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METABELIAN GROUPS WITH LARGE RETURN
PROBABILITY

by Lison JACOBONI (*)

Abstract. — We investigate the asymptotic behaviour of the return proba-
bility of the random walk in finitely generated metabelian groups. For such groups
with exponential volume growth, we obtain a characterization of metabelian groups
whose return probability is the largest in purely algebraic terms, namely the Krull
dimension of the group. Along the way, we give lower bounds on the return proba-
bility for metabelian groups with torsion derived subgroup, according to the dimen-
sion. We also establish a variation of the famous embedding theorem of Kaloujinine
and Krasner for metabelian groups that respects the Krull dimension. Finally, we
study specific sections of these groups, and use them to give upper bounds on the
return probability in terms of the Krull dimension.
Résumé. — Dans cet article, on s’intéresse au comportement asymptotique de

la probabilité de retour de la marche aléatoire dans un groupe métabélien de type
fini. Pour de tels groupes à croissance exponentielle, on obtient une caractérisation
de ceux dont la probabilité de retour est la plus grande en des termes purement al-
gébriques, à l’aide de la dimension de Krull du groupe. Nous obtenons d’abord des
bornes inférieures dépendant de la dimension de Krull sur la probabilité de retour
des groupes métabéliens dont le sous-groupe dérivé est de torsion. On prouve éga-
lement une variante respectant la dimension de Krull d’un théorème de Kaloujinine
et Krasner pour les groupes métabéliens. Enfin, on étudie des sections particulières
de ces groupes afin de donner des bornes supérieures sur la probabilité de retour
en fonction de la dimension de Krull.

1. Introduction

Let G be a countable group. For any probability measure µ on G, one
can consider the random walk on G driven by µ: this is a sequence (Si)i>0
of random variables valued in G such that S0 is an arbitrary point of G
and, for any n ∈ N, Sn+1 = SnXn+1, where (Xi)i>1 are independent and
identically distributed random variables with probability distribution µ. If
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2122 Lison JACOBONI

the current state is x, the probability of being in y at the next step is
µ(x−1y). This implicitly defines a probability measure Pµ on GN such that

Pµ(Sn = y | X0 = x) = µ(n)(x−1y),

where µ(n) denotes the n-fold convolution of µ. Recall that if f and h are two
functions on G, the convolution of f and h is f ∗ h(g) =

∑
k f(k)h(k−1g).

An interesting class of examples arises from a probability measure whose
support generates the whole group G as a semigroup. Within this class, a
fundamental example is given by a finitely generated group G with µ = µS ,
the uniform distribution on a finite and symmetric generating set S. Such
a probability measure satisfies µS(g) = µS(g−1), for all g ∈ G. In general,
one says that a probability measure µ is symmetric whenever this latter
relation is true.
Let pµ,G2n = Pµ(X2n = e | X0 = e) denote the probability of return in

2n steps to the origin e of G (even times 2n are considered to avoid parity
issues: namely, the simple random walk on Z, with usual generating set,
cannot reach 0 at odd times).
If ϕ,ψ denote two monotone functions, we use the notation ϕ - ψ if

there exist positive constants c and C such that cϕ(Ct) 6 ψ(t) (possibly
for t in N if N-valued functions are considered). If the symmetric relation
ϕ % ψ also holds, we write ϕ ∼ ψ and say that ϕ and ψ have the same
asymptotic behaviour. This is an equivalence relation.
A theorem of Pittet and Saloff-Coste [22] asserts that any two symmetric

and finitely supported probability measures with generating support give
rise to equivalent return probabilities. Let pG2n denote this invariant, drop-
ping the G whenever the group is clear from the context. Moreover, if µ is
a symmetric probability measure with generating support and finite second
moment, that is

∑
g|g|2µ(g) <∞, then pµ,G2n belongs to the class of pG2n. In

addition, an important feature of the return probability is the fact that it
increases when taking quotients or going to a subgroup.
Understanding how the random walk behaves allows to have insight into

the large-scale geometry of the group. We give below a brief picture of what
is known about pG2n, more details are to follow in Subsection 3.1.
In his thesis, Kesten proved that non-amenable groups are characterized

by the fact that they behave the worst, for their return probability decays
exponentially fast ([17]). On the other hand, a nilpotent group, which nec-
essarily has polynomial growth of some definite degree d behaves like Zd:
this follows from Varopoulos ([31, 33]).

ANNALES DE L’INSTITUT FOURIER
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What about amenable groups of exponential growth? Hebisch and Saloff-
Coste ([14]) proved that if G has exponential growth, then

(1.1) pG2n - exp(−n 1
3 ).

Moreover, if G is a discrete subgroup of a connected Lie group, then G
is amenable of exponential growth if and only if pG2n ∼ exp(−n 1

3 ).
However, the world of amenable groups of exponential growth can be

very wild, and many other behaviours can occur. As an example, for any
nontrivial finite group F , the return probability of the wreath product F oZd
is

pF oZ
d

2n ∼ exp
(
−n

d
d+2

)
.

Let us also mention the return probability of Z o Zd:

(1.2) pZoZ
d

2n ∼ exp
(
−n

d
d+2 (logn)

2
d+2

)
.

We refer to the paper [10] by Erschler for these examples (and many other).
It appears that, for every small positive ε, there exist 1− ε < α < 1, and

a solvable group whose return probability is equivalent to exp(−nα) (see
also [23]). These solvable groups can be chosen to be 2-step solvable (in
other words metabelian or equivalently having abelian derived subgroup)
and hence are relatively tame within the class of solvable groups of arbitrary
derived length. Comparing with the situation for discrete subgroups of Lie
groups, the following question arises naturally.

Question. — Among finitely generated solvable groups, is it possible to
characterize the groups whose return probability satisfies p2n % exp(−n 1

3 )?

So far, (1.1) is known to be sharp for lamplighter group F o Z, with
F a nontrivial finite group ([30]), for polycyclic groups ([1]), for solvable
Baumslag–Solitar ([8]), and for solvable groups of finite Prüfer rank ([18,
22]). A group has finite Prüfer rank if there exists an integer r such that any
finitely generated subgroup can be generated by at most r elements and the
least such r is the rank. Lastly, Tessera proved in [28] the reverse inequality
for a class of groups containing all discrete subgroups of solvable algebraic
groups over a local field. This class contains in particular lamplighter groups
and torsion-free solvable groups of finite Prüfer rank.

Here, we answer the above question in the case of metabelian groups,
showing a connection between the Krull dimension of a metabelian group
and the asymptotic behaviour of its return probability.

A metabelian group G is an extension of an abelian group by another
abelian group, namely

[G,G] ↪→ G� Gab,

TOME 69 (2019), FASCICULE 5



2124 Lison JACOBONI

where we denote by [G,G] the derived subgroup ofG and byGab its abelian-
ization G/[G,G]. The subgroup [G,G] carries a natural structure of ZGab-
module, coming from the action by conjugation.
The notion of Krull dimension, introduced in [25], plays an important

role in the theory of rings and modules. In [29], Tushev extended this
notion to groups. We recall the classical treatment of Krull dimension in
non-commutative ring theory and its generalization to groups in Section 2,
after which we study it for metabelian groups.

For the moment, it is enough to mention that the Krull dimension of a
metabelian group G, denoted Krull(G), is characterized by the following
two properties (see Proposition 2.30):

• If the Krull dimension of the ZGab-module [G,G] is positive, then
they are equal:

Krull(G) = KrullZGab
([G,G]).

• otherwise, when the module [G,G] has Krull dimension 0 (ie is
finite), Krull(G) is defined to be 1 if G is infinite, 0 if it is finite.

Theorem 1.1. — Let G be a finitely generated metabelian group of
Krull dimension k. Then,

k 6 1 ⇐⇒ pG2n % exp(−n 1
3 ).

Together with (1.1), this implies that the finitely generated metabelian
groups with exponential growth and large return probability, that is pG2n ∼
exp(−n 1

3 ), are exactly those of dimension 0 or 1.
This is a consequence of studying the impact of Krull dimension on the

structure of the group, which yields the more precise lower bound:

Theorem 1.2. — Let G be a metabelian group of Krull dimension k,
k > 1. Assume that [G,G] is torsion. Then,

pG2n % exp(−n
k

k+2 ).

To obtain these estimates, we reduce to a more tractable case. A metab-
elian group G is split if it admits an exact sequence

M ↪→ G� Q,

that splits, where M and Q are abelian groups. The group G is therefore
isomorphic to the semi-direct product M oQ.
The previous lower bound is actually optimal in that situation.

ANNALES DE L’INSTITUT FOURIER
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Proposition 1.3. — Let G be a finitely generated split metabelian
group of Krull dimension k. If [G,G] is torsion, then

pG2n ∼ exp(−n
k

k+2 ).

To restrict to the split case, we use the following embedding theorem. A
more detailed statement can be found in Subsection 3.3.

Theorem 1.4. — Every finitely generated metabelian group, which is
the extension of an abelian group by a finitely generated abelian group Q,
can be embedded inside a finitely generated split metabelian group BoQ,
of the same Krull dimension, with B abelian.

The other direction in the proof of Theorem 1.1 is a consequence of the
existence of some special subgroups. We write B(p)

d for the free p-metabelian
group of rank d, see part 2.3.3 for the definition.

Proposition 1.5. — LetG be a metabelian group of Krull dimension k.
If k > 2, then G has a subgroup isomorphic to either Z oZ, or to B(p)

2 for
some prime p.

Saloff-Coste and Zheng ([26]) computed the return probablity of the
free metabelian group of rank d. We notice that, up to some adjustments,
their method allows to compute that of the free p-metabelian group (see
part 3.2).

Proposition 1.6. — The return probability of the free k-metabelian
group of rank d is equivalent to exp(−n

d
d+2 ).

Actually, we can rewrite Theorem 1.1 in a way involving these two sub-
groups.

Theorem 1.7 (Equivalent version of Theorem 1.1). — Let G be a finit-
ely generated metabelian group. Then,

• either G contains a subgroup isomorphic to Z o Z or B(p)
2 for some

prime p,
• or pG2n % exp(−n 1

3 ).

Together with (1.2), we note that there is a gap in the return probabilities
of finitely generated metabelian groups.

Corollary 1.8. — Let G be a finitely generated metabelian group.
Then, either

pG2n % exp
(
−n 1

3

)
,

or
pG2n - exp

(
−n 1

3 (logn) 2
3

)
.
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Finally, we provide upper bounds for the return probability in terms
of the Krull dimension. We refer to part 6.1.3 for the definition of a nice
section.

Theorem 1.9.
(1) Let G be a finitely generated non-abelian metabelian torsion-free

group of Krull dimension k > 2. Then the return probability of G
satisfies

p2n - exp
(
−n

k−1
k+1 (logn)

2
k+1

)
.

(2) Let G be a finitely generated non-abelian metabelian group of Krull
dimension k > 1 whose derived subgroup is torsion. Assume that
G admits a nice section whose torsion does not divide k. Then the
return probability of G satisfies

p2n - exp
(
−n

k
k+2

)
.

1.1. Organization

In Section 2, we recall the definition and some useful properties of the
Krull dimension of a module or a group. Then, we establish basic facts in
the metabelian case. Section 3 contains preliminary results: the adapta-
tion to the torsion case of computations by Saloff-Coste and Zheng ([26])
of the return probability of the free metabelian group, and the proof of
Theorem 1.4, which is a variation of an embedding theorem of Kaloujinine
and Krasner. Proposition 1.5 is proved in Section 4. In Section 5, we study
sequences of Følner couples in order to apply the machinery of [8] for lower
bounds on the return probability: we state in particular that such sequences
go to a quotient and explain how to construct them for specific extensions.
Finally, in Section 6, we highlight and study specific sections of finitely
generated groups, and show in certain cases that they contain a power of a
finitely generated free metabelian group. As a consequence, we give upper
bounds in terms of the Krull dimension on the return probability.

Acknowledgments. This paper contains some of the results of my doc-
toral dissertation. The question of links between the return probability of
a metabelian group and the Krull dimension as a module of the derived
subgroup of a metabelian group was suggested by Yves Cornulier and Ro-
main Tessera. I am very grateful to them for many valuable discussions,
helpful suggestions and careful reading. I am indebted to Peter Kropholler
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for stimulating discussions, comments and careful reading. I would also like
to thank Sébastien Gouëzel for careful reading as well as Anna Erschler for
her interest and an interesting conversation and an anonymous referee for
useful comments.

2. Krull dimension

Before defining the Krull dimension of a metabelian group, we recall the
definition for a module. In this paper, all rings considered will be commu-
tative with one.

2.1. Krull dimension of a module

We mention two equivalent definitions: the first one will be generalized
later to define the Krull dimension of a group, while the second will be
sometimes easier to handle.

2.1.1. Krull dimension interpreted as the deviation of a poset

We follow [20].
Let A be a poset. If a 6 b, let [a, b] = {x ∈ A | a 6 x 6 b}. This is a

subposet of A, called interval, or factor, from a to b. A descending chain is
a chain (ai)i of elements of A such that a1 > a2 > . . . , and the intervals
[ai+1, ai] are the factors of the chain. If every such descending chain is
eventually constant, we say that A satisfy the descending chain condition.
Similarly, one defines the ascending chain condition. A poset A is trivial if
a 6 b implies a = b, for all a, b ∈ A.

Definition 2.1. — The deviation of A, denoted devA, if it exists, is
• −∞, if A is empty or trivial,
• 0, if A is non-trivial and satisfies the descending chain condition,
• and in general by induction: devA is defined and equal to an ordinal
n, provided devA is not equal to m for every m < n, and in any
descending chain of A, all but finitely many factors have deviation
defined and less than n.

Note that a poset may not have a deviation. A sufficient condition is

TOME 69 (2019), FASCICULE 5
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Proposition 2.2 ([20]). — Any poset with the ascending chain condi-
tion has a deviation.

We may now define the Krull dimension of a module as the deviation of
a natural associated poset.

Definition 2.3. — Let M be a R-module. Denote by LR(M) the
poset of R-submodules of M . The Krull dimension of M as a R-module is
defined as

KrullR(M) = devLR(M),
whenever it exists. Otherwise,M does not have a Krull dimension. We may
forget the reference to the ring whenever it is clear from the context.

Remarks 2.4.
(1) If A is a ring, the Krull dimension of A denotes the Krull dimension

of the A-module A, written Krull(A).
(2) A module satisfying the descending chain condition is called ar-

tinian. Hence, modules of dimension 0 are just artinian modules.

Lemma 2.5 ([20]). — If N is a submodule of M , then

Krull(M) = max{Krull(N),Krull(M/N)}.

2.1.2. Krull dimension interpreted as the dimension of a faithful ring

For commutative Noetherian rings, there is an equivalent way to define
the Krull dimension in terms of length of chains of prime ideals. One can
then derive an equivalent definition for the Krull dimension of a module over
a commutative Noetherian ring. These equivalent definitions will sometimes
turn out to be more tractable. References for this are [9] and [20].

Proposition 2.6 ([20, Theorem 4.8]). — Let A be a commutative Noe-
therian ring. The Krull dimension of A, when finite, is equal to the supre-
mum among the r such that there exists a chain

P0 ( P1 ( · · · ( Pr
of prime ideals in A.

Remark 2.7. — For simplicity, the equivalent definition just stated is for
finite Krull dimension. It is possible to refine it using induction so as to
obtain an ordinal and get a general equivalent definition for Krull dimension
(see [20, 6.4]).

ANNALES DE L’INSTITUT FOURIER
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Examples 2.8.
(1) Any field has dimension 0, and any principal ideal domain that is

not a field has dimension 1.
(2) Polynomial rings over a Noetherian ring A satisfy:

Krull(A[X1, . . . , Xn]) = Krull(A) + n.

Considering invertible variables does not change the dimension:

Krull(A[X±1
1 , . . . , X±1

n ]) = Krull(A) + n.

Given fields K ⊂ L, the degree of transcendence of L over K will be
denoted by trdegK L. For any module M and any element c in M , we
denote by Mc the localization of M with respect to {cn;n ∈ N}.

The second part of example 2.8 actually generalizes: there is a connexion
between Krull dimension and degree of transcendence. Before stating it,
we recall Noether’s normalization theorem ([21], see [3] for this generalized
version).

Theorem 2.9 (Noether’s normalization theorem). — Let A be an in-
tegral domain and let A ⊂ R be an extension of A such that R is finitely
generated as an A-algebra.
Then, there is a non-zero element c in A and elements z1, . . . , zk in

Rc algebraically independent over Ac such that Rc is a finitely generated
Ac[z1, . . . , zk]-module.

Remark 2.10. — The subring Ac[z1, . . . , zk] is isomorphic to a polynomial
ring over Ac. Note that k may be zero.
Moreover, if A = K is a field, then Kc = K for every non-zero ele-

ment c and the theorem says that every finitely generated K-algebra is a
finitely generated module over a polynomial ring over K. The number k of
indeterminates is the Krull dimension of R.

Krull dimension behaves well with respect to extension, as stated in the
next proposition.

Proposition 2.11 ([9]). — Let A be an integral domain, K its fraction
field and P the prime subfield of K.

(1) If A is finitely generated as a P-algebra, then,

Krull(A) = trdegPK.

(2) If A is finitely generated as a Z-algebra, then

Krull(A) = trdegQK + 1.

TOME 69 (2019), FASCICULE 5
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This point of view gives another way to compute the Krull dimension of
a module, as the dimension of a faithful ring.

Proposition 2.12 ([20]). — Let A be a commutative Noetherian ring
and M a finitely generated A-module. Then,

(2.1) KrullA(M) = Krull (A/Ann(M)) ,

where Ann(M) denotes the annihilator of M , that is Ann(M) = {a ∈ A |
aM = 0}.

2.1.3. Refinements

It is useful to distinguish the contributions to Krull dimension that are
made by torsion modules and by torsion-free modules. Let M be a module
and T (M) be the torsion subgroup of the group M . The group T (M) also
carries a module structure, hence has finite exponent, and is a direct factor.

Lemma 2.13 ([13]). — Let M be a Noetherian module and denote by
T (M) the torsion subgroup of M . Then, T (M) is a submodule of M
and there is a torsion-free subgroup N of M such that, as groups, M =
T (M)⊕N .
In particular, the group N is isomorphic to M/T (M).

Definition 2.14. — The torsion-free Krull dimension of M is
Krull0(M) = Krull(M/T (M)) and the torsion Krull dimension of M is
Krullt(M) = Krull(T (M)).

Remark 2.15. — Proposition 2.5 implies that

Krull(M) = max{Krull0(M),Krullt(M)}.

2.1.4. Krull dimension and associated prime ideals

We end this subsection collecting some lemmas about Krull dimension
which will be needed hereafter.

Definition 2.16. — Let M be a R-module. A prime ideal P of R is an
associated prime ideal of M if it is the annihilator of some element in M .
We denote by AssR(M) the set of associated primes of M .

Remark 2.17. — Equivalently, a prime P is an associated prime ideal of
M if R/P is a submodule of M . Note that all the associated prime ideals
of M contain the annihilator of M .

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.18 ([9]). — Let R be a Noetherian ring. Let M,N and Q be
finitely generated R-modules fitting together in a short exact sequence

N ↪→M
p
� Q.

Assume Krull(N) < d and that there exists an ideal P such that, for every
x ∈ Q− {0}, Ann(x) = P, with Krull(R/P) = d.
Then P is an associated prime ideal of M . In particular, M has a sub-

module isomorphic to R/P.

Proof. — Denote by I be the annihilator of N : Krull(R/I) < d implies
I * P. Let x ∈ I, x /∈ P. The module xM has nontrivial image in Q and
one can check that N ∩ xM = {0}. Hence xM ' (xM) ⊂ Q and elements
of xM have annihilator P. �

The next structure result will be very useful in the sequel. This shows
that Noetherian modules are built up from modules isomorphic to R/P
where P is prime.

Proposition 2.19 ([9]). — Let R be a Noetherian ring,M be a finitely
generated R-module. Then, there exist M0,M1, . . . ,Mn submodules of M
such that

(2.2) M = Mn > Mn−1 > · · · > M1 > M0 = 0

and Mi+1/Mi ' R/Pi, where Pi is a prime ideal of R.

As a consequence, and it is probably well-known, the Krull dimension of
a Noetherian module only depends on its associated prime ideals.

Proposition 2.20. — Let R be a Noetherian ring, M be a finitely
generated R-module. Then, the Krull dimension of M is attained by R/P
for some associated prime P of M .

Proof. — Proposition 2.19 gives a decomposition ofM as a tower of rings
of the form R/Pi, and Proposition 2.5 implies that

Krull(M) = max
i
{Krull(R/Pi)}.

Look at the minimal i such that the Krull dimension of Mi+1/Mi is the
Krull dimension of M . We can apply Lemma 2.18 to the exact sequence

Mi ↪→Mi+1 �Mi+1/Mi.

�

TOME 69 (2019), FASCICULE 5
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2.2. Krull dimension of a group

2.2.1. Definition

Tushev defined in [29] the Krull dimension of a group analogously to that
of a module. For a group G, let N (G) be the poset of all normal subgroups
of G.

Definition 2.21 ([29]). — Let G be a group. We say that G admits a
Krull dimension whenever the poset N (G) admits a deviation. In this case,
we set

Krull(G) = devN (G).
Otherwise, G does not admit a Krull dimension.

Examples 2.22.
(1) A finite group has Krull dimension 0.
(2) Z has Krull dimension 1. Indeed, a decreasing sequence of subgroups

of Z is a sequence (cnZ)n, where cn belongs to N and cn | cn+1. The
factors are finite, except when cn is nonzero and cn+1 is zero. This
can only happen once.

Remark 2.23. — If the group is abelian, its Krull dimension coincide with
its Krull dimension as a Z-module.
Morevover, if K,H are subgroups of an abelian group, the deviation of

the factor [H,K] is exactly the dimension of the quotient group K/H.

Lemma 2.24. — A finitely generated abelian group has Krull dimension
zero if it is finite, or one if it is infinite.

Proof. — Such a group G is isomorphic to Zd × F , for some integer d
and some finite group F .

Let G0 < · · · < Gm be a series of subgroups of G in which there are n
infinite factors. For each infinite factor Gj/Gj−1 choose an element xj in
Gj which has infinite order modulo Gj−1. Then these xj taken together
generate a free abelian group of rank n and hence n 6 d.
One can derive an alternative proof from Remark 2.23 above. By (2.1),

the Krull dimension of G is the Krull dimension of Z/Ann(G), when
Ann(G) denotes the annihilator of the Z-module G. Therefore Krull(G)
is 1 if the group is infinite, or 0 if it is finite. �

A reformulation of Proposition 2.2 yields:

Proposition 2.25. — If G satisfies the maximal condition on normal
subgroups, then G has a Krull dimension.

ANNALES DE L’INSTITUT FOURIER
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This is not a necessary condition: the group Z[ 1
p ] does admit a Krull

dimension, equal to 1.

2.2.2. Krull dimension of a G-group

To study the Krull dimension of a metabelian group and link it with the
Krull dimension of certain submodules of the group, we need the following
broader notion. Let G,H be two groups. H is said to be a G-group if there
is an action of G on H containing the inner automorphisms of H. If H
satisfies an exact sequence M ↪→ H � Q, with abelian groups M and Q,
then the induced actions on M and Q endow them with a structure of
G-groups.

Definition 2.26. — Let H be a G-group for some group G. Denote by
NG(H) the subposet of subgroups of H that are stable under the action
of G. We say that H admits a Krull dimension as a G-group whenever the
poset NG(H) admits a deviation. In this case, we set

KrullG(H) = devNG(H),

Otherwise, H does not admit a Krull dimension as a G-group.

Examples 2.27.
(1) The poset NG(H) is a subposet of N (H), therefore KrullG(H) 6

Krull(H).
(2) The Krull dimension of G as a G-group for the conjugation action

is indeed the Krull dimension of G.
(3) If K,L are elements of NG(H), with K ⊂ L, then

dev[K,L] = KrullG(L/K),

where [K,L] is the segment between K and L in NG(H) on the left-
hand side, and L/K denotes the G-group for the induced action of
G on the right-hand side.
As a consequence, if N is a subgroup of a G-group H, stable

under the action of G, then KrullG(N) 6 KrullG(H).
Moreover, if Q is a quotient of a G-group H by a G-stable sub-

group, then the action of G on H induces a structure of G-group
on Q and again KrullG(H) > KrullG(Q).

Lemma 2.28. — Let
M ↪→ H � Q

be a sequence of G-groups. Then,

KrullG(H) = max{KrullG(M),KrullG(Q)}.
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Proof. — The fact that KrullG(H) > max{KrullG(M),KrullG(Q)} fol-
lows from the remarks.
To show the reverse inequality, we use induction on the ordinal

q = max{KrullG(M),KrullG(Q)}.

It holds if q is −∞ or 0. Assume that the reverse inequality is true for any
such extension where the corresponding maximum is strictlty less than q.
Let (Mn)n be a decreasing sequence of NG(H). We need to show that

all but finitely many of the factors [Mn+1,Mn] have deviation less than q.
Equivalently, we need to show that all but finitely many of the G-groups
Mn/Mn+1 have dimension less than q. Denote by p the projection of H into
Q and set In = Mn ∩M and Pn = p(Mn): these are decreasing sequences
of NG(M) and NG(Q) respectively. By definition of q, all but finitely many
of the factors of these sequences have deviation less than q.
To apply the induction hypothesis, consider Sn = Mn+1In in NG(H).

We have
Sn/Mn+1 ↪→Mn/Mn+1

p
�Mn/Sn

and Mn/Sn ' Pn/Pn+1 and Sn/Mn+1 ' In/In+1, hence they have dimen-
sion less than q:

KrullG(Mn/Mn+1) 6 max {KrullG(In/In+1),KrullG(Pn/Pn+1)} < q. �

Corollary 2.29. — Let H,Q be two groups so that Q is a quotient of
H. Then,

Krull(H) > Krull(Q).

Proof. — If G = H, then Krull(H) > KrullH(Q). Morevover the poset
NH(Q) is isomorphic to N (Q). Hence the corollary. �

2.2.3. Krull dimension of a metabelian group

The derived series (G(j))j of a group G is defined inductively by G(0) = G

and G(j+1) = [G(j), G(j)]. The group G is solvable if G(j) = {e} for some j,
and the smallest such j is the derived length of G. Recall that a metabelian
group G is a solvable group with derived length 2. We will denote by Gab
the abelianization G/[G,G] of G. The group G fits into the exact sequence

[G,G] ↪→ G� Gab.

We now consider a general extension of one abelian group by another.
Let G be a metabelian group such that

M ↪→ G� Q,
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whereM and Q are abelian groups. The group G acts onM by conjugation,
and the action of an element g in G only depends on its projection in the
quotient group Q. Hence, it induces an action from Q on M , endowing
M with a structure of ZQ-module. If Q is finitely generated then ZQ is
Noetherian and if G is finitely generated then both ZQ and the ZQ-module
M are Noetherian.
If G is a finitely generated metabelian group, note that Q is virtually Zd,

for some d. Hence, the group G has a finite index metabelian subgroup G1
with torsion-free quotient Zd:

(2.3) M ↪→ G1 � Zd,

and the ring ZZd identifies with Z[X±1
1 , . . . , X±1

d ].

Proposition 2.30. — Let G be a metabelian group, admitting an exact
sequence of the form

M ↪→ G� Q,

where M and Q are abelian groups. The Krull dimension of M as a G-
group for the conjugation action coincide with the Krull dimension of M
as a ZQ-module.
Then, if Krull(M) > 0, we have Krull(G) = Krull(M). Otherwise,

Krull(G) is 0 if the group is finite, 1 if not.

Proof. — This follows from Lemmas 2.24 and 2.28, applied to the action
of G on itself by conjugation. Note that KrullG(Q) is the Krull dimension
of the group Q. �

As a consequence, the Krull dimension of a metabelian group G is the
Krull dimension of [G,G] as a ZGab-module, except when the former is
zero and the group infinite: we retain especially

Krull(G) = KrullZGab
([G,G]), if positive.

In particular, if the dimension is at least 2, we may use any exact se-
quence expressing G as an extension of an abelian group by another one to
compute the Krull dimension of G as the Krull dimension of the module
involved.

Remark 2.31. — An easy consequence of this proposition is that finitely
generated metabelian groups have finite Krull dimension.
In general, a metabelian group G admits a Krull dimension if and only

if it has a finite series of normal subgroups each of whose factor meets the
maximal or the minimal condition for G-invariant subgroups [29]. Recall
that a G-group H is said to satisfy the maximal (minimal) condition for
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G-invariant subgroups if every descending (ascending) chain of G-invariant
subgroups eventually terminates.

Up to passing to a finite index subgroup, we may consider exact sequences
with torsion-free abelian quotient as (2.3).

Proposition 2.32. — Let G be a finitely generated metabelian group.
Consider an exact sequence

M ↪→ G� Q,

with M and Q abelian.
There exists a subgroup G′ of finite index in G such that
(1) Krull(G) = Krull(G′).
(2) G′ is an extension of M by a finitely generated free abelian group.

The proof of the proposition requires the following lemmas.

Lemma 2.33. — Let A ⊃ B be two rings such that A is finitely gener-
ated as a B-module. Then,

Krull(A) = Krull(B) = KrullB(A).

Proof. — Proposition 9.2 of [9] states that Krull(A) = Krull(B). We
compare this quantity with KrullB(A). First, KrullB(A) = devLB(A) >
devLA(A) = Krull(A). On the other hand, KrullB(A) 6 Krull(B) =
Krull(A). �

Lemma 2.34. — Let Q be a finitely generated group and Q′ be a sub-
group of finite index in Q. Let M be a Noetherian ZQ-module. Then

KrullZQ(M) = KrullZQ′(M).

Proof. — Take a decomposition of M as a ZQ-module, as given in (2.2):
M = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ {0}, where Mi+1/Mi = ZQ/Pi, for some
prime Pi. Then,

KrullZQ(M) = max
i
{Krull(ZQ/Pi)}.

Lemma 2.33 above implies that

Krull(ZQ/Pi) = KrullZQ′/(Pi∩Q′)(ZQ/Pi) = KrullZQ′(ZQ/Pi)

and maxi{KrullZQ′(ZQ/Pi)} = KrullZQ′(M). �

Proof of Proposition 2.32. — Let p : G → Q be the projection. The
group Q is a finitely generated abelian group: we may write Q = Q′ × T
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where T is a finite abelian group and Q′ is finitely generated free abelian.
Take G′ = p−1(Q′), it has finite index in G and

M ↪→ G′ � Q′.

Hence, we are left to show that Krull(G) = Krull(G′). By Lemma 2.34
above, KrullZQ(M) = KrullZQ′(M). When this dimension in nonzero,
Proposition 2.30 ensures that we are done. When it is zero, Krull(G) is
0 if the group is finite, 1 if not. As G′ has finite index, we have the same
dichotomy. �

Lemma 2.35. — Let G be a metabelian group. Assume that G satisfies
an exact sequence

M ↪→ G� Q

with M and Q abelian groups.
• If Krull0(M) > 2, then

Krull0(M) = Krull(G/T (G))

where T (G) denotes the torsion subgroup of G. As a consequence,
for any other exact sequence

M̂ ↪→ G� Q̂

satisfied by G, Krull0(M̂) = Krull0(M) and the latter does not
depend on the choice of the exact sequence satisfied by G.

• Denote by M0 the derived subgroup of G. If Krullt(M) > 1, then

Krullt(M) = Krullt(M0)

and the latter does not depend on the choice of the exact sequence
satisfied by G.

Proof. — Assume first that Krull0(M) > 2. As in the proof of Proposi-
tion 2.32 above, write Q = Q′ × T , where T is a finite abelian group and
Q′ is finitely generated free abelian. The exact sequence

M ↪→ G� Q

provides an exact sequence satisfied by the quotient group G/T (G), where
T (G) denotes the torsion subgroup of G and π : G → Q is the canonical
projection:

M/(T (G) ∩M) ↪→ G/T (G)� Q/π(T (G))
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Note that T (G) ∩M = T (M) and the left-hand side is actually M/T (M).
As π(T (G)) ⊂ T,Q/π(T (G)) is isomorphic to Q′×T ′ for some finite abelian
group T ′. Using Lemma 2.34, we have

Krull0(M) = KrullZQ(M/T (M)) = KrullZQ′(M/T (M))
= KrullZ(Q′×T ′)(M/T (M)).

Hence the latter is greater or equal to 2, therefore equal to Krull(G/T (G))
and Krull0(M) = Krull(G/T (G)) as announced.

The proof of the consequence is similar.
Assume now that Krullt(M) > 1 and denote by Q0 the abelianiza-

tion of M0. As M0 is the derived subgroup of G, it is a ZQ-module and
KrullZQ(M0) = KrullZQ0(M0). One have M0 ⊂M and consequently M t

0 =
M t ∩M0. The quotient M t/M t

0 is isomorphic to a subgroup of the tor-
sion subgroup of Qt0, hence has Krull dimension −∞ or 0 as a ZQ-module.
Therefore

Krullt(M) = KrullZQ(M t) = KrullZQ(M t
0) = KrullZQ0(M t

0)

= Krullt(M0). �

As in the case of modules, we may define the following refinements. The
previous lemma ensures that this is well-defined.

Definition 2.36. — Let G be a metabelian group. Assume that G sat-
isfies an exact sequence

M ↪→ G� Q

with M and Q abelian groups.
• If Krull0(M) > 2, the torsion-free Krull dimension of G is defined
as Krull0(G) = Krull0(M) = Krull(G/T (G)).
If Krull0(M) 6 1, set Krull0(G) = 1.

• If Krullt(M) > 1, the torsion Krull dimension of G is defined as
Krullt(G) = Krullt(M).
If Krullt(M) 6 0, set Krullt(G) = 0.

As a consequence, if G satisfies an exact sequence M ↪→ G � Q such
that KrullZQ(M) > 2, we have

Krull(G) = max{Krull0(G),Krullt(G)}.

Example 2.37. — To explain the dichotomies in the previous two def-
initions, consider the following example, suggested by Gouëzel. Let G =
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Z⊕ ((Z/2Z) oZk). The group G has Krull dimension k. It satisfies the exact
sequence ⊕

Zk

Z/2Z ↪→ G� Z⊕ Zk.

SetM1 =
⊕

Zk Z/2Z. Then, Krull0(M1) = Krull(0) =−∞ and Krullt(M1) =
Krull(M1) = k.

The group G also satisfies the exact sequence

Z⊕

(⊕
Zk

Z/2Z
)
↪→ G� Zk.

Set M2 = Z ⊕ (
⊕

Zk Z/2Z). Then, Krull0(M2) = Krull(Z) = 1 and
Krullt(M2) = Krull(

⊕
Zk Z/2Z) = k.

The group H = (Z/2Z) ⊕ (Z o Zk) provides a similar example for the
torsion Krull dimension.

2.3. Examples

We study now three classes of examples. First, we consider small dimen-
sional metabelian groups and study the rank of the torsion-free ones. Then,
in the second and third paragraphs, we give the Krull dimension of some
metabelian wreath products and of the free (p-)metabelian groups (see the
definitions below). These two last classes will appear to be fundamental in
the sequel.

2.3.1. Small dimensional metabelian groups

Finitely generated metabelian groups of Krull dimension 0 are finite,
as stated in Proposition 2.30. When the dimension is 1 and the group is
torsion-free, we can also say something about the structure. Recall that
a group has finite Prüfer rank if there exists an integer r such that any
finitely generated subgroup can be generated by at most r elements. The
least such r is the Prüfer rank of the group.

Proposition 2.38. — Let G be a finitely generated torsion-free metab-
elian group of dimension one. Then, it has finite Prüfer rank.

This Proposition is false if we do not assume that the group is torsion-
free: the lamplighter is a counter-example, as it has dimension 1 but infinite
Prüfer rank. Moreover, we shall see later in Section 4 that a finitely gen-
erated metabelian group of dimension 1 whose derived subgroup is torsion
has a subgroup isomorphic to a lamplighter.
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Proof. — Let G be a finitely generated torsion-free metabelian group of
dimension 1. By Proposition 2.32, up to passing to a finite index subgroup,
we may assume that G fits inside an exact sequence

M ↪→ G� Zd,

for some integer d, and abelian group M . The group M is a Noetherian
ZZd-module and, by Proposition 2.19, it admits an increasing sequence of
submodules Mi whose factors have the form ZZd/P, for P a prime ideal.
We first consider the case where M is a ring. It has characteristic zero,

and Proposition 2.11 implies that the transcendental degree of its fraction
field over Q is zero, so M is an algebraic number field. Algebraic number
fields have finite Prüfer rank. Hence, M has finite Prüfer rank.
In the general case, we look at a decomposition of M : the subquotients

Mi+1/Mi have dimension either zero or one. If the dimension is one, it
is enough to show that the characteristic is not positive. By contradic-
tion, suppose Mk+1/Mk has positive characteristic p and dimension 1.
Mk+1/Mk ' ZZd/P, with P prime, hence p is prime. Then, the transcen-
dental degree of the fraction field ofMk+1/Mk is 1, and Proposition 4.3 will
imply that it contains Fp[X±1]. Pulling back the transcendental element X
in Mk+1: we still get a transcendental element, which contradicts the fact
that M is torsion-free of dimension 1.
The property of being of finite Prüfer rank is stable under extension, and

finitely generated abelian groups have finite Prüfer rank. Hence, as M has
finite Prüfer rank, G has finite Prüfer rank as well. �

2.3.2. Wreath products

Let K and H be countable groups. The wreath product K oH with base
group H is the semi-direct product (

⊕
h∈H Kh)oH where Kh are copies of

K indexed by H, and H acts by translation of the indices. More precisely,
one may identify elements in

⊕
h∈H Kh with finitely supported functions

from H to K. Thus, for any two elements (f, h), (f, h′) in the group, their
multiplication is given by

(f, h)(f ′, h′) = (ff ′(h−1•), hh′).

Similarly, the unrestricted wreath product of K by H, denoted by K o oH
is the semi-direct product (

∑
H Kh) oH.

The most classical example of a wreath product is the lamplighter group
(Z/2Z) o Z. This group is generated by two elements (0, 1) and (δ0, 0),
where δ0 is the function from Z to Z/2Z taking value 1 in 0, and vanishing
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elsewhere. This group can be described in the following way: imagine a
bi-infinite pathway of lamps, one for each integer. Each one of those lamps
can be on or off, and a lamplighter is walking along the line. An element of
the group corresponds to a configuration for the lamps, with only finitely
many of them lit, and a position for the lamplighter. The first generator
(0, 1) changes the position of the lamplighter while the second generator
(0, δ0) has him change the state of the lamp at his current position. A
configuration is a function from Z to Z/2Z and corresponds to an element
in F2[X,X−1]. This subgroup has dimension 1 as a Z[X,X−1]-module.
In other words, the lamplighter group (Z/2Z) o Z has an elementary

abelian subgroup of dimension 1 such that the quotient is Z. Hence, its
Krull dimension is 1.
Other examples are:
(1) Krull(Z o Zd) = d+ 1.
(2) Krull(F o Zd) = d, where F is a finite group.

2.3.3. Free (p-)metabelian groups

Denote by Fd the free group of rank d. Let F ′d be its derived subgroup
and F ′′d the second term of its derived series.
The free metabelian group of rank d is

B
(p)
d := Fd/F

′′
d

and the free p-metabelian group of rank d is

B
(p)
d := Fd/F

′′
d (F ′d)p.

B
(p)
d is the freest metabelian group whose derived subgroup has exponent

p and is the quotient of the free metabelian group of rank d, Bd by the p-
powers of its commutators.
These two groups have abelianization Zd and looking at the associated

exact sequence, one may compute their dimensions:

Krull(Bd) = d+ 1, and Krull(B(p)
d ) = d.

3. Preliminaries

3.1. Generalities on the return probability

We review some known properties and known behaviours for p2n to pro-
vide a larger picture to the reader.
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3.1.1. Stability properties ([22])

(1) Let H be a finitely generated subgroup of G. Then pH2n % pG2n.
(2) Let Q be a quotient of G. Then pQ2n % pG2n.

If the index of the subgroup, respectively the kernel of the quotient, is
finite, then the inequality is an equivalence.
As a consequence, when studying the return probability of a finitely

generated metabelian group of a given Krull dimension, we may assume
that its admits an exact sequence such as (2.3), up to passing to a finite
index subgroup (see Proposition 2.32).

3.1.2. Known behaviours: amenability and growth

The following results were mentioned in the introduction.
(1) G has polynomial growth of degree d iff pG2n ∼ n

−d
2 (see [14, 32]).

(2) G is non-amenable iff pG2n ∼ exp(−n) ([17]).
(3) If G has exponential growth then pG2n - exp(−n 1

3 ) ([14]). More-
over, if G is a discrete subgroup of a connected Lie group, there is
an equivalence: G is amenable with exponential growth iff pG2n ∼
exp(−n 1

3 ).
These three previous behaviours are the only possible ones in this

case.
In the introduction, we mentioned that outside the world of discrete

subgroups of connected Lie groups, far more behaviours happen. Here are
some other examples.

3.1.3. Known behaviours: among solvable groups

(1) Lamplighter groups:
• Z o Zd : pZoZ

d

2n ∼ exp(−n
d

d+2 (logn)
2

d+2 ),

• F o Zd : pF oZ
d

2n ∼ exp(−n
d

d+2 ) (see [10]).

(2) Free solvable groups on d generators:
• Free metabelian group Bd: pBd

2n ∼ exp(−n
d

d+2 (logn)
2

d+2 ),

• Free r-solvable group(r > 2) Bd,r: p
Bd,r

2n ∼ exp(−n( log[r−1] n

log[r−2] n
) 2

d )
([26]).
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3.2. Return probability of B(p)
d

In [26], Saloff-Coste and Zheng computed the asymptotic of the return
probability of the free solvable group of rank d (and, in particular, that of
the free metabelian group of rank d), using a method based on the Magnus
embedding. In this part, we explain why it is possible to use their techniques
to get the return probability of the free p-metabelian group, obtained by
adding p-torsion to the derived subgroup. The only thing to do is to check
that the Magnus embedding behaves well in this case: this was done by
Bachmuth in [2].
Recall that the Magnus embedding allows to embed groups of the form

Fd/[N,N ], with N a normal subgroup of Fd, into the wreath product Zd o
(Fd/N) ([19]).
In the case of Bd, the free metabelian group of rank d, this applies to

N = F ′d. The resulting wreath product is Zd o Zd, that is,the semi-direct
product

⊕
Zd Zd o Zd, where Zd acts by shift on

⊕
Zd Zd.

The embedding takes the following form. Let s1, . . . , sd denote the clas-
sical generators of Fd, and a1, . . . , ad their images in the abelianization Zd.
Consider matrices of the form(

b m

0 1

)
with b in Zd and m ∈ M , the free Z(Zd)-module of rank d with basis
(ei)i=1,...,d. This is a matricial representation of Zd oZd. Let i be the exten-
sion to a homomorphism of

si 7→
(
ai ei
0 1

)
.

Magnus proved that the kernel of this homomorphism is [[Fd, Fd], [Fd, Fd]]
([19]). Therefore, i induces an embedding from Bd to Zd o Zd.
Bachmuth studied this representation in the case of free k-metabelian

groups, for any positive integer k. He proved that moding out by k in the
derived subgroup corresponds to moding out by k in M , that is

Proposition 3.1 ([2, Proposition 1]). — The Magnus embedding in-
duces an embedding of the free k-metabelian group of rank d, B(k)

d into
(Z/kZ)d o Zd.

A lower bound for p
B

(k)
d

2n follows directly from the comparison with
(Z/kZ)d o Zd :

p
B

(k)
d

2n % exp(−n
d

d+2 ).
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In [26], Saloff-Coste and Zheng used the Magnus embedding to produce
upper bounds for the return probability of groups of the form Fd/[N,N ],
for some normal subgroup N of Fd.
They introduced the notion of exclusive pair in such a group Fd/[N,N ],

made of a subgroup Γ together with an element ρ of the derived subgroup.
The pair is designed so that the images of Γ and ρ in the Z-moduleM should
have minimal interaction (we refer to [26, §4] for a precise definition). From
this, they derived a comparison ([26, Theorem 4.13]): the return probability
of Fd/[N,N ] is smaller than the return probability of the subgroup Z o Γ̄ in
Zd o (Fd/N), where Γ̄ is the image of Γ in Fd/N .

In the case of the free metabelian group Bd, Γ can be chosen so that Γ̄
has finite index in Zd (more generally, this is possible whenever Fd/N is
nilpotent).
Their techniques still apply to the free k-metabelian groups, if one con-

sider Z/kZ-modules instead of Z-modules and yield

p
B

(k)
d

2n - pZ/kZoZ
d

2n - exp(−n
d

d+2 ).

As a conclusion, we get

Proposition 3.2. — The return probability of the free k-metabelian
group of rank d is equivalent to exp(−n

d
d+2 ).

3.3. An embedding theorem for metabelian groups that
preserves the Krull dimension

In this section, we consider a finitely generated metabelian group G,
extension of an abelian group M by a finitely generated abelian group Q.
Recall that M also carries a structure of ZQ-module.
A famous theorem of Kaloujinine and Krasner allows to embed G in a

split metabelian group.

Theorem 3.3 (see [16]). — Any extension of a group A by a group B
embeds in the non-restricted wreath product A o oB of A with B.

We first recall their construction and then explain how to modify it so
as to preserve the Krull dimension.

3.3.1. The embedding of Kaloujinine and Krasner

Fix a section s : Q→ G of the group. The embedding i : G ↪→M o oQ =∑
QM oQ is given by

g 7→ (fg, ḡ).
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where ḡ is the image of g in the quotient Q and

fg :
{
Q→M

q 7→ s(gq)−1gs(q).

Note that the embedding does depend on s. This embedding commutes
with the projection on Q, and its restriction to M is ZQ-equivariant. Let
S be a finite generating set for G and π : M o oQ →

∑
QM denote the

canonical projection. Set T = π(i(S)), it is a finite subset of the base of
the wreath product M o oQ. The subgroup Ĝ, generated by T and Q in
M o oQ, contains i(G) and is the semi-direct product BoQ, where B is the
submodule of

∑
QM generated by T .

Therefore, G embeds in the finitely generated split metabelian group Ĝ.

3.3.2. Respecting the Krull dimension

We now explain how to modify this embedding so that the Krull dimen-
sion of the target group equals Krull(G).

Let
S = {C ⊂ B submodule | C ∩ i(G) = {0}} .

Zorn’s lemma provides us a maximal element C0 of S. Set B0 = B/C0.
By construction, G embeds in B0oQ. We still denote by i the composition
of i with the projection onto B0oQ. Note that every submodule of B0 now
intersects i(G).

Claim. — The associated prime ideals of B0 and M are the same.

Indeed, Ass(M) ⊂ Ass(B0), because M ⊂ B. On the other hand, if P is
an associated prime of B0, then ZQ/P is a submodule of B0, hence does
intersect i(G): there exists g in G such that i(g) ∈ ZQ/P. More precisely, g
projects trivially onto Q and thus belongs to M . It generates a submodule
isomorphic to ZQ/P in M .

Lemma 2.20 then implies thatM and B0 have the same Krull dimension.
Now (see Proposition 2.30), if this dimension is positive, this is also the
dimension of G and B0 oQ, and we are done. Otherwise, M and B0 have
dimension 0. If G is infinite, so is B0 oQ, and they have dimension 1. The
last case arises when Krull(G) = Krull(M) = 0, that is G is finite: B0 oQ

is finite as well, hence has dimension 0.
We just proved
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Theorem 3.4. — Let G be a metabelian group, given as an extension

M ↪→ G� Q,

with M and Q abelian.
Then, there exists an embedding of G inside a split metabelian group

BoQ, commuting with the projection on Q, such that M and B have the
same associated prime ideals. In particular, Krull(G) = Krull(B oQ).

Moreover, if G is finitely generated, B o Q can be chosen to be finitely
generated as well.

4. Special subgroups of metabelian groups

The purpose of this section is to prove

Proposition 4.1. — Let G be a metabelian group. Assume G has Krull
dimension at least 2. Then, G has a subgroup isomorphic to either Z o Z,
or to B(p)

2 for some prime p.
The first option happens whenever Krull0(G) > 2, and the consequence

for the return probability of G is

pG2n - exp
(
−n 1

3 (logn) 2
3

)
.

The second option happens whenever Krullt(G) > 2, and yields

pG2n - exp
(
−n 1

2

)
.

4.1. Looking for transcendental elements

We first show that a group of dimension k contains a maximal polynomial
ring of the same dimension.

Proposition 4.2. — Let G be a finitely generated metabelian group,
satisfying

(4.1) M ↪→ G� Q,

with M abelian and Q free abelian. Assume that G has Krull dimension
k > 2.
Then, M contains a ring isomorphic to Z[X±1

1 , . . . , X±1
k−1] or Fp[X±1

1 ,

. . . , X±1
k ], for some prime p. The first option happens whenever Krull0(G) =

k, the second whenever Krullt(G) = k.

To prove Proposition 4.2, it will be enough to deal with the case of M
being a ring, thanks to Propositions 2.19 and 2.20 on the structure of M .
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4.1.1. The case of a ring

In this paragraph, let Q be a finitely generated free abelian group and A
be a ring isomorphic to ZQ/P, for some prime ideal P. The group Q acts
on A by multiplication by the corresponding monomial. The characteristic
of A is either a prime p, or zero. Denote by K be the fraction field of A,
and by P its prime field.

Proposition 4.3. — Let D be the degree of transcendence of K over P.
Then A contains a family of D transcendental monomials which is al-

gebraically free. The subring generated by this family is, according to the
characteristic, either of the form

Z[X±1
1 , . . . , X±1

D ] or Z/pZ[X±1
1 , . . . , X±1

D ],

for some prime p.
As a consequence, if A has Krull dimension d, we have the following

dichotomy:
• when the ring A has characteristic p, A has a subring isomorphic
to Z/pZ[X±1

1 , . . . , X±1
d ].

• when A has characteristic zero, A has a subring isomorphic to
Z[X±1

1 , . . . , X±1
d−1].

Lemma 4.4. — Let C be a subfield of K. If the degree of transcendence
of K over C is positive then there is a transcendental monomial in A.

Proof. — By hypothesis, there exists in K an element which is transcen-
dent over C. We can write it t1

t2
, with t1, t2 ∈ A. The set of all elements

of K that are algebraic over C is a subfield of K, therefore one of the ti’s
has to be transcendental. This transcendental element belongs to A and is
a polynomial modulo P, hence a linear combination of monomials. Again,
one of its monomials has to be transcendental. �

We may now proceed to the proof of the proposition.

Proof of Proposition 4.3. — The proof is by induction on D.
Applying the previous lemma with C = P yields a monomial m1 ∈

A, transcendental over P. Let k 6 D. Suppose we have constructed an
algebraically free family (m1, . . . ,mk−1) of transcendental monomials of
A over P. Then, the transcendence degree of K over P(m1, . . . ,mk−1) is
D − k + 1 > 0. We apply the lemma again with C = P(m1, . . . ,mk−1) to
get mk. �
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4.1.2. Proof of Proposition 4.2

Proof. — The group G fits into an exact sequence such as (4.1) with
quotient Q ' Zd, for some d. As a consequence of Lemma 2.13, one can
write the module M as M = T (M) ⊕ M0, where T (M) is the torsion
subgroup of M and M0 is torsion-free. We have

Krull0(G) = Krull(M/T (M)) and Krullt(G) = Krull(T (M)).

Proposition 2.20 implies that T (M), respectively M/T (M), contains a
ring isomorphic to ZZd/P of Krull dimension Krull(T (M)), respectively
Krull(M/T (M)).
Conclusion then follows from Propositions 2.11 and 4.3, up to pulling

back the polynomial ring in the second case. �

Remark 4.5. — According to its proof, this proposition rewrites as fol-
lows:

• If Krull0(G) = k, there exists Q0 ⊂ Q, with Q0 ' Zk−1, and m ∈ A
such that ZQ0.m ' ZQ0 as ZQ0-modules.

• If Krullt(G) = k, there exists Q0 ⊂ Q, with Q0 ' Zk, and m ∈
A such that ZQ0.m ' (Z/pZ)Q0 as (Z/pZ)Q0-modules, for some
prime divisor p of n.

4.2. Wreath products inside metabelian groups

We use the results of the previous subsection to exhibit wreath products
as subgroups of some (split) metabelian groups.

4.2.1. In split metabelian groups

Proposition 4.6. — Let G be a split finitely generated metabelian
group, that is G = M oQ, with M and Q abelian. Let k be the Krull
dimension of G and assume k > 1. Then,

(1) if Krull0(G) = k, then G has a subgroup isomorphic to Z oZk−1. As
a consequence,

pG2n - p
ZoZk−1

2n ∼ exp
(
−n

k−1
k+1 (logn)

2
k+1

)
.

(2) otherwise, there exists a prime p such that G has a subgroup iso-
morphic to (Z/pZ) o Zk. As a consequence,

pG2n - p
(Z/pZ)oZk

2n ∼ exp
(
−n

k
k+2

)
.
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Proof. — Up to passing to a finite index subgroup, we may assume
that Q is a finitely generated free abelian group (Proposition 2.32). This
does not change the dimension nor the return probability. In both cases,
Proposition 4.2 implies that M contains a ring isomorphic to either
Z[X±1

1 , . . . X±1
k−1], or to Fp[X±1

1 , . . . X±1
k ] for some prime p. We denote this

ring by B.
Recall that these algebraically free transcendental elements are actually

monomials of Q ' Zd. The subgroup of G generated by B and these mono-
mials is either Z o Zk−1 or (Z/pZ) o Zk. �

4.2.2. In general metabelian groups

In the general case, we may not be able to lift commutatively the tran-
scendental elements obtained as we do in Proposition 4.6.

For instance, in the free metabelian group B2, the images of the two
generators of Z2 by any section s from Z2 to B2 will never commute.
We still have the following corollary.

Corollary 4.7. — Let G be a metabelian group. If Krull0(G) > 2,
then G has a subgroup isomorphic to Z o Z and

pG2n - p
ZoZ
2n ∼ exp

(
−n 1

3 (logn) 2
3

)
.

This proves the first part of Proposition 4.1. The next part deals with
the case Krullt(G) > 2.

4.3. Extensions of torsion modules by Z2

Let p be a prime. The p-metabelian free group of rank 2, B(p)
2 fits into

an exact sequence

(4.2) [B(p)
2 , B

(p)
2 ] ↪→ B

(p)
2 � Z2.

Denote by α and β its two generators. As a group, [B(p)
2 , B

(p)
2 ] is generated

by conjugates of [α, β]. Hence, it is generated by [α, β] as a Fp[X±1, Y ±1]-
module and [B(p)

2 , B
(p)
2 ] is a cyclic module. As it is also a torsion-free mod-

ule, it is isomorphic to Fp[X±1, Y ±1].

Lemma 4.8. — Let H be an extension of Fp[X±1, Y ±1] by Z2, with
the usual action of Z2 on Fp[X±1, Y ±1]. Then H is metabelian and has a
subgroup isomorphic to B(p)

2 .
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Proof. — H is metabelian because the action is not trivial.
Take a, b in H so that they do not commute and so that their projections

in Z2 generate Z2. We claim that 〈a, b〉 is isomorphic to B(p)
2 . Indeed, 〈a, b〉

is a metabelian group generated by two elements. Its derived subgroup is
the ideal ([a, b]) in Fp[X±1, Y ±1], which is isomorphic to Fp[X±1, Y ±1]. It
satisfies

(4.3) Fp[X±1, Y ±1] ↪→ 〈a, b〉� Z2.

Moreover, it is a quotient of the free p-metabelian group of rank 2 : there
exists

p : B(p)
2 � 〈a, b〉.

This p is a morphism of extensions (4.2) to (4.3), hence an isomorphism. �

Remark 4.9. — If the extension splits, the group H has a subgroup iso-
morphic to the bigger group (Z/pZ) o Z2.

We may now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. — Let G be a finitely generated metabelian
group. Again, we can reduce by Proposition 2.32 to the case of G fitting in
an exact sequence such as (4.1) with torsion-free quotient Zd, for some d.
Assume that Krull(G) > 2. There are two cases:

(1) Krull0(G) > 2. Then, Corollary 4.7 implies that G has a subgroup
isomorphic to Z o Z.

(2) Krullt(G) > 2. Let

M ↪→ G� Q

with M abelian, and Q torsion-free abelian of finite rank. Then, M
has a submodule isomorphic to Fp[X±1, Y ±1], for some prime p (see
Proposition 4.2). The elements X and Y come from monomials of
Q ' Zd. The subgroup generated by the ring Fp[X±1, Y ±1] and lifts
of the two corresponding monomials is an extension of Fp[X±1, Y ±1]
by Z2, with the usual action of Z2. We conclude with an application
of Lemma 4.8.

Consequences in term of return probability follow from computations for
Z o Z (see [10]) and B(p)

2 (see Proposition 3.2). �
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5. Return probability lower bounds via the construction
of sequences of Følner couples

5.1. Følner couples and return probability

Definition 5.1 (see [8] and [10]). — Let G be a finitely generated
metabelian group. We denote by S a finite and symmetric generating set of
G, and consider the associated word distance. Let V be a positive continu-
ous increasing function on [1,+∞) whose inverse is defined on [V(1),+∞).
We say that G admits a sequence of Følner couples adapted to V if there
exists a sequence (Ωm,Ω′m)m∈N of pairs of non-empty finite sets Ω′m ⊂ Ωm
in G, with #Ωm ↗∞ such that

(1) #Ω′m is a positive proportion of #Ωm : #Ω′m > c0#Ωm.
(2) Ω′m lies linearly inside #Ωm : Ω′mSm ⊂ Ωm.
(3) V controls the size: #Ωm 6 V(m).

When there exists a positive constant C such that V(t) = CeCt, we should
say that G admits a sequence of Følner couples of exponential size.

Remark 5.2. — Note that if (Ωm,Ω′m)m is a sequence of Følner couples
adapted to V, so is the sequence (Ω′mSm,Ω′m)m. It is in some sense the
smallest one and we will refer to it as the smaller version of (Ωm,Ω′m)m.

Given this, one can deduce a lower bound for the return probability,
depending on V (see Coulhon, Grigor’yan and Pittet [8], as well as Er-
schler [10] for more general statements). We only recall the corollary that
we need.

Corollary 5.3 ([8]). — If a group G admits a sequence of Følner cou-
ples adapted to a function of the form V(t) = C exp(Ctd), then

pG2n % exp(−n
d

d+2 ).

5.2. Følner couples for split metabelian groups

In this part, we prove Theorem 1.2. For any finitely generated metabelian
group, Proposition 2.32 provides us with a finite index subgroup G, of the
same Krull dimension, admitting an exact sequence

(5.1) M ↪→ G� Zd,

with M abelian. The return probability of G is equivalent to that of the
initial group. Morevover, as the return probability increases when going to
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a subgroup, Theorem 3.4 imply that, when looking for lower bounds on the
return probability for metabelian groups, we can reduce to the split case.
Therefore, it will be enough to prove Theorem 1.2 in the split case,

namely for a finitely generated metabelian groupG of the formG = MoZd,
with M abelian. Our goal is then to produce sequences of Følner couples
for such a group G so as to apply Corollary 5.3. These sequences will take
the following form.

Definition 5.4. — Let G = Ao B be a finitely generated semi-direct
product. Equip G with a generating set S = SA t SB where SA ⊂ A

generates A as a ZB-module and SB ⊂ B generates B. We should say
that G admits a sequence of split Følner couples if it has a sequence of
Følner couples of the form (Ωm × Fm,Ω′m × F ′m)m, with Ωm,Ω′m ⊂ A and
Fm, F

′
m ⊂ B.

Remark 5.5. — In the previous definition, the sequence (Fm, F ′m)m is a
sequence of Følner couples for B. Moreover, #Ω′m is a positive proportion
of #Ωm.

5.2.1. When M is a ring of positive prime characteristic

We deal first with the case ofM being a ring ZZd/P of positive character-
istic, with P a prime ideal. Hence, in this part, M is Fp[X±1

1 , . . . , X±1
d ]/P,

for some prime p and some prime ideal P. Denote by π the canonical pro-
jection

π : Fp[X±1
1 , . . . , X±1

d ]→ Fp[X±1
1 , . . . , X±1

d ]/P.
and by Bm the polynomials of degree bounded by m, that is

(5.2) Bm = {P ∈ Fp[X±1
1 , . . . , X±1

d ] | Supp(P ) ⊂ [[−m,m]]d}.

Note that Bm, as well as π(Bm) are abelian groups.
The following proposition is straightforward.

Proposition 5.6. — The sequence

(Ωm,Ω′m)m = (π(B2m) o [[−2m, 2m]]d, π(B2m) o [[−m,m]]d)m
is a sequence of split Følner couples adapted to

V(m) = #B2m 6 C exp(Cmd).

Remarks 5.7. — Obviously, this V is not optimal, although it gives, by
Corollary 5.3, a lower bound on the return probability depending only on
the rank of Gab:

pG2n % exp(−n
d

d+2 ).
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The following lemma aims to improve it, making use of Noether’s nor-
malization theorem 2.9 to control the size.

Lemma 5.8. — There exists a constant C such that

(5.3) #π(Bm) 6 C exp(Cmk),

where k is the Krull dimension of Fp[X±1
1 , . . . , X±1

d ]/P.

Proof. — By Noether’s normalization theorem 2.9, there exists elements
z1, . . . , zk in Fp[X±1

1 , . . . , X±1
d ]/P giving it the structure of a finitely gen-

erated module over its subring Fp[z1, . . . , zk]. Hence, each element X±1
i is

integral over Fp[z1, . . . , zk] and is a root of a monic polynomial with coef-
ficients in Fp[z1, . . . , zk]. We may assume that these polynomials have the
same degree D. Let N be such that the support of all coefficients appearing
in these polynomials lies in [[−N,N ]]k.
Then, for X being one of the X±1

i , we may write each power XD+r

as a polynomial in X, . . .XD−1, whose coefficients have support inside
[[−rN, rN ]]k.
Therefore, we can write any element of π(Bm) as a linear combination

of monomials Xn1
1 , . . . Xnd

d with (n1, . . . , nd) ∈ [−D,D]d and coefficients
which are elements of Fp[z1, . . . , zk], with support in [[−Cm,Cm]]k, for
some constant C. �

5.2.2. Følner sequences for extensions

In this part, we recall and prove Proposition 1.3 stated in the introduc-
tion.

Proposition 5.9. — Let G be a finitely generated split metabelian
group, whose derived subgroup is torsion. Assume G has Krull dimension
k > 1. Then

p2n ∼ exp(−n
k

k+2 ).

Proof. — As mentionned at the beginning of this subsection, we may
assume that G fits inside an exact sequence such as (5.1), with torsion-free
quotient.
The upper bound comes from Proposition 4.6. We are left with the lower

bound: it is enough (see Corollary 5.3) to show that G admits a sequence
of Følner couples adapted to V(m) = C exp(Cmk), for some C.

The proof of this fact uses recurrence along the decomposition (2.2) of
the subgroup M as an increasing sequence of submodules. Initialization is
given by Proposition 5.6 and Lemma 5.8, and iteration follows from the
next lemma. �
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Lemma 5.10. — Let G = M oZd be a split metabelian group, with M
a torsion ZZd-module of Krull dimension at most k.
Assume that

(1) there exists a submoduleM1 inM such thatM1oZd admits a split
sequence of Følner couples (Ωm o [[−2m, 2m]]d,Ω′m o [[−m,m]]d)m
adapted to V(m) = C exp(Cmk), where Ωm and Ω′m are abelian
subgroups of M1,

(2) M/M1 is a ring of the form Z(Zd)/P, with P a prime ideal.

Then, the group G admits a split sequence of Følner couples adapted to
a function V ′(m) = C ′ exp(C ′mk), of the form (Γm o [[−2m, 2m]]d,Γ′m o
[[−m,m]]d)m. Moreover, the projections Γm,Γ′m on M are abelian sub-
groups.

Proof. — We have M/M1 = ZZd/P for some prime ideal P, and this
module has dimension at most k. Its characteristic is a prime p. Let 1Q
be a lift of the unit of M/M1 in M . The ZZd-module M2 generated by
1Q surjects onto M/M1, and is of the form ZZd/I, for some ideal I ⊂ P.
Because M is a torsion module, M2 is actually a ring of characteristic n,
for some multiple n of p.
We cannot apply directly Noether’s normalization theorem to M2. To

get around this, note that the projection M2 � M/M1 have finite fibres
of cardinality n

p . Hence, we can do as in part 5.2.1: consider the finite
subgroup Bm in ZZd (defined in (5.2)). Noether’s normalization theorem
provides us with an upper bound on the cardinality of its projection π(Bm)
into M/M1, where π : ZZd � M/M1. Let Λm be the pullback of π(B2m)
in M2. It is also the projection of B2m in M2 = ZZd/I. Because the fibres
are finite, the cardinality of Λm satisfies (5.3), for some constant C1:

#Λm 6 C1 exp(C1m
k) = V1(m).

Note that Λm is an abelian subgroup of M .
We fix a generating set S for G as follows:

S = S1 ∪ {(±1Q, 0)},

such that S1 = S′1 ∪ {(0,±e1), . . . (0,±ed)} with S′1 a finite and symmetric
generating set for the finitely generated Z(Zd)-moduleM1 and (ei)di=1 being
the canonical basis of Zd. We choose S1 so as to be compatible with the
sequence of Følner couples of M1 o Zd.
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Consider the following sequence of couples indexed by m ∈ N:

Fm = {P.1Q + ω | P ∈ Λm, ω ∈ Ωm}o [[−2m, 2m]]d

F ′m = {P.1Q + ω | P ∈ Λm, ω ∈ Ω′m}o [[−m,m]]d.

We claim that this is a sequence of Følner couples for the group G, adapted
to V ′(m) = C ′ exp(C ′mk), for some constant C ′. Note that the projections
onM are again abelian subgroups. Indeed, #Fm 6 V1(m)#Ωm(4m+1)d 6
C ′ exp(C ′mk). The choice of a sequence of Følner couples for Ωm and Ω′m
implies #Ω′m > c#Ωm, and that F ′mSm ⊂ Fm.
The last condition, namely #F ′m

#Fm
> c, follows from the following straight-

forward fact, applied to H = M , Ω = Ωm,Ω′ = Ωm and X = Λm. �

Fact 5.11. — Let H be a group and Ω′ ⊂ Ω be two subgroups of H.
Assume that X is a subset of H so that ΩX and Ω′X are subgroups. Then

[ΩX : Ω′X] 6 [Ω : Ω′].

We may now complete the proof of Theorem 1.2.
Proof of Theorem 1.2. — As the return probability increases when tak-

ing subgroups, the theorem follows from Corollary 5.9 and Theorem 3.4. �

5.3. Proof of Theorem 1.1

The proof of Theorem 1.1 requires to manage with the torsion submodule
and torsion-free quotient of M so as to deal with both cases. Therefore,
Lemma 5.10, that provides Følner couples for extension in the torsion case,
will not suffice.
We first prove a proposition stating that admitting Følner couples de-

scends to the quotient in finitely generated groups. The fact that it goes to
a subgroup is due to Erschler [10].

Proposition 5.12. — Let G be a finitely generated group and Q be a
quotient of G.
Assume that G admits a sequence of Følner couples adapted to a function

V. Then, so does Q.

Proof. — Equip G with a finite and symmetric generating set S and H
with the projection T of S to the quotient.

Denote by (Ωn,Ω′n)n the given sequence of Følner couples. If h is a func-
tion from a discrete group K to R, ‖h‖1 =

∑
k∈K |h(k)| designates its

L1-norm.
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Set fn = 1Ω′n and |∇nfn|(g) = supx∈Sn |fn(g)− fn(gx)|. The latter gra-
dient measures the variations of fn along Sn. We have, for some constant c:

‖|∇nfn|‖1 6 c‖fn‖1.

Let f̂n be the function from Q to R defined by

f̂n(q) =
∑

g∈π−1(q)

f(g).

The norm is preserved: ‖f̂n‖1 = ‖fn‖1 = #Ω′n. Similarly, consider the
gradient |∇̂nf̂n|(q) = supx∈Tn |f̂n(q)− f̂n(qx)|. Then, we have: ‖|∇̂nf̂n|‖1 6
‖|∇nfn|‖1 6 c‖f̂n‖1.

For a subset A of G we denote by ∂nA the n-boundary of A, that is:
∂nA = ASn ∩ ACSn. The following version of the co-area formula (see for
instance [27] (3.1) for a proof):

1
2

∫
R+

#∂n{f > t}dt 6 ‖∇nf‖1 6
∫
R+

#∂n{f > t}dt,

implies that there exist t > 0 and C > 0, such that

#(∂n{f̂n > t}) 6 C#{f̂n > t}.

Set Ω̂′n = {f̂n > t} and Ω̂n = Ω̂′n ∪ ∂nΩ̂′n. We claim that (Ω̂n, Ω̂′n) is a
sequence of Følner couples for Q adapted to V. �

Remark 5.13. — It is possible to elaborate on the technique appearing
in this proof and to generalize this lemma to the context of locally com-
pact compactly generated groups. The good setting for this seems to be
the theory of isoperimetric profiles of groups through an approach similar
to [27, 28]. This will be the content of a forthcoming paper, see [15] for
more details.

Corollary 5.14. — Let G = MoQ be a finitely generated semi-direct
product and H = M ′ oQ, with M ′ a quotient of M as a ZQ-module.
Assume G admits a sequence of split Følner couples of exponential size

whose projection onto Q is (Fn, F ′n)n, then H admits a sequence of split
Følner couples of exponential size that projects onto (F ′nSnQ, F ′n)n.

Proof. — Write (Ωn,Ω′n) = (An×Fn, A′n×F ′n)n for the sequence of split
Følner couples of G and denote by π the projection of the ZQ-module M
ontoM ′. Coming back to the proof of the proposition above, a computation
gives: for any (m′, q) ∈ H,

f̂n(m′, q) =
{

#(A′n ∩ π−1(m′)) if q ∈ F ′n
0 otherwise.
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Hence, Ω̂′n = Â′n × F ′n for some Â′n ⊂ π(A′n) and by construction the
projection onto Q of Ω̂n is F ′nSnQ. �

The next lemma will allow to combine Følner couples along the decom-
position of a finitely generated module.

Lemma 5.15. — Let Q be a finitely generated abelian group and M be
a finitely generated ZQ-module. Let SQ be a finite generating set for Q
and SM be a finite generating set for the ZQ-module M . Assume that

(1) M has submodules M1 and M2 so that M2 is a cyclic ZQ-module
and its projection onto M/M1 is the whole of M/M1.

(2) The group M1 o Q admits a sequence of split Følner couples of
exponential size that projects onto a sequence (Fn, F ′n)n in Q.

(3) The group M2 o Q admits a sequence of split Følner couples of
exponential size that projects onto a sequence (Fn, F ′n)n in Q.

Then, the group M oQ admits a sequence of Følner couples of exponential
size that projects onto the sequence (F ′nSnQ, F ′n)n in Q.

Proof. — The module M1 ×M2 surjects onto M , hence the group H =
(M1 ×M2) oQ, where Q acts diagonally, surjects onto M oQ. By Corol-
lary 5.14, it is enough to construct a sequence of split Følner couples for
H, whose projection onto Q is (Fn, F ′n)n.

Write (Ωn × Fn,Ω′n × F ′n)n, resp. (Λn × Gn,Λ′n × F ′n)n the sequence of
Følner couples of M1 oQ, resp. M2 oQ, and set for all n

∆n = (Ωn × Λn)× Fn, ∆′n = (Ω′n × Λ′n)× F ′n.

The sequence (∆n,∆′n)n is a sequence of Følner couples of exponential
size, that projects onto the sequence (Fn, F ′n)n in Q. �

The proof of Theorem 1.1 makes use the following ingredient of the proof
of the main theorem in Pittet and Saloff-Coste [24].

Proposition 5.16 ([24, Proposition 7.8]). — Let Γ be a finitely gener-
ated torsion-free soluble group of finite Prüfer rank satisfying

N ↪→ Γ� A,

with N nilpotent and torsion-free and A free abelian of finite rank d.
Then, Γ admits a sequence of Følner couples of exponential size. If the

extension splits, so does the Følner sequence. Moreover, the projection onto
A of this sequence is the classical Følner sequence ([[−2n, 2n]]d, [[−n, n]]d)n
of Følner couples of A.

Proof of Theorem 1.1. — The reverse implication follows from Proposi-
tion 4.1.
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To prove the direct implication, let G be a finitely generated metabelian
group of Krull dimension at most 1. We wish to prove a lower bound on its
return probability, therefore, by Proposition 2.32 and Theorem 3.4, we may
assume that G is a semi-direct productMoQ whereM is abelian and Q is
free abelian. Equip G with a generating set S = SM t SQ where SM ⊂M
generates M as a ZQ-module and SQ ⊂ Q generates the group Q. Denote
by d the rank of Q and set F = (Fn, F ′n)n = ([[−2n, 2n]]d, [[−n, n]]d)n the
classical sequence of Følner couples for Q.

Proposition 2.19 provides us with submodules of M

{0} = M0 6M1 6 · · · 6Mn = M

such that Mi+1/Mi is isomorphic to ZQ/Pi with Pi a prime ideal of ZQ.
Each of these cyclic modules ZQ/Pi has dimension at most 1 and by
Proposition 5.6 and Lemma 5.8 for the torsion case, and Propositions 2.38
and 5.16 for the torsion-free case, the groups ZQ/Pi o Q admits Følner
couples of exponential size whose projection onto Q is F .
We combine them, or possibly their smaller version as defined in Re-

mark 5.2, by iterative applications of Lemma 5.15 to obtain a sequence
of Følner couples of exponential size in G. The conclusion then follows
from 5.3. �

5.4. Application to the L2-isoperimetric profile

(see for instance [7]) The L2-isoperimetric profile of a finitely generated
group G, equipped with a finite and symmetric generating set S, is the
non-decreasing function

jG(v) = sup
#A6v

sup
f∈L2(A)

‖f‖2
sups∈S‖f − f(s−1.)‖2

,

where L2(A) denotes the set of functions f : G→ R supported in A.
We recall the following theorem due to Coulhon and Grigor’yan [6, 11].

Tessera then generalized it to the setting of metric measure spaces in [27].

Theorem 5.17. — Let G be a finitely generated group. Then the iso-
perimetric profile of G satisfies jG(v) ∼ ln v if and only if pG2n ∼ exp(−n 1

3 ).

Hence, our main theorem may be stated as follows:

Corollary 5.18. — Let G be a finitely generated metabelian group of
exponential growth. Let d be the Krull dimension of G. Then,

jG(v) ∼ ln v ⇐⇒ d 6 1.
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6. Section of metabelian groups and upper bounds for the
return probability

In this section, we describe a method to obtain upper bounds on the
return probability of a metabelian group, depending only on its Krull di-
mension.

When passing to a subgroup, or going to a quotient, the return proba-
bility increases. Hence, to establish an upper bound for this quantity, we
may perform either of these operations. We do so in the first part. Below,
in the second part, we will produce upper bounds for the return probability
of the section obtained. This rests on studying some quotients of the free
(p)-metabelian group whose derived subgroup has rank 1.

6.1. Sections

We describe a way to obtain a section of a metabelian group respecting
the Krull dimension. The section obtained is an extension of a torsion-free
module of rank 1 over a polynomial ring by a finitely generated free abelian
group (see Lemma 6.1 below). We note in the last paragraph that it embeds
inside a wreath product of the same Krull dimension.

6.1.1. When the derived subgroup is torsion

Let G be a finitely generated metabelian non-abelian group of Krull
dimension k > 2, whose derived subgroup is torsion. Up to passing to a
finite index subgroup (see Proposition 2.32), we may assume that G fits in

A ↪→ G� Q

with Q free abelian of rank d > k and A a finitely generated ZQ-module,
whose underlying additive group is torsion. Because G is finitely generated
and ZQ is a Noetherian ring, A is a finitely generated Noetherian module
and has uniform torsion, that is there exists n ∈ N such that nA = {0}.
A reformulation of Proposition 4.2 (see Remark 4.5) is that there exists

Q0 ⊂ Q, with Q0 ' Zk, and m ∈ A such that ZQ0.m ' (Z/pZ)Q0 as
(Z/pZ)Q0-modules, for some prime divisor p of n. Denote by L0 this ZQ0-
module generated by m.
Consider the subgroup G1 of G generated by m and pull-back g1, . . . , gk

of generators of Q0 in G. This subgroup satisfies

M ′ ↪→ G1 � Q0
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where M ′ is a ZQ0-module containing L0. Note that M = M ′/pM ′ is now
a (Z/pZ)Q0-module containing L0. We denote by G2 the corresponding
quotient of G1.
Let C be a (Z/pZ)Q0-submodule of M maximal among the submodules

of M having trivial intersection with L0 and look at the quotient group
H := G2/C. It satisfies

L ↪→ H � Q0

with L an essential extension for L0, that is: for every submodules B of L,
if B ∩L0 = {0} then B = {0}. In particular, L is a torsion-free (Z/pZ)Q0-
module of rank 1.

6.1.2. When the group is torsion-free

Let G be a finitely generated metabelian non-abelian group of Krull
dimension k > 2. Assume G is torsion-free. We can argue similarly as
above, without the considerations about the torsion. One difference relates
to the reformulation of Proposition 4.2 (see Remark 4.5). If G satisfies
A ↪→ G� Q withQ free abelian of rank d > k−1 and A a finitely generated
ZQ-module, it reformulates as: there exists Q0 ⊂ Q, with Q0 ' Zk−1, and
m ∈ A such that ZQ0.m ' ZQ0 as ZQ0-modules.
Following the argument yiedls a finitely generated non-abelian metab-

elian section H of G, with Krull dimension k satisfying

L ↪→ H � Q0

where Q0 ' Zk−1 and L is a torsion-free ZQ0-module of rank 1.

6.1.3. Conclusion

We summarize in the next lemma the content of the last two paragraphs.

Lemma 6.1. — Let G be a finitely generated non-abelian metabelian
group of Krull dimension k > 2. Then there exists a finitely generated
non-abelian metabelian section H of G with Krull dimension k satisfying

L ↪→ H � Q

where
(1) If the derived subgroup of G is torsion: Q ' Zk and L is a torsion-

free (Z/pZ)Q-module of rank 1.
(2) If G is torsion-free and k > 2: Q ' Zk−1 and L is a torsion-free

ZQ-module of rank 1.

ANNALES DE L’INSTITUT FOURIER



METABELIAN GROUPS WITH LARGE RETURN PROBABILITY 2161

Remark 6.2. — In general, a finitely generated non-abelian metabelian
group has sections of each of the forms listed above, where k is respectively
the torsion or torsion-free Krull dimension of the group.
Such a section is, in some sense, minimal among the sections of maximal

Krull dimension of G. In the following, we will refer to it as a nice section.

6.1.4. Inside wreath products

We prove in this paragraph that the above sections embed inside wreath
products of the same Krull dimension.

Lemma 6.3. — Let G be a finitely generated non-abelian metabelian
group of Krull dimension k > 2, whose derived subgroup is torsion. Then,
G has a section which embeds in (Z/pZ) o Zk, for some prime p.

Similarly, let H be a finitely generated non-abelian metabelian torsion-
free group of Krull dimension k > 3. Then, H has a section which embeds
in Z o Zk−1.

Proof. — We prove the first statement. The second one can be proved
similarly.

By Lemma 6.1, G has a finitely generated non-abelian metabelian section
H of Krull dimension k satisfying L ↪→ H � Q where Q ' Zk and L is a
torsion-free (Z/pZ)Q-module of rank 1. Moreover, L has an essential cyclic
submodule L0, with L0 ' (Z/pZ)Q, as (Z/pZ)Q-modules. Denote by K

the fraction field of (Z/pZ)Q. By injectivity of K, there exists a morphism
L→ K such that the following diagram commute

L0 L

K

Because L0 is an essential submodule, this map is injective and L embeds
in K. Hence, we can push forward the extension and get

L H Q

K Ĥ Q

The latter extension is split: indeed, the cohomology group H2(Q,K) is
reduced to {0}.
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We now exhibit the wreath product. Fix a sequence (fn)n of elements of
(Z/pZ)Q so that the following holds

(1) for every i in N, fi | fi+1.
(2) for every f in (Z/pZ)Q, there exists an integer i so that f | fi.

We have
1
fi

(Z/pZ)Q ⊂ 1
fi+1

(Z/pZ)Q

and K is the nondecreasing union of the 1
fi

(Z/pZ)Q. As L is a finitely
generated (Z/pZ)Q-module, there exists a f such that L ⊂ 1

f (Z/pZ)Q. As
a consequence, H actually sits in the following subgroup of Ĥ:

1
f

(Z/pZ)Q ↪→ H̃ � Q,

isomorphic to (Z/pZ) o Zk. �

6.2. Upper bound

We now study the sections given by Lemma 6.1 in order to obtain upper
bounds for the return probability of the initial group.

Let G be a finitely generated metabelian non-abelian group of Krull
dimension k > 2 satisfying

L ↪→ G� Q

where either
(1) Q ' Zk and L is a torsion-free (Z/pZ)Q-module of rank 1,
(2) or k > 2, Q ' Zk−1 and L is a torsion-free ZQ-module of rank 1.

If this extension splits, then it contains either Z/pZ o Zk or Z o Zk−1 and
we can derive the corresponding upper bound for the return probability
of G. If it does not split, then the subgroup generated by any pull-back
of generators of Q still satisfies the exact sequence above and is either k-
generated or (k−1)-generated. We still denote itG. Hence,G is a quotient of
either B(p)

k or Bk−1. Denote byH this latter group. We have the commuting
diagram

[H,H] H Q

L G Q
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Let N be the kernel of this morphism, we have N ⊂ [H,H] and we are
left to study the extensions of Q with a rank 1 quotient of the derived
subgroup [H,H].
We start with the torsion-free case, that is H = Bk.

Proposition 6.4. — The free metabelian Bk group embeds as a sub-
group of the power (Bk/N)k!.

Proof. — Consider the action of the symmetric group Sk on Bk permut-
ing the generators. The derived subgroupM = [Bk, Bk] has rank k−1 ([5])
and is invariant under this action. Consider the diagonal homomorphism

Bk →
∏
σ∈Sk

Bk/σ(N).

Lemma 6.5 below precisely says that this homomorphism is injective. Since
Bk/σ(N) is isomorphic to Bk/N , this proves the proposition. �

Lemma 6.5. — The intersection
⋂
σ∈Sk

σ(N) is reduced to {0}.

The proof of the lemma requires the following fact.

Fact. — For every k > 0, the group Sk has no faithful complex rep-
resentation of dimension 6 k − 2. In particular, every faithful complex
representation of dimension k − 1 is irreducible.

Proof. — This is trivial for k 6 1. For k > 2 distinct of 4, tables (see [12]
and [4] Note C) shows that the only irreducible representations of dimension
< k − 1 are the trivial and signature 1-dimensional representations, and
are thus not faithful. For k = 4, there is an additional one, 2-dimensional,
factoring through a quotient of order 6, completing the proof. The second
statement immediately follows. �

Proof of Lemma 6.5. — Let K be the fraction field of ZQ. By flatness
of K, we have an exact sequence

0→ N ⊗K →M ⊗K →M/N ⊗K → 0.

Since M/N is torsion-free of rank 1, we deduce that N ⊗ K has posi-
tive codimension in M ⊗ K. The intersection

⋂
σ∈Sk

σ(N ⊗ K) is a Sk-
invariant subspace of positive codimension in M ⊗ K. By the fact, it is
therefore reduced to {0}. Since M is embedded into M ⊗K, it follows that⋂
σ∈Sk

σ(N) = {0}. �

Combined with Lemma 6.1(2), we get the following estimate.
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Corollary 6.6. — Let G be a finitely generated non-abelian metab-
elian torsion-free group of Krull dimension k > 2. Then the return proba-
bility of G satisfies

p2n - exp
(
−n

k−1
k+1 (logn)

2
k+1

)
.

Remark 6.7. — The representation above is the standard representation
for the symmetric group. Indeed, by Magnus’ embedding, Bd embeds in
the matrix group {(

b m

0 1

)
| b ∈ Zd,m ∈M

}
where M denotes the free Z(Zk)-module of rank d with basis (ei)i=1,...,k,
via

si 7→
(
ai ei
0 1

)
.

Here, s1, . . . , sk denotes the generators of Bk and ai is the image of si in
the abelianization Zk. The symmetric group acts on M by permuting the
elements of the basis.
The derived subgroup of Bk embeds in the submodule N0 = {

∑
biei |∑

bi(1 − Xi) = 0} and they both have rank d − 1 ([5]). Therefore, their
tensor product by K are equal and we denote by V this subspace ofM⊗K.
Up to multiplying the ei’s by the scalars (1−Xi)−1, V is the subspace of
vectors

∑
biei satisfying

∑
bi = 0.

Remark 6.8. — Proposition 6.4 remains true in positive characteristic
p, as long as p does not divide k. Indeed, in this setting the standard
representation is irreducible: any v ∈ V r {0} has coordinates xi and xj
such that xi 6= xj . Set a = xi − xj 6= 0. Then

a−1(x− (i, j).x) = (0, . . . ,−1
↑
i

, 0, . . . , 1
↑
j

, . . . , 0)

generates a basis of V .

Corollary 6.9. — Let G be a finitely generated non-abelian metab-
elian group of Krull dimension k > 2 whose derived subgroup is torsion.
Assume that G admits a nice section whose torsion does not divide k.
Then the return probability of G satisfies

p2n - exp
(
−n

k
k+2

)
.

Remark 6.10. — Recall that, ifG is a finitely generated metabelian group
such that [G,G] is torsion, then the torsion is uniform. Let n > 1 be the
smallest integer so that n[G,G] = {1}. A sufficient condition for G to
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admit a nice section whose torsion does not divide its Krull dimension k is
therefore to assume that n and k are coprime.

6.3. Free metabelian groups as subgroups of wreath products

Let G be a finitely generated non-abelian metabelian group. In the last
two subsections, we exhibited a section of G that embeds in a wreath
product and so that a power of it contains a free (p-)metabelian group as a
subgroup. All groups mentionned here have the same Krull dimension. To
complete the picture, we note, as a corollary of the Magnus’ embedding,
that the free (p-)metabelian group embeds in a wreath product of the same
Krull dimension.

Corollary 6.11. — Let d > 2. The free metabelian group Bd em-
beds in the wreath product Z o Zd. Similarly, for any prime p, the free
p-metabelian group B(p)

d embeds in the wreath product Z/pZ o Zd.

Proof. — By Magnus’ embedding, the free metabelian group embeds in
the wreath product Zd o Zd and the free p-metabelian group embeds in
(Z/pZ)d o Zd. Hence, it is enough to prove that Zd o Zd embeds in Z o Zd,
and respectively that (Z/pZ)d o Zd embeds in Z/pZ o Zd. We indicate the
proof in the torsion-free case, the proof for the torsion case is similar.
Denote by B the base of the wreath product G = Z o Zd. The group

satisfies the split extension

B ↪→ G� Zd.

Consider the finite index subgroup H of G mapping to Q = Zd−1 × dZ in
the quotient. Under the action of Q, the base B becomes a free ZQ-module
of rank d. Therefore H is isomorphic to the wreath product Zd o Zd. �
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