Expected number and distribution of critical points of real Lefschetz pencils
Annales de l'Institut Fourier, Volume 70 (2020) no. 3, pp. 1085-1113.

We give an asymptotic probabilistic real Riemann–Hurwitz formula computing the expected real ramification index of a random covering over the Riemann sphere. More generally, we study the asymptotic expected number and distribution of critical points of a random real Lefschetz pencil over a smooth real algebraic variety. Throughout the paper, we give similar results for the complex case. Our main tool is Hörmander theory of peak sections.

Dans cet article, on donne une formule de Riemann–Hurwitz asymptotique et probabiliste qui calcule la valeur attendue de l’indice de ramification réel d’un revêtement aléatoire de la sphère de Riemann. Plus généralement, on étudie l’asymptotique de la valeur attendue du nombre et de la distribution des points critiques réels d’un pinceau de Lefschetz réel sur une variété algébrique réelle. Tout au long de l’article, on donne des résultats analogues pour le cas complexe. Notre outil principal est la théorie des sections pics d’Hörmander.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3331
Classification: 14P99, 32U40, 60D05
Keywords: real algebraic varieties, Lefschetz pencils, peak sections, random geometry
Mot clés : variétés algébriques réelles, pinceaux de Lefschetz, sections pics, géométrie aléatoire

Ancona, Michele 1

1 Tel Aviv University School of Mathematical Sciences Tel Aviv-Yafo (Israël)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_3_1085_0,
     author = {Ancona, Michele},
     title = {Expected number and distribution of critical points of real {Lefschetz} pencils},
     journal = {Annales de l'Institut Fourier},
     pages = {1085--1113},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.5802/aif.3331},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3331/}
}
TY  - JOUR
AU  - Ancona, Michele
TI  - Expected number and distribution of critical points of real Lefschetz pencils
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1085
EP  - 1113
VL  - 70
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3331/
DO  - 10.5802/aif.3331
LA  - en
ID  - AIF_2020__70_3_1085_0
ER  - 
%0 Journal Article
%A Ancona, Michele
%T Expected number and distribution of critical points of real Lefschetz pencils
%J Annales de l'Institut Fourier
%D 2020
%P 1085-1113
%V 70
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3331/
%R 10.5802/aif.3331
%G en
%F AIF_2020__70_3_1085_0
Ancona, Michele. Expected number and distribution of critical points of real Lefschetz pencils. Annales de l'Institut Fourier, Volume 70 (2020) no. 3, pp. 1085-1113. doi : 10.5802/aif.3331. https://aif.centre-mersenne.org/articles/10.5802/aif.3331/

[1] Bürgisser, Peter Average Euler characteristic of random real algebraic varieties, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 9, pp. 507-512 | DOI | MR

[2] Federer, Herbert Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages | MR

[3] Gayet, Damien; Welschinger, Jean-Yves What is the total Betti number of a random real hypersurface?, J. Reine Angew. Math., Volume 689 (2014), pp. 137-168 | DOI | MR

[4] Gayet, Damien; Welschinger, Jean-Yves Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu, Volume 14 (2015) no. 4, pp. 673-702 | DOI | MR

[5] Gayet, Damien; Welschinger, Jean-Yves Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., Volume 18 (2016) no. 4, pp. 733-772 | DOI | MR

[6] Hörmander, Lars An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland, 1990, xii+254 pages | MR

[7] Kac, Mark A correction to “On the average number of real roots of a random algebraic equation”, Bull. Am. Math. Soc., Volume 49 (1943), p. 938 | DOI | MR

[8] Kostlan, Eric On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, 1993, pp. 419-431 | MR

[9] Lerario, Antonio; Lundberg, Erik Statistics on Hilbert’s 16th problem, Int. Math. Res. Not. (2015) no. 12, pp. 4293-4321 | DOI | MR

[10] Lerario, Antonio; Lundberg, Erik Gap probabilities and Betti numbers of a random intersection of quadrics, Discrete Comput. Geom., Volume 55 (2016) no. 2, pp. 462-496

[11] Letendre, Thomas Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., Volume 270 (2016) no. 8, pp. 3047-3110 | DOI | MR

[12] Lundberg, Erik; Ramachandran, Koushik The arc length and topology of a random lemniscate, J. Lond. Math. Soc., II. Ser., Volume 96 (2017) no. 3, pp. 621-641 | Zbl

[13] Nicolaescu, Liviu I. Critical sets of random smooth functions on compact manifolds, Asian J. Math., Volume 19 (2015) no. 3, pp. 391-432 | DOI | MR

[14] Podkorytov, Semën S. On the Euler characteristic of a random algebraic hypersurface, Zap. Nauchn. Semin. (POMI), Volume 252 (1998), pp. 224-230 | DOI | MR | Zbl

[15] Shiffman, Bernard; Zelditch, Steve Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | MR

[16] Shub, Michael; Smale, Steve Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992) (Progress in Mathematics), Volume 109, Birkhäuser, 1993, pp. 267-285 | DOI | MR | Zbl

[17] Tian, Gang On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | MR

Cited by Sources: