Nous définissons un invariant de Casson–Lin multivarié. Cet invariant est défini comme un comptage signé de représentations irréductibles du groupe de l’entrelacs, avec traces méridionales fixées. Pour les entrelacs à 2 composantes avec coefficient d’enlacement égal à un, nous montrons que l’invariant est égal à une somme de signatures multivariées. Nous obtenons également des résultats concernant les déformations de représentations de groupes d’entrelacs.
We introduce a multivariable Casson–Lin type invariant for links in . This invariant is defined as a signed count of irreducible representations of the link group with fixed meridional traces. For 2-component links with linking number one, the invariant is shown to be a sum of multivariable signatures. We also obtain some results concerning deformations of representations of link groups.
Révisé le :
Accepté le :
Publié le :
Keywords: Knot, link, $\protect \operatorname{SU}(2)$-representation, Casson invariant, Casson–Lin invariant, multivariable signature, character variety, Alexander polynomial, Burau representation, Gassner representation
Mot clés : Noeud, entrelacs, représentation $\protect \operatorname{SU}(2)$, invariant de Casson, invariant de Casson–Lin, signature multivariée, variété de caractères, polynôme d’Alexander, représentation de Burau, représentation de Gassner
Benard, Leo 1 ; Conway, Anthony 2
@article{AIF_2020__70_3_1029_0, author = {Benard, Leo and Conway, Anthony}, title = {A multivariable {Casson{\textendash}Lin} type invariant}, journal = {Annales de l'Institut Fourier}, pages = {1029--1084}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {3}, year = {2020}, doi = {10.5802/aif.3330}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3330/} }
TY - JOUR AU - Benard, Leo AU - Conway, Anthony TI - A multivariable Casson–Lin type invariant JO - Annales de l'Institut Fourier PY - 2020 SP - 1029 EP - 1084 VL - 70 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3330/ DO - 10.5802/aif.3330 LA - en ID - AIF_2020__70_3_1029_0 ER -
%0 Journal Article %A Benard, Leo %A Conway, Anthony %T A multivariable Casson–Lin type invariant %J Annales de l'Institut Fourier %D 2020 %P 1029-1084 %V 70 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3330/ %R 10.5802/aif.3330 %G en %F AIF_2020__70_3_1029_0
Benard, Leo; Conway, Anthony. A multivariable Casson–Lin type invariant. Annales de l'Institut Fourier, Tome 70 (2020) no. 3, pp. 1029-1084. doi : 10.5802/aif.3330. https://aif.centre-mersenne.org/articles/10.5802/aif.3330/
[1] Casson’s invariant for oriented homology -spheres. An exposition, Mathematical Notes, 36, Princeton University Press, 1990, xviii+182 pages | DOI | MR | Zbl
[2] Espace des représentations du groupe d’un nœud classique dans un groupe de Lie, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1297-1321 | MR
[3] Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press; University of Tokyo Press, 1974, ix+228 pages | MR
[4] The Casson-Lin invariants for links, Pac. J. Math., Volume 285 (2016) no. 2, pp. 257-282 | DOI | MR
[5] The Casson-Lin invariant of the Hopf link, Pac. J. Math., Volume 285 (2016) no. 2, pp. 283-288 | DOI | MR
[6] Darstellungen von Knotengruppen, Math. Ann., Volume 173 (1967), pp. 24-33 | DOI | Zbl
[7] Knots 3rd fully revised and extented edition, De Gruyter Studies in Mathematics, 5, Walter de Gruyter, 2014, xiii+417 pages | MR
[8] A geometric construction of the Conway potential function, Comment. Math. Helv., Volume 79 (2004) no. 1, pp. 124-146 | DOI | MR
[9] Generalized Seifert surfaces and signatures of colored links, Trans. Am. Math. Soc., Volume 360 (2008) no. 3, pp. 1223-1264
[10] A Lagrangian representation of tangles, Topology, Volume 44 (2005) no. 4, pp. 747-767
[11] Instanton Floer homology for knots via -orbifolds, J. Differ. Geom., Volume 51 (1999) no. 1, pp. 149-202 | MR
[12] Burau maps and twisted Alexander polynomials (2017) (to appear in Proc. Edinb. Math. Soc., https://arxiv.org/abs/1510.06678)
[13] The Blanchfield pairing of colored links (2017) (to appear in Indiana Univ. Math. J., https://arxiv.org/abs/1609.08057)
[14] Conway’s potential function via the Gassner representation (2017) (https://arxiv.org/abs/1709.03479)
[15] An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Oxford, 1967), Pergamon Press, 1970, pp. 329-358 | MR | Zbl
[16] The universal abelian cover of a link, Low-dimensional topology (Bangor, 1979) (London Mathematical Society Lecture Note Series), Volume 48, Cambridge University Press, 1982, pp. 51-66 | MR
[17] Varieties of group representations and splittings of 3-manifolds, Ann. Math., Volume 117 (1983), pp. 109-146 | Zbl
[18] Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone; Masson et Cie., 1951, pp. 29-55 | MR | Zbl
[19] Links not concordant to the Hopf link, Math. Proc. Camb. Philos. Soc., Volume 156 (2014) no. 3, pp. 425-459 | DOI | MR
[20] Deforming representations of knot groups in SU(2), Comment. Math. Helv., Volume 66 (1991) no. 1, pp. 340-361
[21] Does the Jones polynomial determine the signature of a knot? (2003) (https://arxiv.org/abs/math/0310203)
[22] A Casson-Lin type invariant for links, Pac. J. Math., Volume 248 (2010) no. 1, pp. 139-154 | DOI | MR
[23] Instanton Floer homology for two-component links, J. Knot Theory Ramifications, Volume 21 (2012) no. 5, 1250054, 8 pages | DOI | MR
[24] The Conway potential function for links, Comment. Math. Helv., Volume 58 (1983) no. 3, pp. 365-378 | DOI | MR
[25] Flat connections, the Alexander invariant, and Casson’s invariant, Commun. Anal. Geom., Volume 5 (1997) no. 1, pp. 93-120 | DOI | MR
[26] An orientation for the -representation space of knot groups, Topology Appl., Volume 127 (2003) no. 1-2, pp. 175-197 | DOI | MR
[27] Deforming abelian -representations of knot groups, Comment. Math. Helv., Volume 73 (1998) no. 3, pp. 480-498 | DOI | MR
[28] Representations of knot groups into and twisted Alexander polynomials, Pac. J. Math., Volume 277 (2015) no. 2, pp. 313-354 | DOI | Zbl
[29] Deformations of reducible representations of 3-manifold groups into , J. Reine Angew. Math. (2001), pp. 191-228 | Zbl
[30] Algebraic invariants of links, Series on Knots and Everything, 52, World Scientific, 2012, xiv+353 pages
[31] A survey of knot theory, Birkhäuser, 1996, xxii+420 pages (Translated and revised from the 1990 Japanese original by the author) | MR
[32] The Gassner representation for string links, Commun. Contemp. Math., Volume 3 (2001) no. 1, pp. 87-136 | DOI | MR
[33] Representations of knot groups in , Trans. Am. Math. Soc., Volume 326 (1991) no. 2, pp. 795-828 | DOI | MR
[34] An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer, 1997, x+201 pages | DOI | MR
[35] A knot invariant via representation spaces, J. Differ. Geom., Volume 35 (1992) no. 2, pp. 337-357 | MR
[36] On the linear representation of braid groups, Trans. Am. Math. Soc., Volume 311 (1989) no. 2, pp. 535-560 | DOI | MR
[37] Varieties of representations of finitely generated groups., 336, American Mathematical Society, 1985 | Zbl
[38] Link groups, Ann. Math., Volume 59 (1954), pp. 177-195 | DOI | MR
[39] A state model for the multivariable Alexander polynomial, Pac. J. Math., Volume 157 (1993) no. 1, pp. 109-135 | MR
[40] Unlinking information from 4-manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 964-979 | DOI | MR
[41] The Reidemeister torsion of 3-manifolds, De Gruyter Studies in Mathematics, 30, Walter de Gruyter, 2003, xiv+249 pages | DOI | MR
[42] Torsion de Reidemeister pour les variétés hyperboliques., 612, American Mathematical Society, 1997 | Zbl
[43] Introduction aux polynômes d’un nœud., Enseign. Math., Volume 13 (1967) no. 2, pp. 187-194 | Zbl
Cité par Sources :