Metabelian groups with large return probability
[Sur les groupes métabéliens admettant une grande probabilité de retour]
Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2121-2167.

Dans cet article, on s’intéresse au comportement asymptotique de la probabilité de retour de la marche aléatoire dans un groupe métabélien de type fini. Pour de tels groupes à croissance exponentielle, on obtient une caractérisation de ceux dont la probabilité de retour est la plus grande en des termes purement algébriques, à l’aide de la dimension de Krull du groupe. Nous obtenons d’abord des bornes inférieures dépendant de la dimension de Krull sur la probabilité de retour des groupes métabéliens dont le sous-groupe dérivé est de torsion. On prouve également une variante respectant la dimension de Krull d’un théorème de Kaloujinine et Krasner pour les groupes métabéliens. Enfin, on étudie des sections particulières de ces groupes afin de donner des bornes supérieures sur la probabilité de retour en fonction de la dimension de Krull.

We investigate the asymptotic behaviour of the return probability of the random walk in finitely generated metabelian groups. For such groups with exponential volume growth, we obtain a characterization of metabelian groups whose return probability is the largest in purely algebraic terms, namely the Krull dimension of the group. Along the way, we give lower bounds on the return probability for metabelian groups with torsion derived subgroup, according to the dimension. We also establish a variation of the famous embedding theorem of Kaloujinine and Krasner for metabelian groups that respects the Krull dimension. Finally, we study specific sections of these groups, and use them to give upper bounds on the return probability in terms of the Krull dimension.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3291
Classification : 20F69,  20E15,  20E22,  20P05
Mots clés : dimension de Krull, groupes métabéliens, probabilité de retour
@article{AIF_2019__69_5_2121_0,
     author = {Jacoboni, Lison},
     title = {Metabelian groups with large return probability},
     journal = {Annales de l'Institut Fourier},
     pages = {2121--2167},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {5},
     year = {2019},
     doi = {10.5802/aif.3291},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3291/}
}
Jacoboni, Lison. Metabelian groups with large return probability. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2121-2167. doi : 10.5802/aif.3291. https://aif.centre-mersenne.org/articles/10.5802/aif.3291/

[1] Alexopoulos, Georgios A lower estimate for central probabilities on polycyclic groups, Can. J. Math., Tome 44 (1992) no. 5, pp. 897-910 | Article | MR 1186471 | Zbl 0762.31003

[2] Bachmuth, Seymour Automorphisms of a class of metabelian groups, Trans. Am. Math. Soc., Tome 127 (1967), pp. 284-293 | Article | MR 0213436 | Zbl 0166.01901

[3] Bosch, Siegfried Algebraic Geometry and Commutative Algebra, Universitext, Springer, 2012 | Zbl 1257.14001

[4] Burnside, William Theory of Groups of Finite Order, Dover Books on Mathematics Series, Dover Publications, 2004 | Zbl 1375.20001

[5] Cornulier, Yves On the Cantor-Bendixson rank of metabelian groups, Ann. Inst. Fourier, Tome 61 (2011) no. 2, pp. 593-618 | Article | MR 2895067 | Zbl 1238.20049

[6] Coulhon, Thierry Ultracontractivity and Nash type inequalities, J. Funct. Anal., Tome 141 (1996) no. 2, pp. 510-539 | Article | MR 1418518 | Zbl 0887.58009

[7] Coulhon, Thierry Random walks and geometry on infinite graphs, Lecture notes on analysis in metric spaces (Trento, 1999) (Appunti dei Corsi Tenuti da Docenti della Scuola), Scuola Normale Superiore, 2000, pp. 5-36 | MR 2023121 | Zbl 1063.60063

[8] Coulhon, Thierry; Grigorʼyan, Alexander; Pittet, Christophe A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier, Tome 51 (2001) no. 6, pp. 1763-1827 | Article | MR 1871289 | Zbl 1137.58307

[9] Eisenbud, David Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, Tome 150, Springer, 1995, xvi+785 pages (With a view toward algebraic geometry) | Article | MR 1322960 | Zbl 0819.13001

[10] Erschler, Anna Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks, Probab. Theory Relat. Fields, Tome 136 (2006) no. 4, pp. 560-586 | Article | MR 2257136 | Zbl 1105.60009

[11] Grigorʼyan, Alexander Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoam., Tome 10 (1994) no. 2, pp. 395-452 | Article | MR 1286481

[12] Groupprops Degrees of irreducible representations for symmetric groups of small degree (https://groupprops.subwiki.org/wiki/Linear_representation_theory_of_symmetric_groups#Particular_cases, accessed: 2017-06-01)

[13] Hall, Philip On the finiteness of certain soluble groups, Proc. Lond. Math. Soc., Tome 9 (1959), pp. 595-622 | Article | MR 0110750 | Zbl 0091.02501

[14] Hebisch, Waldemar; Saloff-Coste, Laurent Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Tome 21 (1993) no. 2, pp. 673-709 | Article | MR 1217561 | Zbl 0776.60086

[15] Jacoboni, Lison Metric and probabilistic properties of metabelian groups (2017) (Ph. D. Thesis)

[16] Kargapolov, Mikhaïl; Merzliakov, Iouri Éléments de la théorie des groupes, Traduit du Russe: Mathématiques, Éditions Mir, 1985, 263 pages (Translated from the Russian by V. Kotliar) | MR 822731

[17] Kesten, Harry Symmetric random walks on groups, Trans. Am. Math. Soc., Tome 92 (1959), pp. 336-354 | Article | MR 0109367 | Zbl 0092.33503

[18] Kropholler, Peter; Lorensen, Karl Virtually torsion-free covers of minimax groups (2018) (https://arxiv.org/abs/1510.07583, to appear in Ann. Sci. Éc. Norm. Supér.)

[19] Magnus, Wilhelm On a theorem of Marshall Hall, Ann. Math., Tome 40 (1939), pp. 764-768 | Article | MR 0000262 | Zbl 0022.31403

[20] McConnell, John C.; Robson, J. Chris Noncommutative Noetherian rings, Pure and Applied Mathematics, John Wiley & Sons, 1987, xvi+596 pages | MR 934572 | Zbl 0644.16008

[21] Noether, Emmy Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p, Nachrichten Göttingen, Tome 1926 (1926), pp. 28-35 | Zbl 52.0106.01

[22] Pittet, Christophe; Saloff-Coste, Laurent On the stability of the behavior of random walks on groups, J. Geom. Anal., Tome 10 (2000) no. 4, pp. 713-737 | Article | MR 1817783 | Zbl 0988.60517

[23] Pittet, Christophe; Saloff-Coste, Laurent On random walks on wreath products, Ann. Probab., Tome 30 (2002) no. 2, pp. 948-977 | Article | MR 1905862 | Zbl 1021.60004

[24] Pittet, Christophe; Saloff-Coste, Laurent Random walks on finite rank solvable groups, J. Eur. Math. Soc., Tome 5 (2003) no. 4, pp. 313-342 | Article | MR 2017850 | Zbl 1064.20074

[25] Rentschler, Rudolf; Gabriel, Pierre Sur la dimension des anneaux et ensembles ordonnés, C. R. Math. Acad. Sci. Paris, Tome 265 (1967), pp. 712-715 | MR 0224644 | Zbl 0155.36201

[26] Saloff-Coste, Laurent; Zheng, Tianyi Random walks on free solvable groups, Math. Z., Tome 279 (2014) no. 3, pp. 811-848 | Article | MR 3318252 | Zbl 1368.20064

[27] Tessera, Romain Large scale Sobolev inequalities on metric measure spaces and applications, Rev. Mat. Iberoam., Tome 24 (2008) no. 3, pp. 825-864 | Article | MR 2490163 | Zbl 1194.53036

[28] Tessera, Romain Isoperimetric profile and random walks on locally compact solvable groups, Rev. Mat. Iberoam., Tome 29 (2013) no. 2, pp. 715-737 | Article | MR 3047434 | Zbl 1267.43004

[29] Tushev, Anatolii V. On deviation in groups, Ill. J. Math., Tome 47 (2003) no. 1-2, pp. 539-550 | Article | MR 2031339 | Zbl 1031.20029

[30] Varopoulos, Nicholas T. A potential theoretic property of solvable groups, Bull. Sci. Math. (1983) no. 108, pp. 263-273 | MR 802528

[31] Varopoulos, Nicholas T. Théorie du potentiel sur les groupes nilpotents, C. R. Math. Acad. Sci. Paris, Tome 301 (1985) no. 5, p. 143-144 | MR 801947 | Zbl 0582.43002

[32] Varopoulos, Nicholas T. Convolution powers on locally compact groups, Bull. Sci. Math., Tome 111 (1987) no. 4, pp. 333-342 | MR 921558 | Zbl 0626.22004

[33] Varopoulos, Nicholas T.; Saloff-Coste, Laurent; Coulhon, Thierry Analysis and geometry on groups, Cambridge Tracts in Mathematics, Tome 100, Cambridge University Press, 1992, xii+156 pages | MR 1218884 | Zbl 0813.22003