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COUNTING PROBLEMS FOR SPECIAL-ORTHOGONAL
ANOSOV REPRESENTATIONS

by León CARVAJALES (*)

Abstract. — For positive integers p and q let G := PSO(p, q) be the projective
indefinite special-orthogonal group of signature (p, q). We study counting problems
in the Riemannian symmetric space XG of G and in the pseudo-Riemannian hy-
perbolic space Hp,q−1. Let S ⊂ XG be a totally geodesic copy of XPSO(p,q−1).
We look at the orbit of S under the action of a projective Anosov subgroup of
G. For certain choices of such a geodesic copy we show that the number of points
in this orbit which are at distance at most t from S is finite and asymptotic to
a purely exponential function as t goes to infinity. We provide an interpretation
of this result in Hp,q−1, as the asymptotics of the amount of space-like geodesic
segments of maximum length t in the orbit of a point.
Résumé. — Pour des entiers positifs p et q soit G := PSO(p, q) le groupe projec-

tif spécial-orthogonal indéfini de signature (p, q). Nous étudions des problèmes de
comptage dans l’espace symétrique Riemannien XG de G et dans l’espace hyper-
bolique pseudo-Riemannien Hp,q−1. Soit S ⊂ XG une copie totalement géodésique
de XPSO(p,q−1). Nous examinons l’orbite de S sous l’action d’un sous-groupe de G
de type projectivement Anosov. Pour certains choix d’une telle copie géodésique,
nous montrons que le nombre de points dans cette orbite qui se trouvent à une dis-
tance maximale t de S est fini et asymptotiquement purement exponentiel lorsque
t tend vers l’infini. Nous fournissons une interprétation de ce résultat dans Hp,q−1,
comme l’asymptotique de la quantité de segments géodésiques de type espace de
longueur maximale t dans l’orbite d’un point.

1. Introduction

Let X be a proper non compact metric space and o be a point in X.
Given a discrete group ∆ of isometries of X, consider the orbital counting
function

N∆(o, t) := #{g ∈ ∆ : dX(o, g · o) 6 t},
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where t > 0. The orbital counting problem consists on the study of the
asymptotic behaviour of N∆(o, t) as t −→∞.
When X = R2 and ∆ = Z2 this is known as the Gauss circle problem

(see Phillips–Rudnick [45]). For a negatively curved Hadamard manifold
X and ∆ co-compact, this problem was studied by Margulis in his PhD
Thesis [34]: the author shows a purely exponential asymptotic for N∆(o, t),
the exponent being the topological entropy of the geodesic flow of the
quotient space ∆\X. Many authors have generalized the work of Margulis
to different contexts, see Roblin [49] and references therein for a fairly
complete picture in the negatively curved setting.
When X is a (not necessarily Riemannian) symmetric space associated

to a semisimple Lie group G and ∆ < G is a lattice, these kind of prob-
lems were studied notably by Eskin–McMullen [16] and Duke–Rudnick–
Sarnak [15]. In the non-lattice case but restricted to Riemannian symmetric
spaces, one also finds the work of Quint [48] and Sambarino [51]. Quint deals
with the case in which ∆ is a Schottky group (in the sense of Benoist [3]).
Sambarino treats more generally the case of Anosov subgroups (in the full
flag variety of G) introduced by Labourie [30].
Before stating precise results we discuss in an informal way the problems

adressed by this paper. Fix d := p + q where p > 1 and q > 2, and let
〈 · , · 〉p,q be the bilinear symmetric form on Rd defined by

〈(x1, . . . , xd), (y1, . . . , yd)〉p,q :=
p∑
i=1

xiyi −
d∑

i=p+1
xiyi.

We denote byG := PSO(p, q) the group of projectivized matrices in SL(d,R)
preserving 〈 · , · 〉p,q and by XG the Riemannian symmetric space of G, that
is, the space of q-dimensional subspaces of Rd on which the form 〈 · , · 〉p,q is
negative definite. Let dXG be the distance in XG induced by a G-invariant
Riemannian metric. For closed subsets A and B of XG, set

dXG(A,B) := inf{dXG(a, b) : a ∈ A, b ∈ B}.

On the other hand, the pseudo-Riemannian hyperbolic space of signature
(p, q − 1) is the set

Hp,q−1 :=
{
o = [ô] ∈ P(Rd) : 〈ô, ô〉p,q < 0

}
,

endowed with a G-invariant pseudo-Riemannian metric coming from re-
striction of the form 〈 · , · 〉p,q to tangent spaces.
Let ∆ be a discrete subgroup of G and fix a point o in Hp,q−1. In this

paper we study counting problems in XG and in Hp,q−1.
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• Counting in XG: Denote by

So := {τ ∈ XG : o ⊂ τ}.

It is a totally geodesic sub-manifold of XG isometric to the Rie-
mannian symmetric space of PSO(p, q−1). We define two counting
functions in this setting. The first one is

N∆(So, t) := #{g ∈ ∆ : dXG(So, g · So) 6 t}.

For the second one we pick a point τ ∈ So and define

N∆(So, τ, t) := #{g ∈ ∆ : dXG(τ, g · So) 6 t}.

• Counting in Hp,q−1: We provide a geometric interpretation of the
function N∆(So, t) in Hp,q−1. It is the amount of space-like geodesic
segments(1) of length at most t, that connect o with points of ∆ ·
o. The function N∆(So, τ, t) has a geometric interpretation in this
setting as well, which is more involved, and that we postpone until
Subsection 1.2.

Remark 1.1. — If q = 1 one has Hp = XG = Hp,q−1 and o = So = τ . We
have as well the equalities

N∆(o, t) = N∆(So, t) = N∆(So, τ, t)

and our results correspond to the classical and well-known counting theo-
rems already quoted.

In contrast with the counting function N∆(o, t) described at the begin-
ning, the functions N∆(So, t) and N∆(So, τ, t) could in general be equal
to infinity for large values of t. Part of the results that we present here
concern the study of conditions for the choice of o (and τ) that guarantee
that the new counting functions are real-valued for every t > 0. Once this
is established, one may ask if the exponential growth rate

lim sup
t−→∞

logN∆(So, t)
t

is positive, finite and independent on the choice of o (and the analogue
questions for N∆(So, τ, t)). A more subtle problem is to find an asymptotic
for the functions N∆(So, t) and N∆(So, τ, t) as t −→∞. The main goal of
this paper is to give an answer to this more subtle problem for an interesting
class of subgroups ∆: images of word hyperbolic groups under projective
Anosov representations.

(1)That is, geodesic segments which are tangent to positive vectors.

TOME 70 (2020), FASCICULE 3
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1.1. Main results in XG

In order to formally state our results we need to recall some basic facts
concerning (projective) Anosov representations. Anosov representations are
(a stable class of) faithful and discrete representations from word hyper-
bolic groups into semisimple Lie groups that share many geometrical and
dynamical features with holonomies of convex co-compact hyperbolic man-
ifolds. They were introduced by Labourie [30] in his study of the Hitchin
component and further extended to arbitrary word hyperbolic groups by
Guichard–Wienhard [21]. After that, Anosov representations had been ob-
ject of intensive research in the field of geometric structures on manifolds
and their deformation spaces (see for instance the surveys of Kassel [26] or
Wienhard [53] and references therein).

Let P p,q1 be the stabilizer of an isotropic line in Rd, i.e. a line on which the
form 〈 · , · 〉p,q equals zero. Then P p,q1 is a parabolic subgroup of G and the
quotient space ∂Hp,q−1 := G/P p,q1 , called the boundary of Hp,q−1, identifies
with the set of isotropic lines in Rd.

Fix a non elementary word hyperbolic group Γ and let ∂∞Γ be its Gromov
boundary. Let ρ : Γ −→ G be a P p,q1 -Anosov representation. By definition
(see Section 5) this means that there exists a continuous equivariant map

ξ : ∂∞Γ −→ ∂Hp,q−1

with the following properties:
• Transversality: Let ·⊥p,q denote the orthogonal complement with
respect to the form 〈 · , · 〉p,q. Then the map η := ξ⊥p,q satisfies
ξ(x)⊕ η(y) = Rd for every x 6= y in ∂∞Γ.

• Uniform hyperbolicity: Some flow associated to ρ satisfies a uniform
contraction/dilation property (see [21, 30]).

When ρ is P p,q1 -Anosov all infinite order elements in ρ(Γ) are proximal.
This means that they act on P(Rd) with a unique attractive fixed line and a
unique repelling hyperplane. The limit set of ρ is, by definition, the closure
of the set of attractive fixed lines of proximal elements in ρ(Γ). It is denoted
by Λρ(Γ) and coincides with the image of ξ.
Define

ΩΩΩρ := {o = [ô] ∈ Hp,q−1 : 〈ô, ξ̂〉p,q 6= 0 for all ξ = [ξ̂] ∈ Λρ(Γ)}.

In the study of discrete groups of projective transformations, it is stan-
dard to consider sets similar to ΩΩΩρ (see for instance Danciger–Guéritaud–
Kassel [13, 14] and references therein). Without any further assumption the
set ΩΩΩρ could be empty. An important class of Anosov representations for
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which ΩΩΩρ is non empty is given by Hp,q−1-convex co-compact subgroups
introduced in [14]. However in our results we do not assume that ρ is
Hp,q−1-convex co-compact, we only need that ΩΩΩρ 6= ∅ (see Example 6.1).

Proposition 1.2 (Propositions 6.7 and 6.8). — Let ρ : Γ −→ G be a
P p,q1 -Anosov representation, a point o ∈ ΩΩΩρ and τ ∈ So. Then for every
t > 0 one has(2)

Nρ(Γ)(So, τ, t) <∞ and Nρ(Γ)(So, t) <∞.

The main results of this paper in the Riemannian context are Theo-
rems 1.3 and 1.4. The notation f(t) ∼ g(t) stands for

lim
t−→∞

f(t)
g(t) = 1.

Theorem 1.3. — A Let ρ : Γ −→ G be a P p,q1 -Anosov representation
and o ∈ ΩΩΩρ. There exist positive constants h = hρ andM = Mρ,o such that

Nρ(Γ)(So, t) ∼
eht

M
.

Theorem 1.4. — B Let ρ : Γ −→ G be a P p,q1 -Anosov representation,
a point o ∈ ΩΩΩρ and τ ∈ So. There exist positive constants h = hρ and
M ′ = M ′ρ,τ such that

Nρ(Γ)(So, τ, t) ∼
eht

M ′
.

The constant h is the same in both Theorems 1.3 and 1.4 and it is
independent on the choice of o in ΩΩΩρ (and τ in So). It coincides with the
topological entropy of the geodesic flow φρ of ρ, introduced by Bridgeman–
Canary–Labourie–Sambarino [10], and can be computed as

h = lim sup
t−→∞

log #{[γ] ∈ [Γ] : λ1(ρ(γ)) 6 t}
t

.

Here [γ] denotes the conjugacy class of γ and λ1(ρ(γ)) denotes the loga-
rithm of the spectral radius of ρ(γ). The constants M and M ′ are related
to the total mass of specific measures in the Bowen–Margulis measure class
of φρ (recall that the Bowen–Margulis measure class is the homothety class
of measures maximizing entropy of φρ).

Since the work of Margulis [34], in order to obtain a counting result one
usually studies the ergodic properties of a well chosen dynamical system. In

(2)Even though finiteness of Nρ(Γ)(So, τ, t) follows directly from finiteness of
Nρ(Γ)(So, t), in our proof we first show Nρ(Γ)(So, τ, t) < ∞ and use it to prove
Nρ(Γ)(So, t) <∞.

TOME 70 (2020), FASCICULE 3
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order to find a dynamical system adapted to Theorem 1.3 we introduce a
decomposition of a specific subset of G, analogue to the Cartan Decompo-
sition, but replacing the maximal compact subgroup of G by PSO(p, q− 1)
and the Cartan subspace by a smaller abelian subalgebra (Subsection 3.4).
For Theorem 1.4 we use the more studied polar decomposition of G (Sub-
section 3.3).

Relation with the work of Oh–Shah

Motivated by the study of Apollonian circle packings on the Riemann
sphere, Oh–Shah [41] studied counting problems similar to ours. Indeed,
let p = 1 and q = 3. Then H1,2 identifies with the space of circles of the
Riemann sphere or, equivalently, the space of totally geodesic isometric
copies of H2 inside H3. In [41, Theorem 1.5] the cited authors prove that
for a well-chosen So ∼= H2 ⊂ H3 and any point τ ∈ H3 one has

#{g ∈ ∆ : dH3(τ, g · So) 6 t} ∼M−1eht.

Hence Theorem 1.4 can be interpreted as a higher rank generalization of
this result. We note however that, for p = 1 and q = 3, our results only
concern convex co-compact groups, while Oh–Shah’s Theorem applies to a
wider class of geometrically finite Kleinian subgroups. A slightly different
counting theorem inH1,2 was obtained by the cited authors in [39]. Effective
versions of Oh–Shah’s results (i.e. with an error term) have been obtained
by Lee–Oh [32] and Mohammadi–Oh [38]. Our Theorem 1.3 seems to be
new even in this setting.
The approach by Oh–Shah is similar to the one of Eskin–McMullen [16]:

they study the equidistribution, with respect to certain measures, of the
orthogonal translates of So under the geodesic flow of ∆\H3 (see Oh–
Shah [40] for precisions). Here we use different techniques. We follow the
approach by Sambarino [50] and construct a dynamical system on a com-
pact space that contains the required geometric information.

1.2. Interpretation in Hp,q−1

Another part of our contributions concern geometric interpretations of
Theorems 1.3 and 1.4 in Hp,q−1. We now state these interpretations.
Geodesics in Hp,q−1 are intersections of projectivized 2-dimensional sub-

spaces of Rd with Hp,q−1 and they are classified in three types, depending
on the sign of the form 〈 · , · 〉p,q on its tangent vectors (see Subsection 2.2.2).

ANNALES DE L’INSTITUT FOURIER



COUNTING IN SPECIAL-ORTHOGONAL SYMMETRIC SPACES 1205

We are mainly interested in space-like geodesics, i.e. geodesics associated
to planes on which the form 〈 · , · 〉p,q has signature (1, 1). Let o, o′ ∈ Hp,q−1

be two points joined by a space-like geodesic and let `o,o′ be the length of
this geodesic segment (see Subsection 2.2.4). We denote by C>

o the set of
points of Hp,q−1 that can be joined to o by a space-like geodesic and we set

C>
o,G := {g ∈ G : g · o ∈ C>

o }.

Proposition 1.5 (Proposition 3.8). — Let o ∈ Hp,q−1 and g ∈ C>
o,G.

Then
`o,g·o = dXG(So, g · So).

In Corollary 6.3 we prove that given a P p,q1 -Anosov representation ρ :
Γ −→ G and o in ΩΩΩρ, then apart from possibly finitely many exceptions γ
in Γ one has ρ(γ) ∈ C>

o,G. By Proposition 6.8 we have

#{γ ∈ Γ : ρ(γ) ∈ C>
o,G and `o,ρ(γ)·o 6 t} <∞

for every positive t. Moreover, Theorem 1.3 implies that this function is
asymptotic to M−1eht as t −→∞.
In order to state the corresponding geometric interpretation of Theo-

rem 1.4 we follow Kassel–Kobayashi [27, p. 151]. Let o ∈ Hp,q−1 and τ ∈ So.
Then

Hpτ := (o⊕ τ⊥p,q ) ∩Hp,q−1

is a space-like totally geodesic copy of Hp passing through o. Let Kτ be the
(maximal compact) subgroup of G stabilizing τ . As we shall see, for every g
in G the point g ·o lies in the Kτ -orbit of a point og in Hpτ . The counterpart
of Theorem 1.4 in Hp,q−1 is provided by the following proposition.

Proposition 1.6 (Proposition 3.5). — For every g in G one has

`o,og = dXG(τ, g · So).

Relation with the work of Glorieux–Monclair and Kassel–Kobayashi

Glorieux–Monclair [18] introduced an orbital counting function for
Hp,q−1-convex co-compact representations that differs from

t 7→ #{γ ∈ Γ : ρ(γ) ∈ C>
o,G and `o,ρ(γ)·o 6 t}

by a constant. Indeed, they define an Hp,q−1-distance

dHp,q−1(o, o′) :=
{
`o,o′ if o′ ∈ C>

o

0 otherwise,

TOME 70 (2020), FASCICULE 3
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and show that it satisfies a version of the triangle inequality in the convex
hull of the limit set of ρ. This is used to prove that the exponential growth
rate of the counting function

t 7→ #{γ ∈ Γ : dHp,q−1(o, ρ(γ) · o) 6 t}

is independent on the choice of the basepoint o. The authors interpret
this exponential rate as a pseudo-Riemannian Hausdorff dimension of the
limit set of ρ, with the purpose of finding upper bounds for this number
([18, Theorem 1.2]). A consequence of Theorem 1.3 and Proposition 3.8
(see Remarks 6.9 and 7.15) is that this rate coincides with the topological
entropy h of φρ.
On the other hand, as we shall see in Section 3 the number `o,og is related

to the polar projection of g and therefore Theorem 1.4 addresses the prob-
lems treated by Kassel–Kobayashi in [27, Section 4]. In [27] the authors
study the orbital counting function of Theorem 1.4 for sharp subgroups of
a real reductive symmetric space (see [27, Section 4]). Kassel–Kobayashi
obtain some estimates on the growth of this function, but no precise as-
ymptotic is established.
The method of [18] is based on pseudo-Riemannian geometry: they con-

struct analogues of Busemann functions, Gromov products and Patterson–
Sullivan densities in Hp,q−1 using this viewpoint. Our approach is inspired
by [27] and has Lie-theoretic flavor: we study linear algebraic interpreta-
tions of the geometric quantities involved in the definition of the counting
functions. This allows us to establish finiteness of these functions, to make a
link between the different symmetric spaces and to apply Ledrappier’s [31]
framework to our setting.

1.3. Outline of the proof

There are three major steps in the proof of Theorems 1.3 and 1.4.

First step

As we said, we interpret the geometric quantities involved in Theo-
rems 1.3 and 1.4 as linear algebraic quantities.

Let us be more precise. Fix o ∈ Hp,q−1 and denote by Ho the stabilizer
in G of this point. If we consider the symmetry of Rd given by Jo :=
ido⊕(−ido⊥p,q ), we have that Ho equals the fixed point set of the involution

σo : g 7→ JogJo

ANNALES DE L’INSTITUT FOURIER
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of G (see Subsection 2.2.1). This identifies the tangent space at o of Hp,q−1

with the subspace of so(p, q) defined by qo := {dσo = −1}. In Proposi-
tions 3.8 and 3.10 we prove that for every g ∈ C>

o,G one has

(1.1) dXG(So, g · So) = 1
2λ1(JogJog−1).

The main ingredient in the proof of equality (1.1) is the following version
of the classical Cartan Decomposition of G.

Proposition 1.7 (Proposition 3.7). — Let o ∈ Hp,q−1 and b+ ⊂ qo

be a ray such that exp(b+) · o is space-like. Given g ∈ C>
o,G there exists

h, h′ ∈ Ho and a unique X ∈ b+ such that

g = h exp(X)h′.

On the other hand, the linear algebraic interpretation of the quantity
dXG(τ, g · So) is the following: the choice of τ induces a norm ‖ · ‖τ on Rd
invariant under the action of Kτ . We show in Propositions 3.5 and 3.6 that
for every g ∈ G the following equality holds

(1.2) dXG(τ, g · So) = 1
2 log ‖JogJog−1‖τ .

Once again the proof of this equality relies on a generalization of Cartan
Decomposition (see Schlichtkrull [52, Chapter 7]): every g ∈ G can be
written as

g = k exp(X)h
for some k ∈ Kτ , h ∈ Ho and a unique X ∈ b+.

Second step

In order to simplify the exposition we assume that Γ is torsion free. In this
case every γ 6= 1 in Γ has a unique attractive (resp. repelling) fixed point in
∂∞Γ, denoted by γ+ (resp. γ−). Consider ρ : Γ −→ G a P p,q1 -Anosov rep-
resentation. The key feature of choosing o in ΩΩΩρ is that it guarantees some
transversality condition for the proximal matrices Joρ(γ)Jo and ρ(γ−1)
and this allows to estimate the quantities (1.1) and (1.2) in terms of the
spectral radius of ρ(γ).

More precisely, we will see in Proposition 2.6 that

(1.3) ΩΩΩρ = {o ∈ Hp,q−1 : Jo · ξ(x) /∈ η(x) for all x ∈ ∂∞Γ}.

Fix o ∈ ΩΩΩρ and a distance d in P(Rd) induced by the choice of an inner
product in Rd. By compactness of ∂∞Γ there exists a positive constant r
such that

d(Jo · ξ(x), η(x)) > r

TOME 70 (2020), FASCICULE 3



1208 León CARVAJALES

holds for every x ∈ ∂∞Γ (here d(Jo · ξ(x), η(x)) is the minimal distance
between Jo ·ξ(x) and the lines included in η(x)). Further, if γ+ is uniformly
far from γ−, with respect to some visual distance in ∂∞Γ, then ξ(γ+) (resp.
ξ(γ−)) is uniformly far from η(γ−) (resp. η(γ+)). In Lemma 6.6 we com-
bine all these facts with Benoist’s work [4] to conclude that the product
Joρ(γ)Joρ(γ−1) is proximal. Moreover, we obtain a comparison between
the quantity (1.1) (resp. (1.2)) and

λ1(ρ(γ))

with very precise control on the error made in this comparison.

Third step

We apply Sambarino’s outline [50] to our particular context(3). To a
Hölder cocycle c on ∂∞Γ the author associates a Hölder reparametrization
ψct of the geodesic flow of Γ. Recall that a Hölder cocycle is a map c :
Γ× ∂∞Γ −→ R satisfying

c(γ0γ1, x) = c(γ0, γ1 · x) + c(γ1, x)

for every γ0, γ1 in Γ and x ∈ ∂∞Γ and such that the map c(γ0, · ) is Hölder
(with the same exponent for every γ0). The cocycle c′ is said to be coho-
mologous to c if there exists a Hölder continuous function U : ∂∞Γ −→ R
such that for every γ in Γ and x in ∂∞Γ one has

c(γ, x)− c′(γ, x) = U(γ · x)− U(x).

In that case ψct is conjugate to ψc′t (see [50, Section 3]). By considering a
Markov coding and applying Parry–Pollicott’s Prime Orbit Theorem [42],
Sambarino obtains an asymptotic for the number of periodic orbits of ψct
of period less than or equal to t (see [50, Corollary 4.1]). Obviously this is
a purely dynamical result, i.e. changing ψct in its conjugacy class does not
affect the asymptotics.
However our problem is more subtle: one must find a particular cocy-

cle, with some geometric meaning, and not just any cocycle in the given
cohomology class. Indeed, the cocycles that we consider to prove Theo-
rems 1.3 and 1.4 are cohomologous, but only the specific choices in such a
cohomology class yield the respective results.

(3)The results in [50] are proved for fundamental groups of closed negatively curved
manifolds. However, all the results obtained there remain valid when Γ is an arbitrary
word hyperbolic group admitting an Anosov representation. This is explained in detail
in Appendix A.
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Let us briefly sketch the proof of Theorem 1.3 (Theorem 1.4 is proved in
a similar way). Fix o ∈ ΩΩΩρ and consider

co : Γ× ∂∞Γ −→ R : co(γ, x) := 1
2 log

∣∣∣∣ 〈ρ(γ) · vx, Joρ(γ) · vx〉p,q
〈vx, Jo · vx〉p,q

∣∣∣∣
where vx 6= 0 is any vector in ξ(x)(4). This is a well-defined function thanks
to (1.3) and it is a Hölder cocycle.
Let ∂2

∞Γ be the set of pairs of distinct points in ∂∞Γ and consider the
action of Γ on ∂2

∞Γ× R given by

γ · (x, y, s) := (γ · x, γ · y, s− co(γ, y)).

We denote by UoΓ the quotient space. The translation flow on ∂2
∞Γ × R

given by
ψt(x, y, s) := (x, y, s− t)

descends to a flow ψt = ψot on UoΓ. As Sambarino shows in [50, Theo-
rem 3.2(1)] (see also Lemma A.7) the flow ψt is conjugate to a Hölder
reparametrization of the geodesic flow of Γ introduced by Gromov [19]. We
will show (see Lemma A.7) that periodic orbits of ψt are parametrized by
conjugacy classes of primitive elements in Γ, i.e. elements which cannot be
written as a power of another element. If γ is primitive, the corresponding
period is given by

`co(γ) := λ1(ρ(γ)).
We show the following property concerning spectral radii in a projective

Anosov representation.

Proposition 1.8 (Proposition A.2). — Let ρ be a projective Anosov
representation of Γ. Then the set {λ1(ρ(γ))}γ∈Γ spans a non discrete sub-
group of R.

Denote by h the topological entropy of ψt. The probability of maximal
entropy of ψt can be constructed as follows: define the Gromov product

[ · , · ]o : ∂2
∞Γ −→ R : [x, y]o := −1

2 log
∣∣∣∣ 〈vx, Jo · vx〉p,q〈vy, Jo · vy〉p,q〈vx, vy〉p,q〈vy, vx〉p,q

∣∣∣∣ .
This function is well-defined thanks to (1.3) and transversality of ξ and η.
One can prove that

[γ · x, γ · y]o − [x, y]o = −(co(γ, x) + co(γ, y))

(4)When q = 1 this coincides with the Busemann cocycle of Hp, i.e. co(γ, x) =
βξ(x)(ρ(γ−1) · o, o) where β·( · , · ) : ∂Hp × Hp × Hp −→ R is the Busemann function.
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holds for every γ in Γ and (x, y) ∈ ∂2
∞Γ. Let µo be a Patterson–Sullivan

probability associated to co, that is, µo is a probability on ∂∞Γ that satisfies

dγ∗µo
dµo

(x) = e−hco(γ−1,x)

for every γ ∈ Γ(5). For the existence of such a probability see Subsec-
tion A.2.2. The measure

e−h[ · ,· ]oµo ⊗ µo ⊗ dt

on ∂2
∞Γ × R is Γ-invariant. It induces on the quotient UoΓ the measure

of maximal entropy of ψt, which is unique up to scaling (see [50, Theo-
rem 3.2(2)] or Proposition A.12).
Denote by C∗c (∂2

∞Γ) the dual of the space of compactly supported real
continuous functions on ∂2

∞Γ equipped with the weak-star topology. For x
in ∂∞Γ let δx be the Dirac mass at x. Inspired by the work of Roblin [49],
Sambarino [50, Proposition 4.3] shows

Me−ht
∑

γ∈Γ,`co (γ)6t

δγ− ⊗ δγ+ −→ e−h[ · ,· ]oµo ⊗ µo

on C∗c (∂2
∞Γ) as t −→∞ (for a proof in our context see Proposition A.13).

The constant M = Mρ,o > 0 equals the product of h with the total mass
of e−h[ · ,· ]oµo ⊗ µo ⊗ dt on the quotient space UoΓ.

As we show in Lemma 7.9, the number [γ−, γ+]o is the precise error term
in the comparison between `co(γ) and

1
2λ1(Joρ(γ)Joρ(γ−1)) = dXG(So, ρ(γ) · So)

provided by Benoist’s Theorem 4.6. This is the geometric step: we replace
the period `co(γ) by the number dXG(So, ρ(γ) · So) in the previous sum,
using the Gromov product.

Proposition 1.9 (Proposition 7.11). — Let Γ be a torsion free word
hyperbolic group, ρ : Γ −→ G be a P p,q1 -Anosov representation and o ∈ ΩΩΩρ.
Then

Me−ht
∑

γ∈Γ,dXG (So,ρ(γ)·So)6t

δγ− ⊗ δγ+ −→ µo ⊗ µo

on C∗(∂∞Γ× ∂∞Γ) as t −→∞.

(5)Recall that if f : X −→ Y is a map and m is a measure on X then f∗(m) denotes
the measure on Y defined by A 7→ m(f−1(A)).
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The proof of Proposition 7.11 follows line by line the proof of [50, The-
orem 6.5], which is again inspired by Roblin’s work [49].

It turns out that the previous proposition can be used to deduce Theo-
rem 1.3 in the general case, that is, if we admit torsion elements in Γ.

Proposition 1.10 (Proposition 7.13). — Let ρ : Γ −→ G be a P p,q1 -
Anosov representation and o ∈ ΩΩΩρ. Then

Me−ht
∑

γ∈Γ,dXG (So,ρ(γ)·So)6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o −→ η∗(µo)⊗ ξ∗(µo)

on C∗(P((Rd)∗)× P(Rd)) as t −→∞.

1.4. Organization of the paper

In Section 2 we recall basic facts on the symmetric spacesXG and Hp,q−1.
Of particular importance is Subsection 2.2.6, which is devoted to the study
of end points of space-like geodesics passing through our preferred point
o ∈ Hp,q−1. We give several characterizations of this set that will allow us
to understand ΩΩΩρ in different ways, all of them used indistinctly in Sec-
tions 6, 7 and 8. In Section 3 we study the geometric quantities involved in
Theorems 1.3 and 1.4. Equalities (1.1) and (1.2) are proven respectively in
Subsections 3.4 and 3.3. In Section 4 we recall Benoist’s results on prod-
ucts of proximal matrices and Section 5 is devoted to reminders on Anosov
representations. In Section 6 we define the set ΩΩΩρ and study the action of
Γ on this set. We show in particular that the orbital counting functions
involved in Theorems 1.3 and 1.4 are well-defined (Proposition 6.8 and
Proposition 6.7). We also obtain some estimates for the spectral radius
and operator norm of elements Joρ(γ)Joρ(γ−1) which are of major impor-
tance (cf. Lemma 6.6). In Section 7 (resp. Section 8) we prove Theorem 1.3
(resp. Theorem 1.4). Finally, in Appendix A we explain how to adapt the
results of [50] to the context of arbitrary word hyperbolic groups admitting
an Anosov representation.
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2. Two symmetric spaces associated to PSO(p, q)

Fix two integers p, q > 1 and let d := p + q. We assume d > 2. Denote
by Rp,q the vector space Rd endowed with the quadratic form

〈(x1, . . . , xd), (y1, . . . , yd)〉p,q :=
p∑
i=1

xiyi −
d∑

i=p+1
xiyi.

From now on we denote by G := PSO(p, q) the subgroup of PSL(d,R)
consisting on elements whose lifts to SL(d,R) preserve the form 〈 · , · 〉p,q.

For a subspace π of Rd we denote by π⊥p,q its orthogonal complement
with respect to 〈 · , · 〉p,q, i.e.

π⊥p,q := {x ∈ Rd : 〈x, y〉p,q = 0 for all y ∈ π}.

Let g := so(p, q) be the Lie algebra of G. If · t denotes the usual transpose
operator one has that g equals the set of matrices of the form(

X1 X2
Xt

2 X3

)
where X1 is of size p× p, X3 is of size q × q and both are skew-symmetric
with respect to · t. The Killing form of G is the symmetric bilinear form κ

on g defined by
κ(X,Y ) := tr(adX ◦ adY ),

where ad : g −→ End(g) is the adjoint representation. It can be seen that
the following equality holds:

κ(X,Y ) = (d− 2)tr(XY )

(see Helgason [22, p. 180 & p. 189]).

2.1. The Riemannian symmetric space XG

A Cartan involution of G is an involutive automorphism τ : G −→ G

such that the bilinear form

(X,Y ) 7→ −κ(X,dτ(Y ))
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is positive definite. The fixed point set Kτ of such an involution is a max-
imal compact subgroup of G (see Knapp [29, Theorem 6.31]). The Rie-
mannian symmetric space of G is the set consisting on Cartan involutions
of G. It is denoted by XG and it is equipped with a natural action of G
which is transitive (cf. [29, Corollary 6.19]). The stabilizer of τ is Kτ , thus

G/Kτ ∼= XG.

Remark 2.1. — The space XG can be identified with the space of q-
dimensional subspaces of Rd on which the form 〈 · , · 〉p,q is negative definite.
Explicitly, to a q-dimensional negative definite subspace π one associates
the Cartan involution of G determined by the inner product of Rd which
equals −〈 · , · 〉p,q (resp. 〈 · , · 〉p,q) on π (resp. π⊥p,q ) and for which π and
π⊥p,q are orthogonal.

The choice of a point τ in XG determines a Cartan decomposition

g = pτ ⊕ kτ

where pτ := {dτ = −1} and kτ := {dτ = 1}. The group Kτ is tangent to
kτ and one has a G-equivariant identification

(2.1) pτ ∼= TτXG

given by X 7→ d
dt
∣∣
0 exp (tX) · τ (see [22, Theorem 3.3 of Ch. IV]).

Example 2.2. — Consider the involution of G defined by τ(g) := (g−1)t.
One sees that τ ∈ XG and pτ (resp. kτ ) is the set of symmetric matrices
(resp. skew-symmetric matrices) in so(p, q). Moreover Kτ is the subgroup
PS(O(p)×O(q)).

The Killing form κ is positive definite (resp. negative definite) on pτ

(resp. kτ ). Thanks to (2.1) any positive multiple of κ induces a G-invariant
Riemannian metric on XG. It is well-known (see [22, Theorem 4.2 of
Chapter IV]) that XG equipped with any of these metrics is a symmet-
ric space which is non-positively curved.
We already mentioned that in this paper we study counting problems

not only in XG but also in Hp,q−1. In the next section we construct Hp,q−1,
whose metric is induced by the form 〈 · , · 〉p,q. However, we will see that
the Killing form induces as well a G-invariant metric on Hp,q−1. These two
metrics differ by the scaling factor (2(d−2))−1 (see Remark 2.3 for further
precisions). Since we want a simultaneous treatment of the geometry of the
spaces XG and Hp,q−1, we fix the following normalization for the metric
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on XG:

(2.2) dXG(τ, exp(X) · τ) :=
(

1
2(d− 2)κ(X,X)

) 1
2

for all τ ∈ XG and all X ∈ pτ .

2.2. The pseudo-Riemannian hyperbolic space Hp,q−1

Let
Ĥp,q−1 := {ô ∈ Rp,q : 〈ô, ô〉p,q = −1}

endowed with the restriction of the form 〈 · , · 〉p,q to tangent spaces. This
metric induces on

Hp,q−1 := {o = [ô] ∈ P(Rp,q) : 〈ô, ô〉p,q < 0}

a pseudo-Riemannian structure invariant under the projective action of G.
This space is called the pseudo-Riemannian hyperbolic space of signature
(p, q− 1). The boundary of Hp,q−1 is the space of isotropic lines defined by

∂Hp,q−1 := {ξ = [ξ̂] ∈ P(Rp,q) : 〈ξ̂, ξ̂〉p,q = 0}.

It is also equipped with the natural (transitive) action of G. If we denote
by P p,q1 the (parabolic) subgroup of G stabilizing an isotropic line, then

∂Hp,q−1 ∼= G/P p,q1 .

2.2.1. Structure of symmetric space

The action of G on Hp,q−1 is transitive, hence Hp,q−1 ∼= G/Ho where
Ho is the stabilizer in G of the point o ∈ Hp,q−1. For instance, when
o = [0, . . . , 0, 1] ∈ Hp,q−1 one has

Ho =
{[
ĝ 0
0 1

]
∈ G : ĝ ∈ O(p, q − 1)

}
.

Fix any o ∈ Hp,q−1. Since o and o⊥p,q are transverse we can consider the
matrix

Jo := ido ⊕ (−ido⊥p,q ) .
It follows that Ho = Fix(σo) where σo is the involution of G defined by

(2.3) σo(g) := JogJo.

Thus Hp,q−1 ∼= G/Ho is a symmetric space of G.
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Remark 2.3. — Let o ∈ Hp,q−1 and qo := {dσo = −1}. There exists a
G-equivariant identification

qo ∼= ToHp,q−1

given by X 7→ d
dt
∣∣
0 exp (tX) · o. We denote by 〈 · , · 〉 the pull-back of the

(p, q − 1)-form on ToHp,q−1 under this map and, for X ∈ qo, we set |X| :=
〈X,X〉(6).
Recall that κ is the Killing form of so(p, q). From explicit computations

(that we omit) one can conclude that the equality

(2.4) |X| = 1
2(d− 2)κ(X,X)

holds for every X ∈ qo. This justifies the choice of normalization made in
Subsection 2.1.

Remark 2.4. — Let o ∈ Hp,q−1. Then the action of the connected compo-
nent of Ho containing the identity is conjugate to the action of SO(p, q−1)
on Rp,q−1.

2.2.2. Geodesics of Hp,q−1

Geodesics of Hp,q−1 are the intersections of straight lines of P(Rp,q) with
Hp,q−1. They are divided in three types:

• Space-like geodesics: associated to 2-dimensional subspaces of Rd
on which 〈 · , · 〉p,q has signature (1, 1). They have positive speed
and meet the boundary ∂Hp,q−1 in two distinct points.

• Time-like geodesics: associated to 2-dimensional subspaces of Rd on
which 〈 · , · 〉p,q has signature (0, 2). They have negative speed and
do not meet the boundary (they are closed).

• Light-like geodesics: associated to 2-dimensional subspaces of Rd on
which 〈 · , · 〉p,q has signature (0, 1), that is, is degenerate but has a
negative eigenvalue. They have zero speed and meet the boundary
in a single point.

For a point o ∈ Hp,q−1 we denote by C 0
o (resp. C>

o ) the set of points of
Hp,q−1 that can be joined with o by a light-like (resp. space-like) geodesic.
Its closure in P(Rp,q) is denoted by C 0

o (resp. C>
o ).

(6)This number can be positive, negative or zero for X 6= 0 in qo.
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2.2.3. Light-cones

The following lemma is proved by Glorieux–Monclair in [18, Lemma 2.2].

Lemma 2.5. — Let o ∈ Hp,q−1. Then C 0
o ∩ ∂Hp,q−1 = o⊥p,q ∩ ∂Hp,q−1.

2.2.4. Lenghts of space-like geodesics

For a point o′ in C>
o we denote by `o,o′ the length of the geodesic segment

connecting o with o′. For instance the geodesic

(2.5) s 7→ [sinh(s), 0 . . . , 0, cosh(s)] ∈ Hp,q−1

is parametrized by arc-length.

2.2.5. Space-like copies of Hp

Let π be a (p + 1)-dimensional subspace of Rd of signature (p, 1). Then
P(π) ∩Hp,q−1 identifies with

{o = [ô] ∈ P(Rp,1) 〈ô, ô〉p,1 < 0}.

It follows that P(π)∩Hp,q−1 is a totally geodesic isometric copy of Hp inside
Hp,q−1. Moreover this sub-manifold is space-like, in the sense that any of
its tangent vectors has positive norm.

2.2.6. End points of space-like geodesics

Let o be a point in Hp,q−1. Note that Jo preserves the form 〈 · , · 〉p,q and
thus acts on ∂Hp,q−1. Set

Oo := {ξ ∈ ∂Hp,q−1 : Jo · ξ 6= ξ}.

Proposition 2.6. — Let o ∈ Hp,q−1. Then the following equalities
hold:

Oo = {ξ ∈ ∂Hp,q−1 : Jo · ξ /∈ ξ⊥p,q}

= ∂Hp,q−1 \ o⊥p,q

= ∂Hp,q−1 \ C 0
o .

We conclude that, unless q = 1, the set Oo is not the whole boundary of
Hp,q−1.
Proof of Proposition 2.6. — The equality ∂Hp,q−1\o⊥p,q = ∂Hp,q−1\C 0

o

is a consequence of Lemma 2.5. The other equalities follow from the
definitions. �
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3. Generalized Cartan decompositions

The goal of this section is to define two generalized Cartan projections
and to provide a link between them and Theorems 1.3 and 1.4. The first
one (Subsection 3.3) is called the polar projection of G and it is well-known.
The second one (Subsection 3.4) is new and can only be defined for elements
in G that satisfy some special property with respect to the choice of the
basepoint o.

3.1. Notations

Through this section we fix a point o ∈ Hp,q−1 and let Ho = Fix(σo) be
its stabilizer in G (cf. Subsection 2.2.1). Let ho be the Lie algebra of fixed
points of dσo and qo := {dσo = −1}. One has the following decomposition
of the Lie algebra g of G:

g = ho ⊕ qo.

Moreover, this decomposition is orthogonal with respect to the Killing form
of g.
Let τ be a Cartan involution commuting with σo: such involutions always

exist and two of them differ by conjugation by an element in Ho (see
Matsuki [36, Lemma 4]). Let Kτ := Fix(τ), which is a maximal compact
subgroup of G. Let pτ and kτ be the subspaces defined in Subsection 2.1.
As σo and τ commute, the following holds:

g = (pτ ∩ qo)⊕ (pτ ∩ ho)⊕ (kτ ∩ qo)⊕ (kτ ∩ ho).

Let b ⊂ pτ ∩qo be a (necessarily abelian) maximal subalgebra: two of them
differ by conjugation by an element in Kτ ∩ Ho. We will consider closed
Weyl chambers in b corresponding to positive systems of restricted roots
of b in gσ

oτ := (pτ ∩ qo) ⊕ (kτ ∩ ho). These closed Weyl chambers will be
denoted by b+.

Example 3.1. — Let o = [0, . . . , 0, 1]. Then Ho is the upper left corner
embedding of O(p, q − 1) in G and the involution σo is obtained by conju-
gation by Jo = diag(−1, . . . ,−1, 1). One sees that ho equals the upper left
corner embedding of so(p, q − 1) in so(p, q) and that

qo =


 0 0 Y1

0 0 Y2
Y t1 −Y t2 0

 : Y1 ∈ M(p× 1,R), Y2 ∈ M((q − 1)× 1,R)

 .
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Let τ be the Cartan involution of Example 2.2. One observes that τ
commutes with σo and

pτ ∩ qo = {X ∈ qo : Y2 = 0} kτ ∩ qo = {X ∈ qo : Y1 = 0} .

Pick b to be the subset of pτ ∩ qo of matrices with Y1 of the form
s

0
...

0


for some s ∈ R: this is a maximal subalgebra of pτ ∩ qo. A closed Weyl
chamber b+ is defined by the inequality s > 0.

The following remark will be used repeatedly in the sequel.

Remark 3.2. — Even though G does not act on Rd, it makes sense to
ask if an element g of G preserves a norm on Rd (this notion does not
depend on the choice of a lift of g to SL(d,R)). Given a Cartan involution
τ commuting with σo, let ‖ · ‖τ be a norm on Rd preserved by Kτ . We claim
that this norm is preserved by Jo. Indeed, this is obvious for the choices of
Example 3.1 and follows in general by conjugating by an element g in G

that takes [0, . . . , 0, 1] to the point o.

3.2. The sub-manifold So

Define
So := {τ ∈ XG : τσo = σoτ}.

Remark 3.3. — Recall from Remark 2.1 that XG can be identified with
the space of q-dimensional negative definite subspaces of Rd. Under this
identification So corresponds to the set of subspaces that contain the line o.
By considering the 〈 · , · 〉p,q-orthogonal complement we see that So paramet-
rizes the space of totally geodesic space-like copies of Hp inside Hp,q−1

passing through o (cf. Subsection 2.2.5).

Using the fact that two elements of So differ by conjugation by an element
in Ho one observes that for any τ ∈ So the following holds

So = Ho · τ.
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Further, the group Ho has several connected components but one can see
that the connected component containing the identity acts transitively on
So. Hence So is connected and one can show that

So = exp(pτ ∩ ho) · τ.

It follows that So is a totally geodesic sub-manifold of XG and TτS
o ∼=

pτ ∩ ho (see [22, Theorem 7.2 of Ch. IV]).

3.3. K exp(b+)H-decomposition

For the rest of this section we fix a Cartan involution τ ∈ So, a max-
imal subalgebra b ⊂ pτ ∩ qo and a closed Weyl chamber b+ ⊂ b. By
Schlichtkrull [52, Proposition 7.1.3] the following decomposition of G holds:

(3.1) G = Kτ exp(b+)Ho

where the exp(b+)-component is uniquely determined and one can define

(3.2) bτ : G −→ b+

by taking the log of this component. This is a continuous map called the
polar projection of G associated to the choice of τ and b+. It generalizes
the usual Cartan projection of G.

Remark 3.4. — Note that bτ is not proper (unless q = 1). However it
descends to a map Hp,q−1 ∼= G/Ho −→ b+ which, by definition, is proper.

We now discuss geometric interpretations of the polar projection bτ . The
geometric interpretation in Hp,q−1 follows Kassel–Kobayashi [27, p. 151],
while the geometric interpretation in XG is inspired by the work of Oh–
Shah [41] for the case p = 1 and q = 3.
Let us begin with the interpretation in the pseudo-Riemannian setting.

By Remark 3.3, the choice of τ ∈ So determines a totally geodesic space-
like copy of the p-dimensional hyperbolic space, inside Hp,q−1 and passing
through o. We denote this copy by Hpτ . From explicit computations one can
show that

Hpτ = exp(pτ ∩ qo) · o.

In particular Hpτ contains the geodesic ray exp(b+) · o starting from o.
Equality (3.1) tell us that for every g in G the point g · o lies in the Kτ -
orbit of og := exp(bτ (g)) · o (see Figure 3.1). The geometric interpretation
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g · o

Kτ · og

exp(b+) · o
ogo

Hp,q−1

Hp
τ

∂Hp,q−1

Figure 3.1. Geometric interpretation of polar projection in Hp,q−1.

of the polar projection is now clear: the number |bτ (g)| 12 equals the length
of the geodesic segment connecting o with og(7).
We now turn our attention to the Riemannian symmetric space XG.

Proposition 3.5. — For every g in G one has

|bτ (g)| 12 = dXG(g−1 · τ, So).

Proof. — The function g 7→ dXG(g−1 · τ, So) is Kτ -invariant on the left
and Ho-invariant on the right, hence it suffices to check that the equality
of the statement holds when g = exp(X) for some X ∈ b+.

Since XG is non-positively curved, there exists a unique geodesic through
exp(−X) · τ which is orthogonal to So = exp(pτ ∩ ho) · τ . This geodesic is
exp(b) · τ and intersects So in τ , hence

dXG(exp(−X) · τ, So) = dXG(exp(−X) · τ, τ).

Thanks to Remark 2.3 and (2.2) the proof is complete. �

(7)Recall that | · | is the form on qo defined in Remark 2.3.
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We finish this subsection with a linear algebraic interpretation of the
polar projection. Let ‖ · ‖τ be a norm on Rd invariant under the action
of Kτ .

Proposition 3.6. — For every g in G one has

|bτ (g)| 12 = 1
2 log ‖JogJog−1‖τ .

Proof. — We prove the proposition for the particular choices of Exam-
ple 3.1, the general case follows from this one by conjugating by appropriate
elements of G.

By Remark 3.2 the matrix Jo preserves ‖ · ‖τ thus
1
2 log ‖JogJog−1‖τ = 1

2 log ‖gJog−1‖τ .

The map g 7→ 1
2 log ‖gJog−1‖τ is Kτ -invariant on the left and Ho-invariant

on the right, hence it remains to check that the equality of the statement
holds on exp(b+). Let X ∈ b+, that is,

X =


s

0

. .
.

0
s


for some s > 0. Since X ∈ qo, one has Jo exp(−X) = exp(X)Jo and thus

|X| 12 = s = 1
2 log ‖ exp(X)Jo exp(−X)‖τ . �

3.4. H exp(b+)H-decomposition

Recall from Subsection 2.2.2 the definition of the set C>
o and define

C>
o,G := {g ∈ G : g · o ∈ C>

o }.

Proposition 3.7. — For every g in C>
o,G one can write

g = h exp(X)h′

for some h, h′ ∈ Ho and a unique X ∈ b+.

It is clear that this decomposition of g can only hold when g ∈ C>
o,G.

TOME 70 (2020), FASCICULE 3



1222 León CARVAJALES

Proof of Proposition 3.7. — Take h inHo such that h−1g·o ∈ exp(b+)·o.
There exists then X ∈ b+ and h′ ∈ Ho such that h−1g = exp(X)h′. Note
thatX is unique since it is determined by the length of the geodesic segment
connecting o with g · o. �

We define the map

(3.3) bo : C>
o,G −→ b+ : g 7→ bo(g)

where g = h exp(bo(g))h′ for some h, h′ ∈ Ho. Note that bo descends to the
quotient C>

o but this map is not proper (compare with Remark 3.4).

Proposition 3.8. — For every g in C>
o,G one has

`o,g·o = |bo(g)| 12 = dXG(So, g · So).

Proof. — The first equality was already discussed in the proof of Propo-
sition 3.7. For the second one write g = h exp(bo(g))h′. Since So = Ho · τ
we have

dXG(So, h exp(bo(g))h′ · So) = dXG(Ho · τ, exp(bo(g))Ho · τ).

Set X := bo(g). If X = 0 there is nothing to prove, so assume X 6= 0.
In that case Ho · τ is disjoint from exp(X)Ho · τ : since the action of b on
the geodesic exp(b) · τ is free, this follows from the fact that XG is non-
positively curved and the fact that exp(b) · τ intersects orthogonally Ho · τ
(resp. exp(X)Ho · τ) in τ (resp. exp(X) · τ).

To finish the proof we need the following lemma.

Lemma 3.9. — Take τ ′ ∈ Ho · τ and τ ′′ ∈ exp(X)Ho · τ . Then the
following holds:

dXG(τ ′, τ ′′) > dXG(τ, exp(X) · τ).

Proof of Lemma 3.9. — Let β1 ⊂ Ho · τ (resp. β2 ⊂ exp(X)Ho · τ) be
the unit-speed geodesic connecting β1(0) = τ (resp. β2(0) = exp(X) · τ)
with τ ′ (resp. τ ′′). Then β1 and β2 are disjoint and from the fact that XG

is non-positively curved follows that the map

(t, s) 7→ dXG(β1(t), β2(s))

is smooth (see Petersen [44, p. 129]). Moreover, since exp(b)·τ is orthogonal
both to Ho · τ and exp(X)Ho · τ we conclude that the differential at (0, 0)
of this map is zero.
Take t0 > 0 such that β1(t0) = τ ′ and a positive a such that the geodesic

t 7→ β2(at) equals τ ′′ in t0. By Busemann [11, Theorem 3.6] the map

t 7→ dXG(β1(t), β2(at))
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is convex. Since it has a critical point at t = 0 the proof of the lemma is
finished. �

Thanks to Remark 2.3 and (2.2) the proof of Proposition 3.8 is now
complete. �

Recall that λ1(g) denotes the logarithm of the spectral radius of g ∈ G.

Proposition 3.10. — For every g in C>
o,G one has

|bo(g)| 12 = 1
2λ1(JogJog−1).

Proof. — It suffices to prove the proposition for the choices of o and b+

of Example 3.1. Write g = h exp(bo(g))h′ with

bo(g) =


s

0

. .
.

0
s


for some s > 0. We have |bo(g)| 12 = s. On the other hand, Jo commutes
with elements of Ho and thus the number 1

2λ1(JogJog−1) equals to

1
2λ1(Joh exp(bo(g))Jo exp(bo(g))−1h−1).

Further, this number coincides with

1
2λ1(Jo exp(bo(g))Jo exp(bo(g))−1).

Since bo(g) ∈ qo we have Jo exp(bo(g))−1 = exp(bo(g))Jo and the proof is
complete. �

4. Proximality

In this section we recall basic facts on product of proximal matrices, the
main one being Benoist’s Theorem 4.6. This results are well-known but we
provide proofs for those which are not explicitly stated in the literature (the
reader familiarized with these concepts may skip this section). Standard
references are the works of Benoist [2, 3, 4].
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4.1. Notations and basic definitions

A norm ‖ · ‖ on Rd will be fixed in the whole section. For ξ1, ξ2 ∈ P(Rd)
define the distance

d(ξ1, ξ2) := inf{‖vξ1 − vξ2‖ : vξi ∈ ξi and ‖vξi‖ = 1 for all i = 1, 2}.

Let Grd−1(Rd) be the Grassmannian of (d − 1)-dimensional subspaces of
Rd. There exists a G-equivariant identification P((Rd)∗) −→ Grd−1(Rd)
given by

θ 7→ ker θ

where the action of G on the left side is given by g · θ := θ ◦ g−1. This
identification will be used from now on whenever convenient.
For η1, η2 ∈ Grd−1(Rd) we let

d(ξ1, η1) := min{d(ξ1, ξ) : ξ ∈ P(η1)}

and we denote by d∗(η1, η2) the distance on P((Rd)∗) induced by the oper-
ator norm on (Rd)∗. Given a positive ε we set

bε(ξ1) := {ξ ∈ P(Rd) : d(ξ1, ξ) < ε}

and
Bε(η1) := {ξ ∈ P(Rd) : d(ξ, η1) > ε}.

On the other hand, let

P(2) := {(θ, v) ∈ P((Rd)∗)× P(Rd) : v /∈ ker θ}

and

P(4) := {(θ, v, φ, u) ∈ P(2) × P(2) : v /∈ kerφ and u /∈ ker θ}.

Observe that

(4.1) G‖ · ‖ = G : P(2) −→ R : G (θ, v) := log |θ(v)|
‖θ‖‖v‖

is well-defined. Similarly the following map is well-defined

(4.2) B : P(4) −→ R : B(θ, v, φ, u) := log
∣∣∣∣θ(u)
θ(v)

φ(v)
φ(u)

∣∣∣∣
and is called de cross-ratio of (θ, v, φ, u)(8). Both G and B are continuous.

(8)Sometimes eB is called the cross-ratio.
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4.2. Product of proximal matrices

Given g in End(Rd) \ {0} we denote by

λ1(g) > · · · > λd(g)

the logarithms of the moduli of the eigenvalues of g, repeated with mul-
tiplicity (we use the convention log 0 = −∞). The matrix g is said to be
proximal in P(Rd) if λ1(g) is simple. In that case we let g+ (resp. g−) to
be the attractive fixed line (resp. repelling fixed hyperplane) of g in P(Rd).
Note that if g is non invertible then g− contains the kernel of g.

We now define a quantified version of proximality. The definition that we
propose is (slightly) weaker than the one given by Benoist in [2, 3, 4]. We
provide proofs of the basic facts established in those works when necessary.

Definition 4.1. — Let 0 < ε 6 r and g ∈ End(Rd) \ {0} be a proximal
matrix. The matrix g is called (r, ε)-proximal if d(g+, g−) > 2r and one has
g ·Bε(g−) ⊂ bε(g+).

Lemma 4.2 (Benoist [2, Corollaire 6.3]). — Let 0 < ε 6 r. There exists
a constant cr,ε > 0 such that for every (r, ε)-proximal matrix g one has

log ‖g‖ − cr,ε 6 λ1(g) 6 log ‖g‖.

The following criterion of (r, ε)-proximality will be very useful in the
sequel.

Lemma 4.3 (Benoist [2, Lemme 6.2]). — Let g be an element in
End(Rd) \ {0}, η ∈ Grd−1(Rd), ξ ∈ P(Rd) and 0 < ε 6 r. If d(ξ, η) > 6r
and g · Bε(η) ⊂ bε(ξ) then g is (2r, 2ε)-proximal with d(g+, ξ) 6 ε and
d∗(g−, η) 6 ε.

Proof. — Consider the Hilbert distance on the convex set Bε(η) (see [5]).
The condition g ·Bε(η) ⊂ bε(ξ) implies that g is contracting for this metric
and thus has a unique fixed point in Bε(η), which belongs in fact to bε(ξ).
The proof now finishes as in [2, Lemme 6.2]. �

Corollary 4.4 (Benoist [4, Lemme 1.4]). — Let 0 < ε 6 r. If g1 and
g2 are (r, ε)-proximal and satisfy

d(g1+ , g2−) > 6r and d(g2+ , g1−) > 6r

then g1g2 is (2r, 2ε)-proximal.

Let g1 and g2 be two matrices as in Corollary 4.4. The goal now is to
state a theorem (Theorem 4.6) which provides a comparison between the
spectral radius and operator norm of g1g2 in terms of the spectral radii of
g1 and g2 and the maps G and B.

TOME 70 (2020), FASCICULE 3



1226 León CARVAJALES

Lemma 4.5. — Fix r > 0 and δ > 0. For every ε small enough, the
following property is satisfied: for every pair of (r, ε)-proximal elements g1
and g2 such that

d(g1+ , g2−) > 6r and d(g2+ , g1−) > 6r

one has
|G (g2− , g1+)− G ((g1g2)−, (g1g2)+)| < δ.

Proof. — For every 0 < ε 6 r, consider the compact set Cr,ε of pairs
(g1, g2) of norm-one (r, ε)-proximal matrices in End(Rd) \ {0} satisfying

d(g1+ , g2−) > 6r and d(g2+ , g1−) > 6r.

The function

(g1, g2) 7→ |G (g2− , g1+)− G ((g1g2)−, (g1g2)+)|

is continuous and equals zero on Cr := ∩ε>0Cr,ε ⊂ End(Rd) \ {0}. �

Theorem 4.6 (Benoist [4, Lemme 1.4]). — Fix r > 0 and δ > 0. Then
for every ε small enough, the following properties are satisfied: for every
pair of (r, ε)-proximal elements g1 and g2 such that

d(g1+ , g2−) > 6r and d(g2+ , g1−) > 6r

one has:
(1) The number∣∣λ1(g1g2)− (λ1(g1) + λ1(g2))− B(g1− , g1+ , g2− , g2+)

∣∣
is less than δ.

(2) The number∣∣log ‖g1g2‖ − (λ1(g1) + λ1(g2))− B(g1− , g1+ , g2− , g2+) + G (g2− , g1+)
∣∣

is less than δ.

Proof.
(1). — See [4, Lemme 1.4].
(2). — Let ε be as in (1). For every g1 and g2 as in the statement,

Corollary 4.4 implies that g1g2 is (2r, 2ε)-proximal. By [50, Lemma 5.6]
(and taking ε smaller if necessary) we have

|log ‖g1g2‖ − λ1(g1g2) + G ((g1g2)−, (g1g2)+)| < δ.

Lemma 4.5 finishes the proof. �

ANNALES DE L’INSTITUT FOURIER



COUNTING IN SPECIAL-ORTHOGONAL SYMMETRIC SPACES 1227

5. Projective Anosov representations

Anosov representations were introduced by Labourie [30] for surface
groups and extended by Guichard–Wienhard [21] to word hyperbolic
groups. In this section we recall the definition of (projective) Anosov rep-
resentations and some well-known facts concerning (r, ε)-proximality of
matrices in the image of such a representation.

5.1. Singular values

The most useful characterization of Anosov representations for our pur-
poses is the one given in terms of singular values. We begin by recalling
this notion and we fix also some notations that we will use in the rest of
the paper.
Let τ be a q-dimensional subspace of Rd which is negative definite for

〈 · , · 〉p,q. Consider 〈 · , · 〉τ to be the inner product of Rd that coincides with
−〈 · , · 〉p,q (resp. 〈 · , · 〉p,q) on τ (resp. τ⊥p,q ) and for which τ and τ⊥p,q are
orthogonal. Given g in PSL(d,R), we let g∗τ to be the adjoint operator
with respect to 〈 · , · 〉τ . Set

aτ1(g) > · · · > aτd(g)

to be the logarithms of the eigenvalues of
√
g∗τ g repeated with multiplicity.

These are called the τ -singular values of g. Geometrically, they represent
the (logarithms of the) lengths of the semi axes of the ellipsoid which is the
image by g of the unit sphere

Sd−1
τ := {x ∈ Rd : 〈x, x〉τ = 1}.

Let i = 1, . . . , d− 1. Given an element g in PSL(d,R) such that aτi (g) >
aτi+1(g) we denote by Ui(g) the i-dimensional subspace of Rd spanned by
the i biggest axes of g · Sd−1

τ . We also set

Sd−i(g) := Ud−i(g−1).

Remark 5.1. — Let ε > 0. It follows from Singular Value Decomposition
(see Horn–Johnson [23, Section 7.3 of Chapter 7]), that there exists L > 0
such that for every g in PSL(d,R) satisfying aτ1(g)− aτ2(g) > L one has

g ·Bε(Sd−1(g)) ⊂ bε(U1(g)),

where Bε(Sd−1(g)) and bε(U1(g)) are defined as in Subsection 4.1.
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5.2. The definition of projective Anosov representations

A lot of work has been done in order to simplify the original defini-
tion of Anosov representations, here we follow mainly the work of Bochi–
Potrie–Sambarino [6] (see also Guichard–Guéritaud–Kassel–Wienhard [20]
or Kapovich–Leeb–Porti [24]).

Fix τ as in the previous subsection and let Γ be a finitely generated group.
Consider a finite symmetric generating set S of Γ and take | · |Γ to be the
associated word length: for γ in Γ, it is the minimum number required to
write γ as a product of elements of S(9). Let ρ : Γ −→ PSL (d,R) be a
representation. We say that ρ is projective Anosov if there exist positive
constants C and α such that for all γ ∈ Γ one has

(5.1) aτ1(ρ(γ))− aτ2(ρ(γ)) > α|γ|Γ − C.

By Kapovich–Leeb–Porti [25, Theorem 1.4] (see also [6, Section 3]), condi-
tion (5.1) implies that Γ is word hyperbolic(10). We assume in this paper
that Γ is non elementary. Let ∂∞Γ be the Gromov boundary of Γ and ΓH
be the set of infinite order elements in Γ. Every γ in ΓH has exactly two
fixed points in ∂∞Γ: the attractive one denoted by γ+ and the repelling
one denoted by γ−. The dynamics of γ on ∂∞Γ is of type north-south.

Fix ρ : Γ −→ PSL(d,R) a projective Anosov representation. By [6, 20, 24]
we know that there exist continuous equivariant maps

ξ : ∂∞Γ −→ P(Rd) and η : ∂∞Γ −→ Grd−1(Rd)

which are transverse, i.e. for every x 6= y in ∂∞Γ one has

(5.2) ξ(x)⊕ η(y) = Rd.

One can see that condition (5.1) implies that for every γ in ΓH the matrix
ρ(γ) is proximal. Equivariance of ξ and η implies that

ξ(γ+) = ρ(γ)+ and η(γ+) = ρ(γ−1)−.

It follows that both ξ and η are homeomorphisms onto their images. In
fact, these homeomorphisms are Hölder (see Bridgeman–Canary–Labourie–
Sambarino [10, Lemma 2.5]).
We denote by Λρ(Γ) ⊂ P(Rd) the image of ξ, which is called the limit

set of ρ(Γ): it is the closure of the set of attractive fixed points in P(Rd)

(9)This number depends on the choice of S. However, the set S will be fixed from now
on hence we do not emphasize the dependence on this choice in the notation.
(10)We refer the reader to the book of Ghys–de la Harpe [17] for definitions and standard
facts on word hyperbolic groups.
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of proximal elements in ρ(Γ). The image of η is called the dual limit set
of ρ(Γ).
Here is another characterization of the limit sets which is very useful.

An explicit reference is [20, Theorem 5.3] (it can also be deduced from [6,
Subsection 3.4]). Let d = dτ (resp. d∗ = d∗τ ) be the distance on P(Rd) (resp.
P((Rd)∗)) associated to 〈 · , · 〉τ .

Proposition 5.2. — Let ρ : Γ −→ PSL(d,R) be a projective Anosov
representation. Then ξ(∂∞Γ) (resp. η(∂∞Γ)) equals the set of accumulation
points of sequences {U1(ρ(γn))}n (resp. {Sd−1(ρ(γn))}n) where γn −→∞.
Moreover, given a positive ε there exists L > 0 such that for every γ in ΓH
with |γ|Γ > L one has

d(U1(ρ(γ)), ρ(γ)+) < ε and d∗(Sd−1(ρ(γ)), ρ(γ)−) < ε.

We are interested in projective Anosov representations whose image is
contained in G = PSO(p, q). The following remark is then important for
our purposes.

Remark 5.3. — Let ρ : Γ −→ PSL(d,R) be a projective Anosov repre-
sentation. If ρ(Γ) is contained in G we say that ρ is P p,q1 -Anosov (recall
that P p,q1 denotes the (parabolic) subgroup of G stabilizing an isotropic
line). In this case, the image of ξ is contained in ∂Hp,q−1 and the dual map
η equals ξ⊥p,q .

5.3. Proximality properties

The following lemma will be useful in the next section.

Lemma 5.4 (cf. [50, Lemma 5.7]). — Let ρ : Γ −→ PSL(d,R) be a
projective Anosov representation and 0 < ε 6 r. Then

#{γ ∈ ΓH : d(ρ(γ)+, ρ(γ)−) > 2r and ρ(γ) is not (r, ε)-proximal} <∞.

Proof. — Consider a sequence γn −→ ∞ in ΓH such that d(ρ(γn)+,

ρ(γn)−) > 2r for all n. By Proposition 5.2 for every n big enough the
following holds

b ε
2
(U1(ρ(γn))) ⊂ bε(ρ(γn)+)

and
Bε(ρ(γn)−) ⊂ B ε

2
(Sd−1(ρ(γn))).

By Remark 5.1 and (5.1) the condition ρ(γn) ·Bε(ρ(γn)−) ⊂ bε(ρ(γn)+) is
satisfied for sufficiently large n. �
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6. The set ΩΩΩρ

Let ρ : Γ −→ G be a P p,q1 -Anosov representation and define

ΩΩΩρ := {o ∈ Hp,q−1 : Jo · ξ(x) /∈ η(x) for all x ∈ ∂∞Γ}.

This section is structured as follows. In Subsection 6.1 we prove that the
action of Γ on ΩΩΩρ is properly discontinuous. Moreover, we show that if o
is a point in ΩΩΩρ then the geodesic connecting o with ρ(γ) · o is space-like
(apart from possibly finitely many exceptions γ ∈ Γ). In Subsection 6.2
we study the matrices Joρ(γ)Joρ(γ−1) for a point o in ΩΩΩρ: we apply to
them Benoist’s work on proximality. Finiteness of our counting functions is
proved in Subsection 6.3. Finally, in Subsection 6.4 we prove a proposition
that will be needed in the proof of Proposition 7.11.
Before we start, let us discuss some examples for which ΩΩΩρ is non empty.

From Proposition 2.6 we know that the following alternative description of
ΩΩΩρ holds

ΩΩΩρ = {o = [ô] ∈ Hp,q−1 : 〈ô, ξ̂〉p,q 6= 0 for all ξ = [ξ̂] ∈ Λρ(Γ)}.

We have the following important example.

Example 6.1.
• Let Γ be the fundamental group of a convex co-compact hyperbolic
manifold of dimension m > 2 and ι0 : Γ −→ SO(m, 1) be the holo-
nomy representation. Fix p > m and q > 2. Consider the embedding
Rm,1 ↪→ Rp,q given by

Rm,1 ∼= span{ep−m+1, . . . , ep+1},

where ei is the vector of Rd with all entries equal to zero except
for the i-th entry which is equal to one. This induces a projection
j : SO(m, 1) −→ G and a representation ρ0 : Γ −→ G defined by

ρ0 := j ◦ ι0.

Thus ρ0 is P p,q1 -Anosov, because ι0 is Pm,11 -Anosov. The set ΩΩΩρ0 is
non empty: every point o ∈ Hp,q−1 for which the subspace

span{o, ep+2, . . . , ed}

has signature (0, q) belongs to ΩΩΩρ0 . Since the condition of being
Anosov is open in the space of representations of Γ into G and
the limit map ξ varies continuously with the representation (see
Guichard–Wienhard [21, Theorem 5.13]), we obtain that if ρ is a
small deformation of ρ0 then ΩΩΩρ is non empty.
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• The previous example generalizes to a large class of representa-
tions introduced by Danciger–Guéritaud–Kassel in [14, 13] called
Hp,q−1-convex co-compact(11). Let Γ < G be a Hp,q−1-convex co-
compact group and ρ : Γ −→ G be the inclusion representation,
which is P p,q1 -Anosov as proved in [13, Theorem 1.25]. Let Ω be
a non empty Γ-invariant properly convex open subset of Hp,q−1.
By [13, Proposition 4.5], Ω is contained in ΩΩΩρ.

• There exist examples of P p,q1 -Anosov representations ρ whose im-
age is not Hp,q−1-convex co-compact but satisfy ΩΩΩρ 6= ∅ (see [14,
Examples 5.2 & 5.3]).

6.1. Dynamics on ΩΩΩρ

Observe that ΩΩΩρ is Γ-invariant. The following proposition is well-known,
we include a proof for completeness.

Proposition 6.2. — Let ρ : Γ −→ G be a P p,q1 -Anosov representation.
Then the action of Γ on ΩΩΩρ is properly discontinuous, that is, for every
compact set C ⊂ ΩΩΩρ one has

# {γ ∈ Γ : ρ(γ) · C ∩ C 6= ∅} <∞.

Moreover, for any point o in ΩΩΩρ the set of accumulation points of ρ(Γ) · o
in Hp,q−1 ∪ ∂Hp,q−1 coincides with the limit set Λρ(Γ).

Proof. — Let C ⊂ ΩΩΩρ be a compact set and fix a norm on Rd. By defi-
nition of ΩΩΩρ we can take a positive ε such that

C ∩
⋃

x∈∂∞Γ
bε(ξ(x)) = ∅ and C ⊂

⋂
x∈∂∞Γ

Bε(η(x)).

By Proposition 5.2, Remark 5.1 and (5.1) we know that, apart from
possibly finitely many exceptions γ in Γ, the following holds:

b ε
2
(U1(ρ(γ))) ⊂

⋃
x∈∂∞Γ

bε(ξ(x)),

⋂
x∈∂∞Γ

Bε(η(x)) ⊂ B ε
2
(Sd−1(ρ(γ)))

(11)These are inclusion representations induced by taking an infinite discrete subgroup
Γ < G which preserves some properly convex non empty open set Ω ⊂ P(Rd) whose
boundary is strictly convex and of class C1. One requires that Γ preserves some distin-
guished non empty convex subset of Ω on which the action is co-compact (see [13, 14]
for precisions).
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and
ρ(γ) ·B ε

2
(Sd−1(ρ(γ))) ⊂ b ε

2
(U1(ρ(γ))).

For these γ we have then that ρ(γ) ·C is contained in the ε-neighbourhood
of Λρ(Γ) and thus is disjoint from C.

We have shown that the action of Γ on ΩΩΩρ is properly discontinuous and
that for any point o in ΩΩΩρ the accumulation points of ρ(Γ) · o belong to
Λρ(Γ). Conversely, the Γ-orbit of any point in Λρ(Γ) is dense in the limit set
and now the proof is complete. �

Let o ∈ ΩΩΩρ and recall the notations introduced in Subsection 2.2.2. Given
an open set W ⊂ ∂Hp,q−1 disjoint from C 0

o ∩ ∂Hp,q−1 we denote by C>W
o

the subset of C>
o consisting of points o′ such that the (space-like) geodesic

ray connecting o with o′ has its end point in W .
The following corollary has been proved by Glorieux–Monclair [18] for

Hp,q−1-convex co-compact groups.

Corollary 6.3. — Let ρ : Γ −→ G be a P p,q1 -Anosov representation,
a point o ∈ ΩΩΩρ and W ⊂ ∂Hp,q−1 an open set containing Λρ(Γ) with
closure disjoint from C 0

o ∩∂Hp,q−1. Then apart from possibly finitely many
exceptions γ in Γ one has ρ(γ) ·o ∈ C>W

o . In particular the geodesic joining
o with ρ(γ) · o is space-like.

Proof. — Let C be the closure of Hp,q−1\C>W
o in Hp,q−1∪∂Hp,q−1. Note

that C is compact and by Proposition 6.2 does not contain accumulation
points of ρ(Γ) · o, hence ρ(Γ) · o ∩ C is finite. Since γ 7→ ρ(γ) · o is proper
the proof is complete. �

6.2. Proximality of Joρ(γ)Joρ(γ−1)

For the rest of the section we fix a P p,q1 -Anosov representation ρ : Γ −→
G, a point o ∈ ΩΩΩρ and a Cartan involution τ ∈ So.

The next lemma is a direct consequence of Proposition 5.2, transversality
condition (5.2) and the definition of ΩΩΩρ.

Lemma 6.4. — Let dτ be the distance on P(Rd) induced by the norm
‖ · ‖τ . There exists a positive constant D such that

#{γ ∈ Γ : dτ (Jo · U1(ρ(γ)), Sd−1(ρ(γ−1))) < D} <∞.

Lemma 6.5. — There exist 0 < ε 6 r such that, apart from possi-
bly finitely many exceptions γ ∈ Γ, the matrix Joρ(γ)Joρ(γ−1) is (r, ε)-
proximal.
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Proof. — We apply a ping-pong argument together with Lemma 4.3. By
Lemma 6.4 we can take a positive constant r and a finite subset F ⊂ Γ
such that for every γ ∈ Γ \ F one has

(6.1) dτ (Jo · U1(ρ(γ)), Sd−1(ρ(γ−1))) > 6r.

Take 0 < ε 6 r such that for every γ ∈ Γ \ F one has

bε(Jo · U1(ρ(γ))) ⊂ Bε(Sd−1(ρ(γ−1))).

By Remark 3.2 the matrix Jo preserves dτ thus

Jo · bε(U1(ρ(γ))) ⊂ Bε(Sd−1(ρ(γ−1))).

By taking F larger if necessary we have that

ρ(γ−1) ·Bε(Sd−1(ρ(γ−1))) ⊂ bε(U1(ρ(γ−1)))

holds for every γ in Γ \ F . It follows that

Joρ(γ−1) ·Bε(Sd−1(ρ(γ−1))) ⊂ Bε(Sd−1(ρ(γ)))

and applying ρ(γ) we obtain

ρ(γ)Joρ(γ−1) ·Bε(Sd−1(ρ(γ−1))) ⊂ bε(U1(ρ(γ))).

Then

Joρ(γ)Joρ(γ−1) ·Bε(Sd−1(ρ(γ−1))) ⊂ bε(Jo · U1(ρ(γ))).

By (6.1) and Lemma 4.3 the proof is finished. �

The following is a strengthening of Lemma 6.5. It provides a link be-
tween the generalized Cartan projections bo and bτ and the spectral radii
of proximal elements in ρ(Γ). For the remainder of the section we fix a
maximal subalgebra b ⊂ pτ ∩ qo and a closed Weyl chamber b+.

Lemma 6.6. — Fix any δ > 0 and A and B two compact disjoint sets
in ∂∞Γ. Then there exist 0 < ε 6 r such that, apart from possibly finitely
many exceptions γ ∈ ΓH with γ− ∈ A and γ+ ∈ B, the following holds:

(1) The matrices Joρ(γ)Jo and ρ(γ−1) are (r, ε)-proximal.
(2) dτ (Jo · ρ(γ)+, ρ(γ−1)−) > 6r and dτ (ρ(γ−1)+, J

o · ρ(γ)−) > 6r.
(3) dτ ((Joρ(γ)Jo)+, ρ(γ−1)−)>6r and dτ (ρ(γ−1)+, (Joρ(γ)Jo)−)>6r.
(4) The matrix ρ(γ) belongs to C>

o,G and the number

2
(
|bo(ρ(γ))| 12 − λ1(ρ(γ))

)
is at distance at most 2δ from

B(Jo · ρ(γ)−, Jo · ρ(γ)+, ρ(γ−1)−, ρ(γ−1)+).
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(5) The number

2
(
|bτ (ρ(γ))| 12 − λ1(ρ(γ))

)
is at distance at most 2δ from

B(Jo · ρ(γ)−, Jo · ρ(γ)+, ρ(γ−1)−, ρ(γ−1)+)− Gτ (ρ(γ−1)−, Jo · ρ(γ)+).

Proof. — By transversality condition (5.2) there exists r > 0 such that

(6.2) dτ (ξ(x), η(y)) > 2r and dτ (ξ(y), η(x)) > 2r

for all (x, y) ∈ A×B. Further, since o ∈ ΩΩΩρ we may assume

(6.3) dτ (Jo · ξ(x), η(x)) > 6r

for all x ∈ ∂∞Γ. Given these r > 0 and 2δ > 0, we consider ε > 0 as in
Benoist’s Theorem 4.6.
By Lemma 5.4 there exists a finite subset F of ΓH outside of which ele-

ments satisfying dτ (ρ(γ)+, ρ(γ)−) > 2r are (r, ε)-proximal. Thanks to (6.2),
for all γ ∈ ΓH \ F with γ− ∈ A and γ+ ∈ B one has that ρ(γ±1) is
(r, ε)-proximal. Moreover, since Jo = (Jo)−1 preserves ‖ · ‖τ we have that
Joρ(γ)Jo is (r, ε)-proximal with (Joρ(γ)Jo)± = Jo ·ρ(γ)±. In fact, by (6.3)
we have

dτ (Jo · ρ(γ)+, ρ(γ−1)−) > 6r and dτ (ρ(γ−1)+, J
o · ρ(γ)−) > 6r.

Thanks to Proposition 3.10 (and Corollary 6.3), Proposition 3.6, Theo-
rem 4.6 and the fact that λ1(ρ(γ−1)) equals λ1(ρ(γ)) for all γ, the proof is
finished. �

6.3. The orbital counting functions of Theorems 1.3 and 1.4

Proposition 6.7. — For every t > 0 one has

#
{
γ ∈ Γ : |bτ (ρ(γ))| 12 6 t

}
<∞.

Proof. — By Remark 3.4 the map bτ descends to a proper map in
Hp,q−1 ∼= G/Ho, that we still denote by bτ . Hence

C := {o′ ∈ Hp,q−1 : |bτ (o′)| 6 t2}

is compact. By Proposition 6.2, apart from possibly finitely many excep-
tions γ in Γ, we have that ρ(γ) · o does not belong to C. �

The next proposition follows from a combination of Propositions 3.10
and 3.6, Lemmas 6.5 and 4.2, and the previous proposition.
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Proposition 6.8. — For every t > 0 one has

#
{
γ ∈ Γ : ρ(γ) ∈ C>

o,G and |bo(ρ(γ))| 12 6 t
}
<∞.

Remark 6.9. — Assume that ρ is Hp,q−1-convex co-compact and the
basepoint o belongs to the convex hull of the limit set of ρ. By Corollary 6.3
and Proposition 3.8 we have that

lim sup
t−→∞

log #{γ ∈ Γ : ρ(γ) ∈ C>
o,G and |bo(ρ(γ))| 12 6 t}
t

coincides with

lim sup
t−→∞

log #{γ ∈ Γ : dHp,q−1(o, ρ(γ) · o) 6 t}
t

,

where dHp,q−1 is the Hp,q−1-distance introduced in [18].

6.4. Weak triangle inequality

The following proposition is inspired by [18, Theorem 3.5].

Proposition 6.10. — There exists a constant L > 0 such that for every
f ∈ Γ there exists Df > 0 with the following property: for every γ ∈ Γ
with |γ|Γ > L one has

1
2λ1(Joρ(f)ρ(γ)Joρ(γ−1)ρ(f−1)) 6 Df + 1

2λ1(Joρ(γ)Joρ(γ−1)).

We can think about the content of Proposition 6.10 as follows. Fix f ∈ Γ
such that ρ(f) ∈ C>

o,G. By Corollary 6.3 for every γ with |γ|Γ large enough
one has ρ(γ) ∈ C>

o,G and ρ(f)ρ(γ) ∈ C>
o,G. Thanks to Proposition 3.8

and Proposition 3.10, the inequality established in Proposition 6.10 can be
stated as

`o,ρ(f)ρ(γ)·o 6 Df + `ρ(f)·o,ρ(f)ρ(γ)·o,

where the constant Df depends on the choice of o and f (and ρ) but not
on the choice of γ. Even though the function ` · ,· is not a distance, we can
heuristically think about Df as the term that replaces `o,ρ(f)·o in the usual
triangle inequality for distances.
Proof of Proposition 6.10. — Take 0 < ε 6 r as in Lemma 6.5. Let

L > 0 such that for every γ in Γ with |γ|Γ > L the matrix Joρ(γ)Joρ(γ−1)
is (r, ε)-proximal. Fix f ∈ Γ and let γ be a element in Γ with |γ|Γ > L.
We have
1
2λ1(Joρ(f)ρ(γ)Joρ(γ−1)ρ(f−1)) 6 1

2 log ‖Joρ(f)ρ(γ)Joρ(γ−1)ρ(f−1)‖τ .
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By Remark 3.2 the right side number equals
1
2 log ‖ρ(f)ρ(γ)Joρ(γ−1)ρ(f−1)‖τ

which is less than or equal to

D′f + 1
2 log ‖Joρ(γ)Joρ(γ−1)‖τ

where D′f := 1
2 log ‖ρ(f)‖τ + 1

2 log ‖ρ(f−1)‖τ . Since Joρ(γ)Joρ(γ−1) is
(r, ε)-proximal, we conclude by applying Lemma 4.2. �

7. Distribution of the orbit of o with respect to bo

In this section we prove Theorem 1.3. The section is structured as fol-
lows: in Subsection 7.1 we define a Hölder cocycle on ∂∞Γ and the corre-
sponding flow. In Subsection 7.2 we study the associated Gromov product.
Theorem 1.3 in the torsion free case (resp. general case) is proved in Sub-
section 7.3 (resp. Subsection 7.4).
For the rest of the section we fix ρ : Γ −→ G a P p,q1 -Anosov representation

and a point o in ΩΩΩρ.

7.1. The cocycle co

Observe that by definition of ΩΩΩρ and equivariance of the curves ξ and η
the following map is well-defined.

Definition 7.1. — Let

co : Γ× ∂∞Γ −→ R : co(γ, x) := 1
2 log

∣∣∣∣∣θx
(
ρ(γ−1)Joρ(γ) · vx

)
θx (Jo · vx)

∣∣∣∣∣ ,
where θx : Rd −→ R is a non-zero linear functional whose kernel equals
η(x) and vx 6= 0 belongs to ξ(x).

A geometric interpretation of the map co is provided by the following
remark. This characterization will not be used in the sequel.

Remark 7.2. — One can prove that for every γ ∈ Γ and x ∈ ∂∞Γ one
has

co(γ, x) = βξ(x)(ρ(γ−1) · o, o)
where β·( · , · ) is the pseudo-Riemannian Busemann function defined by
Glorieux–Monclair [18, Definition 3.8].
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Recall that a Hölder cocycle is a function c : Γ × ∂∞Γ −→ R satisfying
that for every γ0, γ1 in Γ and x ∈ ∂∞Γ one has

c(γ0γ1, x) = c(γ0, γ1 · x) + c(γ1, x)

and such that the map c(γ0, · ) is Hölder (with the same exponent for every
γ0). The period of (an infinite order element) γ ∈ ΓH is defined by `c(γ) :=
c(γ, γ+).

Lemma 7.3. — The map co is a Hölder cocycle. The period of γ ∈ ΓH
is given by

`co(γ) = λ1(ρ(γ)) > 0.

Proof. — A direct computation shows that co is a Hölder cocycle. On
the other hand let γ ∈ ΓH and fix a particular choice of a linear functional
θγ+ . Since λ1(ρ(γ)) = λ1(ρ(γ−1)) one sees that θγ+ ◦ (±ρ(γ−1)) coincides
with eλ1(ρ(γ))θγ+ up to a sign (here ±ρ(γ−1) denotes some lift of ρ(γ−1) to
SO(p, q)). The proof is now complete. �

Set ∂2
∞Γ := {(x, y) ∈ ∂∞Γ× ∂∞Γ : x 6= y} and consider the translation

flow on ∂2
∞Γ× R defined by

(7.1) ψt(x, y, s) := (x, y, s− t).

The group Γ acts on ∂2
∞Γ× R by

(7.2) γ · (x, y, s) := (γ · x, γ · y, s− co(γ, y)).

This action is proper and co-compact and we denote the quotient space
by UoΓ. The flow ψt descends to a flow on UoΓ, still denoted ψt, which
is a Hölder reparametrization of the Gromov geodesic flow of Γ [19]. This
is the analogue of Sambarino’s Theorem [50, Theorem 3.2(1)] (see also
Lemma A.7).
We say that an element γ in Γ is primitive if cannot be written as a

positive power of another element in Γ. Periodic orbits of ψt are in one-to-
one correspondence with conjugacy classes of primitive elements in Γ. If [γ]
is such a conjugacy class, the period of the corresponding periodic orbit is

`co(γ) = λ1(ρ(γ))

(see Fact A.1 and Lemma A.7). The topological entropy ofψt coincideswith
the entropy of ρ defined by Bridgeman–Canary–Labourie–Sambarino [10]:

hρ := lim sup
t−→∞

log #{[γ] ∈ [Γ] : γ is primitive and λ1(ρ(γ)) 6 t}
t

.

It is positive and finite (cf. Fact A.3) and will be denoted by h from now on.
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Remark 7.4. — One can prove that if we push all this construction by
the limit map ξ : ∂∞Γ −→ Λρ(Γ), we recover the geodesic flow defined
in [18, Subsection 6.1] for Hp,q−1-convex co-compact groups. This remark
will not be used in the sequel.

7.2. Dual cocycle and Gromov product

Thanks to transversality condition (5.2) and the fact that o belongs to
ΩΩΩρ the following map is well-defined.

Definition 7.5. — Let

[ · , · ]o : ∂2
∞Γ −→ R : [x, y]o := −1

2 log
∣∣∣∣θx (Jo · vx) θy (Jo · vy)

θx (vy) θy (vx)

∣∣∣∣ ,
where θx (resp. θy) is a non-zero linear functional whose kernel is η(x)
(resp. η(y)) and vx (resp. vy) is a non-zero vector in ξ(x) (resp. ξ(y)).

Remark 7.6. — The map [ · , · ]o coincides, up to a sign, with the Gromov
product introduced in [18, Subsection 3.5]. The authors give geometric
interpretations of this function using pseudo-Riemannian geometry.

Remark 7.7. — The cocycle co is dual to itself, i.e. `co(γ) = `co(γ−1)
for every γ ∈ ΓH. Indeed, this follows from Lemma 7.3 and the fact that
λ1(g) = λ1(g−1) for all g in G.

The proof of the following lemma is a direct computation.

Lemma 7.8. — The map [ · , · ]o is a Gromov product for the pair {co, co},
that is, for every γ ∈ Γ and every (x, y) ∈ ∂2

∞Γ one has

[γ · x, γ · y]o − [x, y]o = −(co(γ, x) + co(γ, y)).

The following lemma will be very important in the proof of Theorem 1.3.
It provides a geometric interpretation of the Gromov product different from
the one given in Remark 7.6.

Lemma 7.9. — Let γ be an element of ΓH. Then

[γ−, γ+]o = −1
2B(Jo · ρ(γ)−, Jo · ρ(γ)+, ρ(γ−1)−, ρ(γ−1)+).

Proof. — From Section 5 we know that ρ(γ±1) is proximal and that the
following holds:

ρ(γ)+ = ξ(γ+), ρ(γ−1)+ = ξ(γ−), ρ(γ)− = η(γ−), ρ(γ−1)− = η(γ+).
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Since Jo = (Jo)−1, the matrix Joρ(γ)Jo is proximal and one has the equal-
ities

(Joρ(γ)Jo)+ = Jo · ξ(γ+) and (Joρ(γ)Jo)− = Jo · η(γ−).

The proof finishes by a direct computation. �

7.3. Distribution of attractors and repellors with respect to bo

Recall that h = htop(ψt) and let µo be a Patterson–Sullivan probability
on ∂∞Γ associated to co, i.e. µo satisfies

dγ∗µo
dµo

(x) = e−hco(γ−1,x)

for every γ ∈ Γ. Such a probability exists (see Subsection A.2.2). By
Lemma 7.8 the measure

(7.3) e−h[ · ,· ]oµo ⊗ µo ⊗ dt

on ∂2
∞Γ×R is Γ-invariant and induces on the quotient UoΓ a ψt-invariant

measure. By Sambarino [50, Theorem 3.2(2)] this measure is, up to scaling,
the probability of maximal entropy of ψt (see Proposition A.12).
For a metric space X we denote by C∗c (X) the dual of the space of

compactly supported continuous real functions on X equipped with the
weak-star topology. If x is a point in X, let δx ∈ C∗c (X) be the Dirac mass
at x.

Proposition 7.10 (Sambarino [50, Proposition 4.3](12) ). — There ex-
ists a constant M = Mρ,o > 0 such that

Me−ht
∑

γ∈ΓH,`co (γ)6t

δγ− ⊗ δγ+ −→ e−h[ · ,· ]oµo ⊗ µo

as t −→∞ on C∗c (∂2
∞Γ).

From Proposition 7.10 we deduce Proposition 7.11 which directly implies
Theorem 1.3 in the torsion free case.

Fix a point τ ∈ So, a maximal subalgebra b ⊂ pτ ∩ qo and a closed Weyl
chamber b+ contained in b.

(12)For a proof in our setting see Proposition A.13.
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Proposition 7.11. — There exists a constantM = Mρ,o > 0 such that

Me−ht
∑

γ∈ΓH,|bo(ρ(γ))|
1
2 6t

δγ− ⊗ δγ+ −→ µo ⊗ µo

as t −→∞ on C∗(∂∞Γ× ∂∞Γ).

Recall that the generalized Cartan projection bo is defined in the set
C>
o,G. The sum in Proposition 7.11 is taken then over all elements γ ∈ ΓH

for which ρ(γ) ∈ C>
o,G and |bo(ρ(γ))| 12 6 t. To make the formula more

readable we do not emphasize the fact that ρ(γ) must belong to C>
o,G. On

the other hand, by Corollary 6.3 this condition holds apart from finitely
many exceptions γ ∈ Γ.
Proof of Proposition 7.11. — Set

θt := Me−ht
∑

γ∈ΓH,|bo(ρ(γ))|
1
2 6t

δγ− ⊗ δγ+ .

We first prove the statement outside the diagonal, that is, on subsets of
∂2
∞Γ. Let δ > 0 and A,B ⊂ ∂∞Γ disjoint open sets. Consider an element
γ ∈ ΓH such that γ− ∈ A and γ+ ∈ B and let s := [γ−, γ+]o. By taking A
and B smaller we may assume

(7.4) |[x, y]o − s| < δ

for all (x, y) ∈ A×B.
By Lemma 6.6, apart from possibly finitely many exceptions γ ∈ ΓH with

(γ−, γ+) ∈ A×B, the number∣∣∣∣|bo(ρ(γ))| 12 − λ1(ρ(γ))− 1
2B(Jo · ρ(γ)−, Jo · ρ(γ)+, ρ(γ−1)−, ρ(γ−1)+)

∣∣∣∣
is less than δ. Applying Lemma 7.3 and Lemma 7.9 we conclude that∣∣∣|bo(ρ(γ))| 12 − `co(γ) + [γ−, γ+]o

∣∣∣ < δ.

By (7.4) it follows that

`co(γ)− s− 2δ < |bo(ρ(γ))| 12 < `co(γ)− s+ 2δ

holds apart from finitely many exceptions γ ∈ ΓH such that γ− ∈ A and
γ+ ∈ B. From now on, the proof of the convergence

θt(A×B) −→ µo(A)µo(B)

follows line by line the proof of [50, Theorem 6.5].
It remains to prove the convergence in the diagonal {(x, x) : x ∈ ∂∞Γ},

but once again, the proof is the same as the one given in [50, Theorem 6.5].
For completeness we briefly sketch it.
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Since µo has no atoms (see Lemma A.10), for every γ in Γ the diagonal
has (µo ⊗ γ∗µo)-measure equal to zero. We fix two elements γ0, γ1 ∈ ΓH
with no common fixed point in ∂∞Γ and let ε0 > 0. There exists a finite
open covering U of ∂∞Γ such that for i = 0, 1 one has∑

U∈U

µo(U)µo(γ−1
i · U) < ε0.

We can assume that for every U ∈ U there exists i ∈ {0, 1} such that
γ−1
i · U is disjoint from U . There exists an open covering V of ∂∞Γ with

the following properties:
(1)

∑
V ∈V µo(V )µo(γ−1

i · V ) < ε0 for i = 0, 1.
(2) The closure of every element in U is contained in a unique element

of V and if γ−1
i ·U is disjoint from U the same holds for this element

in V .
(3) Suppose that γ−1

i ·U ∩U = ∅ and let V ∈ V be the unique element
such that U ⊂ V . Then apart from finitely many exceptions γ such
that γ± ∈ U one has (γ−1

i γ)− ∈ V and (γ−1
i γ)+ ∈ γ−1

i · V .
Set D := maxi=0,1{Dγ−1

i
} where Dγ−1

i
is the constant given by Proposi-

tion 6.10 and take U ∈ U as in (3). By Proposition 6.10 we have

θt(U × U) 6Me−ht
∑

γ∈ΓH,|bo(ρ(γ))|
1
2 6t+D

δγ−(V )δγ+(γ−1
i · V ) +Me−ht#F

where F is a finite set independent of t. Since V × γ−1
i · V is far from the

diagonal the right side converges to

eDµo(V )µo(γ−1
i · V )

as t −→∞. Adding up in U ∈ U we conclude

lim sup
t−→∞

∑
U∈U

θt(U × U) 6 2eDε0.

Hence θt({(x, x) : x ∈ ∂∞Γ}) converges to zero and since the diagonal has
measure zero for µo ⊗ µo the proof is finished. �

7.4. Proof of Theorem 1.3

The following is a corollary of Proposition 7.11.

Corollary 7.12. — There exists a constant M = Mρ,o > 0 such that

Me−ht
∑

γ∈ΓH,|bo(ρ(γ))|
1
2 6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o −→ η∗(µo)⊗ ξ∗(µo)
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on C∗(P((Rd)∗)× P(Rd)) as t −→∞.

Proof. — Set

νH
t := Me−ht

∑
γ∈ΓH,|bo(ρ(γ))|

1
2 6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o

and take θt the measure defined in the proof of Proposition 7.11. We know
that

(η, ξ)∗(θt) −→ η∗(µo)⊗ ξ∗(µo).
Hence we only have to show the following convergence

(7.5) νH
t − (η, ξ)∗(θt) −→ 0.

Take a small positive δ. By Proposition 5.2 and the proof of Proposi-
tion 6.2 we know that, apart from finitely many exceptions γ in ΓH, one
has

d(ρ(γ) · o, ρ(γ)+) < δ and d(ρ(γ−1) · o, ρ(γ−1)+) < δ.

By taking ·⊥p,q we can assume further that d∗(ρ(γ−1) ·o⊥p,q , ρ(γ)−) < δ.
Now the proof of (7.5) follows from evaluation on continuous functions of
P((Rd)∗)× P(Rd). �

We now include torsion elements to the previous statement and finish
the proof of Theorem 1.3.

Proposition 7.13. — There exists a constantM = Mρ,o > 0 such that

Me−ht
∑

γ∈Γ,|bo(ρ(γ))|
1
2 6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o −→ η∗(µo)⊗ ξ∗(µo)

on C∗(P((Rd)∗)× P(Rd)) as t −→∞.

Proof. — The structure of the proof is the same as that of Proposi-
tion 7.11, that is, we first prove the statement outside the diagonal and
deduce from that the statement on the diagonal. Here by diagonal we mean
the set

∆ := {(θ, v) ∈ P((Rd)∗)× P(Rd) : θ(v) = 0}.
Let

νt := Me−ht
∑

γ∈Γ,|bo(ρ(γ))|
1
2 6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o

and take νH
t as in the proof of Corollary 7.12.

Consider first a continuous function f on P((Rd)∗)×P(Rd) whose support
supp(f) is disjoint from ∆. We prove the following.
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Lemma 7.14. — One has

#{γ ∈ Γ : (ρ(γ−1) · o⊥p,q , ρ(γ) · o) ∈ supp(f) and γ /∈ ΓH} <∞.

Proof of Lemma 7.14. — Fix a positive D such that for every (θ, v) ∈
supp(f) one has d(θ, v) > D. As we saw in the proof of Proposition 6.2,
the distances

d(ρ(γ) · o, U1(ρ(γ))) and d∗(ρ(γ−1) · o⊥p,q , Sd−1(ρ(γ)))

converge to zero as γ −→∞. We conclude that, apart from possibly finitely
many exceptions γ in Γ with (ρ(γ−1) · o⊥p,q , ρ(γ) · o) ∈ supp(f), one has

d(U1(ρ(γ)), Sd−1(ρ(γ))) > D.

Now apply (5.1), Remark 5.1 and Benoist’s Lemma 4.3 to conclude that
for |γ|Γ large enough the matrix ρ(γ) is proximal. �

From Lemma 7.14 we conclude that

lim
t−→∞

νt(f) = lim
t−→∞

νH
t (f)

which by Corollary 7.12 equals (η∗(µo)⊗ ξ∗(µo))(f).
It remains to prove the convergence on the diagonal. It suffices to prove

that for every positive ε0 there exists an open covering {U∗×U} of ∆ such
that

lim sup
t−→∞

νt

(⋃
(U∗ × U)

)
6 ε0.

The proof is the same as in Proposition 7.11. Namely, take two elements
γ0, γ1 in ΓH with no common fixed point in ∂∞Γ and a coverings U =
{U∗×U} and V = {V ∗×V } of ∆ by open sets with the following properties:

(1) For every U∗ × U in U there exists i = 0, 1 such that ρ(γ−1
i ) · U is

transverse to U∗.
(2)

∑
V ∗×V ∈V (η∗(µo)⊗ ξ∗(µo))(V ∗ × ρ(γ−1

i ) · V ) < ε0 for i = 0, 1.
(3) The closure of every element in U is contained in a unique element

of V and if ρ(γ−1
i ) · U is transverse to U∗ the same holds for this

element in V .
(4) Suppose that ρ(γ−1

i ) · U is transverse to U∗ and let V ∗ × V ∈ V

be the unique element such that U ⊂ V and U∗ ⊂ V ∗. Then, apart
from possibly finitely many exceptions γ such that

(ρ(γ−1) · o⊥p,q , ρ(γ) · o) ∈ U∗ × U,

one has

(ρ((γ−1
i γ)−1) · o⊥p,q , ρ(γ−1

i γ) · o) ∈ V ∗ × ρ(γ−1
i ) · V.
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Provided with this construction, the proof finishes in the same way as
that of Proposition 7.11. �

Remark 7.15. — From Proposition 7.13 we deduce that

lim
t−→∞

log #{γ ∈ Γ : ρ(γ) ∈ C>
o,G and |bo(ρ(γ))| 12 6 t}
t

coincides with the entropy h = hρ of ρ.

8. Distribution of the orbit of o with respect to bτ

The proof of Theorem 1.4 follows the same lines of the proof of Theo-
rem 1.3, we just have to pick a (slightly) different flow ψt.

Fix a P p,q1 -Anosov representation ρ : Γ −→ G, a point o in ΩΩΩρ and
τ ∈ So.

8.1. The cocycle cτ

Let ‖ · ‖τ be the norm introduced in Subsection 5.1.

Definition 8.1. — Let

cτ : Γ× ∂∞Γ −→ R : cτ (γ, x) := 1
2 log

(
‖ρ(γ) · θx‖τ‖ρ(γ) · vx‖τ

‖θx‖τ‖vx‖τ

)
where θx : Rd −→ R is a non-zero linear functional whose kernel equals
η(x) and vx 6= 0 belongs to ξ(x).

Remark 8.2. — One can prove that for every γ ∈ Γ and x ∈ ∂∞Γ one
has

cτ (γ, x) = log ‖ρ(γ) · vx‖τ
‖vx‖τ

,

that is, cτ coincides with the map β1( · , · ) of [50, Section 5]. This remark
will not be used in the sequel.

The following lemma holds by straightforward computations.

Lemma 8.3. — The function cτ is a Hölder cocycle. The period of γ in
ΓH is given by

`cτ (γ) = λ1(ρ(γ)) > 0.

The quotient space of ∂2
∞Γ × R by the action of Γ induced by cτ will

be denoted by UτΓ. It is equipped with a flow that lifts to the translation
flow (7.1) on ∂2

∞Γ× R.
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8.2. Dual cocycle and Gromov product

Definition 8.4. — Let

[ · , · ]τ : ∂2
∞Γ −→ R : [x, y]τ := 1

2 log
∣∣∣∣ θy (vx) θx (vy)
θx (Jo · vx) ‖θy‖τ‖vy‖τ

∣∣∣∣ .
Remark 8.5. — Recall that co is the cocycle defined in Section 7. The

cocycle cτ is dual to co, i.e. `co(γ) = `cτ (γ−1) for every γ ∈ ΓH.

The proof of the following lemma is a direct computation.

Lemma 8.6. — For every γ ∈ Γ and every (x, y) ∈ ∂2
∞Γ one has

[γ · x, γ · y]τ − [x, y]τ = −(co(γ, x) + cτ (γ, y)).

Lemma 8.7. — Let γ be an element of ΓH. Then the number [γ−, γ+]τ
equals

−1
2B(Jo · ρ(γ)−, Jo · ρ(γ)+, ρ(γ−1)−, ρ(γ−1)+) + 1

2Gτ (ρ(γ−1)−, Jo · ρ(γ)+).

Proof. — Recall the definition of [ · , · ]o from Subsection 7.2. One has

[γ−, γ+]τ = [γ−, γ+]o + 1
2 log

∣∣θγ+(Jo · vγ+)
∣∣

‖θγ+‖τ‖vγ+‖τ
.

The proof then follows from Lemma 7.9 and Remark 3.2. �

8.3. Distribution of attractors and repellors with respect to bτ

Let µτ be a Patterson–Sullivan probability on ∂∞Γ associated to cτ and
recall that µo is the one associated to co. The analogue of Proposition 7.10
is available for the flow on UτΓ. The limit measure can be written in this
case as(13)

e−h[ · ,· ]τµo ⊗ µτ .
Let b+ be a closed Weyl chamber of a maximal subalgebra b ⊂ pτ ∩ qo.

Proposition 8.8. — There exists a constant M ′ = M ′ρ,τ > 0 such that

M ′e−ht
∑

γ∈ΓH,|bτ (ρ(γ))|
1
2 6t

δγ− ⊗ δγ+ −→ µo ⊗ µτ

as t −→∞ on C∗(∂∞Γ× ∂∞Γ).

Proof. — The proof is the same that the one given in Proposition 7.11
adapted to the pair {co, cτ} and the Gromov product [ · , · ]τ : apply Lem-
ma 6.6(5) and Lemma 8.7. �

(13)For a proof, see Remark A.14.
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8.4. Proof of Theorem 1.4

The following proposition, which implies Theorem 1.4, can be proved in
the same way as Proposition 7.13.

Proposition 8.9. — There exists a constant M ′ = M ′ρ,τ > 0 such that

M ′e−ht
∑

γ∈Γ,|bτ (ρ(γ))|
1
2 6t

δρ(γ−1)·o⊥p,q ⊗ δρ(γ)·o −→ η∗(µo)⊗ ξ∗(µτ )

on C∗(P((Rd)∗)× P(Rd)) as t −→∞.

Appendix A.
Distribution of periodic orbits in UoΓ and UτΓ

The goal of this appendix is to describe the distribution of periodic
orbits of the flows defined in Sections 7 and 8 (Proposition A.13 and
Remark A.14). For the case on which Γ is the fundamental group of a
closed negatively curved manifold, this result is covered by [50, Proposi-
tion 4.3]. Here we treat the case of word hyperbolic groups admitting an
Anosov representation.
In [50, Proposition 4.3] the author applies the thermodynamic formalism

to reparametrizations of the geodesic flow of the manifold. Here we benefit
from the fact that a projective Anosov representation ρ is given and use the
geodesic flow of ρ, introduced by Bridgeman–Canary–Labourie–Sambarino
in [10], as a reference flow. This is a canonical flow associated to a projective
Anosov representation and we show that it is Hölder conjugate to the flows
on the spaces UoΓ and UτΓ. Since the techniques of the thermodynamic
formalism are available for the geodesic flow of the representation (see [10,
12]), the adaptations needed in our context are straightforward.
The appendix is structured as follows. In Subsection A.1 we recall the

definition of the geodesic flow of a representation and its main properties.
We are interested in two descriptions of its probability of maximal entropy
(Facts A.3 and A.6). In Subsection A.2 we translate these results to the
flows on UoΓ and UτΓ.

A.1. The geodesic flow UρΓ

We fix from now on a projective Anosov representation ρ : Γ −→ G.
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A.1.1. Definition and the metric Anosov property

The standard reference for this subsection is [10]. Given (x, y) ∈ ∂2
∞Γ let

M(x, y) := {(θ, v) ∈ η(x)× ξ(y) : θ(v) = 1}/ ∼

where (θ, v) ∼ (−θ,−v). Consider the line bundle over ∂2
∞Γ defined by

Fρ := {(x, y, θ, v) : (x, y) ∈ ∂2
∞Γ and (θ, v) ∈ M(x, y)}.

Fact A.1 (Bridgeman–Canary–Labourie–Sambarino [10, Sections 4–5]).
The following holds:

• The group Γ acts naturally on Fρ and this action is proper and
co-compact. The quotient space is denoted by UρΓ.

• The flow φt on Fρ defined by

φt(x, y, θ, v) := (x, y, e−tθ, etv)

descends to a flow on UρΓ, still denoted by φt, and called the ge-
odesic flow of ρ. The geodesic flow of ρ is conjugate, by a Hölder
homeomorphism, to a Hölder reparametrization of the Gromov ge-
odesic flow of Γ (see Mineyev [37]).

• Periodic orbits of φt are in one-to-one correspondence with conju-
gacy classes of primitive elements γ in Γ. The corresponding period
is λ1(ρ(γ)).

• The geodesic flow φt is a transitive metric Anosov flow. Very infor-
mally, this means that there exists laminationsW ss,Wuu,W cs and
W cu of UρΓ, called respectively strong stable lamination, strong
unstable lamination, central stable lamination and central unstable
lamination, defining a local product structure and with the property
thatW ss (resp.Wuu) is exponentially contracted by the flow (resp.
the inverse flow). For precise definitions see [10, Subsection 3.2].

Explicitly, for a point Z0 = (x0, y0, θ0, v0) in UρΓ the strong
stable and strong unstable leaves through Z0 are given by:

W ss(Z0) = {(x, y0, θ, v0) ∈ UρΓ : θ ∈ η(x) and θ(v0) = 1}

and

Wuu(Z0) = {(x0, y, θ0, v) ∈ UρΓ : v ∈ ξ(y) and θ0(v) = 1}.

The central stable and central unstable leaves are given by:

W cs(Z0) = {(x, y0, θ, v) ∈ UρΓ : θ ∈ η(x), v ∈ ξ(y0) and θ(v) = 1}

and

W cu(Z0) = {(x0, y, θ, v) ∈ UρΓ : θ ∈ η(x0), v ∈ ξ(y) and θ(v) = 1}.
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A.1.2. Entropy and distribution of periodic orbits

A flow is said to be topologically weakly-mixing if all the periods of its
periodic orbits are not multiple of a common constant.

Proposition A.2. — The geodesic flow of ρ is topologically weakly-
mixing.

Before proving Proposition A.2 let us state the main result of this sub-
section. Indeed, the following fact is a consequence of the existence of a
strong Markov coding for φt (see [10, 12]) together with the weak-mixing
property. For Axiom A flows it was originally proved by Bowen [8] (the
counting result is due to Parry–Pollicott [42]). In order to obtain it in our
more general context, we need to apply Pollicott’s work [46, Subsection 3.5].

Fact A.3. — The following holds:
• The topological entropy of φt is positive and finite. It is given by

lim sup
t−→∞

log #{[γ] ∈ [Γ] : γ is primitive and λ1(ρ(γ)) 6 t}
t

and it is denoted by h = hρ.
• As t −→∞, one has

hte−ht#{[γ] ∈ [Γ] : γ is primitive and λ1(ρ(γ)) 6 t} −→ 1.

• There exists a unique probability m = mρ of maximal entropy for
φt, called the emphBowen–Margulis probability.

• Periodic orbits become equidistributed with respect to m: if Leb[γ]
denotes the Lebesgue measure of length λ1(ρ(γ)) supported on the
periodic orbit [γ], then

hte−ht
∑ 1

λ1(ρ(γ))Leb[γ] −→ m

in the weak-star topology as t −→ ∞. Here the sum is taken over
all conjugacy classes of primitive elements γ such that λ1(ρ(γ)) 6 t.

We finish this subsection with an elementary proof of Proposition A.2
inspired by the work of Benoist [4].

Proof of Proposition A.2. — Suppose by contradiction that φt is not
topologically weakly-mixing. By Fact A.1 this implies that there exists a
constant a > 0 such that the group spanned by the set {λ1(ρ(γ))}γ∈Γ is
contained in aZ.
Set

∂4
∞Γ := {(x1, x2, x3, x4) ∈ (∂∞Γ)4 : (xi, xj) ∈ ∂2

∞Γ for all i 6= j}.
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Since {(γ−, γ+)}γ∈ΓH is dense in ∂2
∞Γ (see Gromov [19, Corollary 8.2.G]),

Benoist’s Theorem 4.6 implies that

(A.1) {B(η(x′), ξ(y′), η(x), ξ(y)) : (x′, y′, x, y) ∈ ∂4
∞Γ} ⊂ aZ.

Fix three different points x′, y′ and y in ∂∞Γ. Transversality condi-
tion (5.2) and the definition of the cross-ratio implies the following: for
every x ∈ ∂∞Γ such that (x′, y′, x, y) ∈ ∂4

∞Γ there exists a neighbourhood
V of x and a point ξx,y,y′ in the projective line ξ(y)⊕ ξ(y′) such that

(A.2) η(x̃) ∩ (ξ(y)⊕ ξ(y′)) = {ξx,y,y′}

holds for every x̃ ∈ V . We have the following.

Lemma A.4. — Assume that (A.2) holds. Then the limit set Λρ(Γ) is
not contained in ξ(y)⊕ ξ(y′).

Proof of Lemma A.4. — Suppose by contradiction that Λρ(Γ) ⊂ ξ(y)⊕
ξ(y′). Transversality condition (5.2) implies that for every x ∈ ∂∞Γ differ-
ent from y′ and y one has

η(x) ∩ (ξ(y)⊕ ξ(y′)) = {ξ(x)}.

Then by (A.2) the map ξ is not injective and this is a contradiction. �

Because of Lemma A.4 we can take y′′ in ∂∞Γ such that ξ(y′′) does not
belong to ξ(y)⊕ ξ(y′). We can assume further that y′′ 6= x′.
By (A.1) we have again the following: for every x /∈ {x′, y, y′, y′′} there

exists a neighbourhood V of x and a point ξx,y,y′′ in the projective line
ξ(y)⊕ ξ(y′′) such that

η(x̃) ∩ (ξ(y)⊕ ξ(y′′)) = {ξx,y,y′′}

holds for every x̃ ∈ V .
As in Lemma A.4 we conclude that Λρ(Γ) cannot be contained in ξ(y)⊕

ξ(y′)⊕ ξ(y′′) and now an inductive argument yields the desired contradic-
tion. �

A.1.3. The invariant measure of the strong stable lamination

As shown by Margulis [35], for Anosov flows there exists an invariant
measure of the strong stable lamination which is exponentially contracted
by the flow. In our context this measure is also available: this follows
from the thermodynamic formalism as explained by Bowen–Marcus [9, Sec-
tion 4]. As we shall see in Fact A.6, the importance for us of this measure
relies on the fact that describes the probability of maximal entropy of φt
in a different way that the one provided by Fact A.3.
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The statement that we need is the following (for precisions see [9]).

Fact A.5. — Given any Z0 ∈ UρΓ and any small relative neighbour-
hood W cu

loc(Z0) of Z0 in W cu(Z0), there exists a positive and finite Borel
measure νculoc(Z0) on W cu

loc(Z0) such that:
• The family {νculoc(Z0)}Z0∈UρΓ is W ss-invariant(14).
• There exists a real number hu > 0 such that for every t and every
Z0 ∈ UρΓ one has

(φt)∗(νculoc(Z0)) = e−h
utνculoc(φt(Z0)).

A.1.4. The Bowen–Margulis probability

By reversing time and disintegrating along flow lines, Fact A.5 yields
a family of measures {νssloc(Z0)} on local strong stable leaves which is ex-
panded by the flow. In the case of Anosov flows, Margulis [35] first showed
how the families {νculoc(Z0)} and {νssloc(Z0)} with the above properties com-
bine to produce a φt-invariant finite Borel measure ν in the whole space.
This measure coincides, up to scaling, with the Bowen–Margulis probability
of the flow.
The statement that we need in our context is the following. Once again,

this is a standard fact and the reader is referred for instance to Katok–
Hasselblatt’s book [28, Section 5 of Chapter 20] for a proof in the case
of Anosov flows. With obvious adaptations the same proof works in our
setting.

Fact A.6. — Suppose that {νssloc(Z0)}Z0∈UρΓ is a family of measures on
the local strong stable leaves with the following properties:

• There exists a real number hs > 0 such that for every t and every
Z0 ∈ UρΓ one has

(φt)∗(νssloc(Z0)) = eh
stνssloc(φt(Z0)).

• For every Z0 ∈ UρΓ and every open set A contained in a neighbour-
hood of Z0 with local product structure, the map

W cu
loc(Z0) −→ R : Z 7→ νssloc(Z)(A ∩W ss

loc(Z))

is upper semi continuous.

(14)The precise definition of a W ss-emphinvariant measure can be found in [9, p. 43].
Very informally, this means that if we have a map between two local leaves W cu

loc(Z0)
and W cu

loc(Z1) which is defined emphfollowing the leaves of W ss, then this map sends
the measure νculoc(Z0) to the measure νculoc(Z1).
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Consider the family {νculoc(Z0)}Z0∈UρΓ provided by Fact A.5. Then the
following holds:

• If A is an open set contained in a neighbourhood of Z0 ∈ UρΓ with
local product structure, set

ν(A) :=
∫
Z∈W cu

loc(Z0)
νssloc(Z)(A ∩W ss

loc(Z))dνculoc(Z0)(Z).

Then this measure extends to a finite Borel measure ν on UρΓ such
that for every t ∈ R the following holds:

(φt)∗ν = e(hs−hu)tν.

Evaluating the previous equality on UρΓ, we obtain that hs = hu

and that ν is φt-invariant.
• The number hu equals the topological entropy h of the flow and
the probability proportional to ν is the Bowen–Margulis probability
of φt.

A.2. The flows on UoΓ and UτΓ

A.2.1. Explicit conjugations between UρΓ, UoΓ and UτΓ

Recall that ψt = ψot is the flow on UoΓ induced by the translation
flow (7.1).
The following lemma implies in particular that the action of Γ on ∂2

∞Γ×R
via co is proper and co-compact.

Lemma A.7. — There exists a Hölder homeomorphism UρΓ −→ UoΓ
that conjugates the flows φt and ψt. Further, for every point (x0, y0, t0) ∈
UoΓ the central unstable and strong stable leaves through (x0, y0, t0) are
given by

W cu(x0, y0, t0) = {(x0, y, t) ∈ UoΓ : y ∈ ∂∞Γ \ Γ · x0 and t ∈ R}

and
W ss(x0, y0, t0) = {(x, y0, t0) ∈ UoΓ : x ∈ ∂∞Γ \ Γ · y0}.

Proof. — Consider the map Fρ −→ ∂2
∞Γ× R defined by

(x, y, θ, v) 7→
(
x, y,−1

2 log |〈v, Jo · v〉p,q|
)
,

which is easily seen to be Hölder continuous, injective and equivariant.
Moreover one can prove that it is proper and surjective, hence a homeo-
morphism.
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The statement involving the flows and the laminations is straightforward.
�

We now turn our attention to the translation flow on UτΓ. An analogue
of Lemma A.7 is also available. In fact, the analogue holds because of the
following remark.

Remark A.8. — The cocycles co and cτ are cohomologous. Indeed, this
follows from the fact that co and cτ have the same periods and a theorem
due to Livšic [33]. Explicitly, let

U : ∂∞Γ −→ R : U(x) := 1
2 log ‖vx‖τ‖θx‖τ

|θx(Jo · vx)| .

Then for every γ in Γ and x in ∂∞Γ one has

cτ (γ, x)− co(γ, x) = U(γ · x)− U(x).

A.2.2. Patterson–Sullivan probabilities for co and cτ

The goal of this subsection is to show the existence of a Patterson–
Sullivan probability of dimension hu for the cocycle co, that is, a probability
measure µo on ∂∞Γ such that

(A.3) dγ∗µo
dµo

(x) = e−h
uco(γ−1,x)

holds for every γ ∈ Γ(15). We will see in the next subsection that in fact
one has hu = h. The existence of a Patterson–Sullivan probability µτ for
cτ follows directly from this one by Remark A.8.
When Γ is the fundamental group of a closed negatively curved man-

ifold, the existence (and uniqueness) of such a probability is proved by
Ledrappier [31]. When ρ(Γ) is Zariski dense one can apply the work of
Quint [47] and for the case of Hp,q−1-convex co-compact groups we find
also the construction presented by Glorieux–Monclair [18].
Even though Patterson’s method [43] works correctly in our setting

and produces directly a Patterson-Sullivan probability of dimension h, we
choose a shorter approach. Applying Fact A.5 and Lemma A.7 we find
an invariant measure {νculoc(u0)}u0∈UoΓ for the strong stable lamination of
ψt : UoΓ 	 which has the property of being contracted by the flow. Lifting
this measure to ∂2

∞Γ× R yields a probability µo on ∂∞Γ satisfying (A.3).
Indeed, for closed negatively curved manifolds and the Busemann cocycle
this procedure is explained for instance by Babillot in [1, Subsection 7.1].
With obvious adaptations the procedure equally applies in our setting.
(15)The constant hu is the one introduced in Fact A.5.
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Remark A.9. — Recall that hu > 0. Equality (A.3) shows in fact that hu
is positive. Otherwise the probability µo would be Γ-invariant but one can
see that this is not possible for a non elementary word hyperbolic group.

We finish this subsection by showing that µo has no atoms (this property
is needed in the proof of Proposition 7.11). The proof presented here is an
adaptation of [18, Proposition 4.3].

Lemma A.10. — The measure µo has no atoms.

Proof. — Suppose that there exists an atom y ∈ ∂∞Γ for µo. Since hu is
positive the point y cannot be fixed by an element of Γ, hence

(A.4) 1 = µo(∂∞Γ) >
∑
γ∈Γ

e−h
uco(γ−1,y)µo(y).

To finish we prove the following.

Lemma A.11. — There exists a sequence γn −→∞ such that co(γ−1
n , y)

diverges to −∞.

Proof of Lemma A.11. — Let x be a point in ∂∞Γ different from y and
‖ · ‖ be any norm on Rd. Take a sequence γn −→∞ such that

(γn)+ −→ y and (γn)− −→ x.

By taking a subsequence if necessary we may suppose that γn converges
uniformly to y on compact sets of ∂∞Γ\{x} (cf. Bowditch [7, Lemma 2.11]).
Let B(x) ⊂ ∂∞Γ be the complement of a small neighbourhood of x in ∂∞Γ
and b(y) ⊂ B(x) be a small neighbourhood of y. Then we can suppose that
the inclusion γn ·B(x) ⊂ b(y) holds for every n.

By Proposition 5.2 there exists ε > 0 such that for all n one has

ξ(B(x)) ⊂ Bε(Sd−1(ρ(γn))).

Take a positive c with the following property: for every n and every vector
v in the set Bε(Sd−1(ρ(γn))) one has

‖ρ(γn) · v‖ > c‖ρ(γn)‖‖v‖.

Let v 6= 0 be a vector in ξ(y). We have that ρ(γ−1
n ) · v belongs to

Bε(Sd−1(ρ(γn))) hence
ρ(γ−1

n ) · v −→ 0
as n −→∞. The divergence co(γ−1

n , y) −→ −∞ follows. �

A combination of (A.4) and Lemma A.11 yields the desired contrad-
iction. �
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A.2.3. The Bowen–Margulis probability on UoΓ and UτΓ

Recall that [ · , · ]o is the Gromov product of the pair {co, co}.

Proposition A.12 (Sambarino [50, Theorem 3.2]). — The number hu
equals the topological entropy h of ψt and the measure

e−h[ · ,· ]oµo ⊗ µo ⊗ dt

induces a measure on the quotient space UoΓ proportional to the Bowen–
Margulis probability of ψt.

Proof. — From explicit computations one can show that

e−h
u[ · ,· ]oµo ⊗ µo ⊗ dt

equals the product of measures νculoc and νssloc as in Fact A.6. �

We now state the desired result of this appendix: the analogue of [50,
Proposition 4.3]. Provided with Proposition A.12, the same proof applies
in our setting.

Proposition A.13 (Sambarino [50, Proposition 4.3]). — There exists
a positive M = Mρ,o such that

Me−ht
∑

γ∈ΓH,`co (γ)6t

δγ− ⊗ δγ+ −→ e−h[ · ,· ]oµo ⊗ µo

as t −→∞ on C∗c (∂2
∞Γ).

For the flow on UτΓ we obtain analogue results.

Remark A.14. — Let [ · , · ]τ be the Gromov product of the pair {co, cτ}
defined in Subsection 8.2. The same arguments of Proposition A.12 and
Proposition A.13 apply to obtain that

e−h[ · ,· ]τµo ⊗ µτ ⊗ dt

induces the Bowen–Margulis probability of the translation flow on UτΓ and
that there exists a positive M ′ = M ′ρ,τ such that

M ′e−ht
∑

γ∈ΓH,`cτ (γ)6t

δγ− ⊗ δγ+ −→ e−h[ · ,· ]τµo ⊗ µτ

as t −→∞ on C∗c (∂2
∞Γ).
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