Year in Geometric Group Theory, Canberra, Australia (1999), pp. 23-54
[8] Periodic orbits of hyperbolic flows, Am. J. Math., Volume 94 (1972), pp. 1-30
[9] Unique ergodicity for horocycle foliations, Isr. J. Math., Volume 26 (1977) no. 1, pp. 43-67
[10] The pressure metric for Anosov representations, Geom. Funct. Anal., Volume 25 (2015) no. 4, pp. 1089-1179
[11] Spaces with non-positive curvature, Acta Math., Volume 80 (1948), pp. 259-311
[12] Strong symbolic dynamics for geodesic flow on CAT(-1) spaces and other metric Anosov flows, J. Éc. Polytech., Math, Volume 7 (2020), pp. 201-231
[13] Convex cocompact actions in real projective geometry (2017) (https://arxiv.org/abs/1704.08711)
[14] Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata, Volume 192 (2018) no. 1, pp. 87-126
[15] Density of integer points on affine homogeneous varieties, Duke Math. J., Volume 71 (1993) no. 1, pp. 143-179
[16] Mixing, counting and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209
[17] Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, 83, Springer, 1990
[18] Critical exponent and Hausdorff dimension for quasi-Fuchsian AdS manifolds (2016) (https://arxiv.org/abs/1606.05512)
[19] Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987
[20] Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584
[21] Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438
[22] Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc., 1978
[23] Matrix analysis, Cambridge University Press, 1985
[24] Anosov subgroups: Dynamical and geometric characterizations, Eur. J. Math., Volume 3 (2017) no. 4, pp. 808-898
[25] A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings, Geom. Topol., Volume 22 (2018) no. 7, pp. 3827-3923
[26] Geometric structures and representations of discrete groups, Proceedings of the International Congress of Mathematicians (ICM 2018), Volume 1 (2018), pp. 1115-1151
[27] Poincaré series for non-Riemannian locally symmetric spaces, Adv. Math., Volume 287 (2016), pp. 123-236
[28] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995, xviii+802 pages | DOI
[29] Lie groups beyond an introduction, Progress in Mathematics, 140, Springer, 1996
[30] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114
[31] Structure au bord des variétés à courbure négative, Séminaire de Théorie spectrale et géométrie de Grenoble, Volume 13 (19954), pp. 97-122
[32] Effective circle count for Apollonian packings and closed horospheres, Geom. Funct. Anal., Volume 23 (2013) no. 2, pp. 580-621
[33] Cohomology of dynamical systems, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 1296-1320
[34] Applications of ergodic theory to the investigation of manifolds with negative curvature, Funct. Anal. Appl., Volume 3 (1969), pp. 335-336
[35] Certain measures associated with U-flows on compact manifolds, Funct. Anal. Appl., Volume 4 (1970), pp. 55-67
[36] The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, Volume 31 (1979) no. 2, pp. 331-357
[37] Flows and joins of metric spaces, Geom. Topol., Volume 9 (2005), pp. 403-482
[38] Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc., Volume 17 (2015) no. 4, pp. 837-897
[39] The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math., Volume 187 (2012) no. 1, pp. 1-35
[40] Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Am. Math. Soc., Volume 26 (2013) no. 2, pp. 511-562
[41] Counting visible circles on the sphere and Kleinian groups, Proceedings of the conference on “Geometry, Topology and Dynamics in negative curvature” (London Mathematical Society Lecture Note Series), Volume 425, Cambridge University Press, 2016, pp. 272-288
[42] An analogue of the prime number theorem and closed orbits of Axiom A flows, Ann. Math., Volume 118 (1983), pp. 573-591
[43] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273
[44] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 1998
[45] The circle problem in the hyperbolic plane, J. Funct. Anal., Volume 121 (1994) no. 1, pp. 78-116
[46] Symbolic dynamics for Smale flows, Am. J. Math., Volume 109 (1987) no. 1, pp. 183-200
[47] Mesures de Patterson-Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809
[48] Groupes de Schottky et comptage, Ann. Inst. Fourier, Volume 55 (2005) no. 2, pp. 373-429
[49] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér., Volume 95 (2003), p. vi+96
[50] Quantitative properties of convex representations, Comment. Math. Helv., Volume 89 (2014) no. 2, pp. 443-488
[51] The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier, Volume 65 (2015) no. 4, pp. 1755-1797
[52] Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, Birkhäuser, 1984 no. 49
[53] An invitation to higher Teichmüller theory, Proceedings of the International Congress of Mathematicians (ICM 2018) (2018), pp. 1013-1039 | DOI
Cited by Sources: