Dans cet article, nous introduisons la notion de système quasi-compatible de représentations galoisiennes. La condition de quasi-compatibilité est un affaiblissement de la condition de compatibilité à la Serre. Le principal théorème que nous prouvons est le suivant : Soit un motif abélien à la Yves André. Alors les réalisations -adiques de forment un système quasi-compatible de représentations galoisiennes. Comme application, on en déduit que le rang absolu des groupes de monodromie -adiques de ne dépend pas de . En particulier, la conjecture de Mumford–Tate pour ne dépend pas de .
In this article we introduce the notion of quasi-compatible system of Galois representations. The quasi-compatibility condition is a mild relaxation of the classical compatibility condition in the sense of Serre. The main theorem that we prove is the following: Let be an abelian motive in the sense of Yves André. Then the -adic realisations of form a quasi-compatible system of Galois representations. (In Theorem 5.1 we actually prove something stronger.) As an application, we deduce that the absolute rank of the -adic monodromy groups of does not depend on . In particular, the Mumford–Tate conjecture for does not depend on .
Révisé le :
Accepté le :
Publié le :
Keywords: Galois representations, $\ell $-adic cohomology, abelian motives, compatability
Mot clés : Représentation galoisienne, cohomologie $\ell $-adique, motifs abéliens, compatibilité
Commelin, Johan M. 1
@article{AIF_2019__69_5_2089_0, author = {Commelin, Johan M.}, title = {On compatibility of the $\ell $-adic realisations of an abelian motive}, journal = {Annales de l'Institut Fourier}, pages = {2089--2120}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3290}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3290/} }
TY - JOUR AU - Commelin, Johan M. TI - On compatibility of the $\ell $-adic realisations of an abelian motive JO - Annales de l'Institut Fourier PY - 2019 SP - 2089 EP - 2120 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3290/ DO - 10.5802/aif.3290 LA - en ID - AIF_2019__69_5_2089_0 ER -
%0 Journal Article %A Commelin, Johan M. %T On compatibility of the $\ell $-adic realisations of an abelian motive %J Annales de l'Institut Fourier %D 2019 %P 2089-2120 %V 69 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3290/ %R 10.5802/aif.3290 %G en %F AIF_2019__69_5_2089_0
Commelin, Johan M. On compatibility of the $\ell $-adic realisations of an abelian motive. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2089-2120. doi : 10.5802/aif.3290. https://aif.centre-mersenne.org/articles/10.5802/aif.3290/
[1] Pour une théorie inconditionnelle des motifs, Publ. Math., Inst. Hautes Étud. Sci. (1996) no. 83, pp. 5-49 | DOI | MR | Zbl
[2] Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Théorie des topos et cohomologie étale des schémas. Tome 3 (Artin, Michael; Grothendieck, Alexander; Verdier, Jean-Louis, eds.), Lecture Notes in Mathematics, 305, Springer, 1973, vi+640 pages (avec la collaboration de P. Deligne et B. Saint-Donat) | MR | Zbl
[3] Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. (1949) no. 23, pp. 200-221 | DOI | Zbl
[4] Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples, Springer, 2012, x+489 pages (Second revised edition of the 1958 edition) | DOI | MR | Zbl
[5] -adic and -adic representations associated to abelian varieties defined over number fields, Am. J. Math., Volume 114 (1992) no. 2, pp. 315-353 | DOI | MR | Zbl
[6] On -adic compatibility for abelian motives & the Mumford–Tate conjecture for products of K3 surfaces, Radboud Universiteit Nijmegen (2017) (Ph. D. Thesis) | Zbl
[7] Théorie de Hodge. III, Publ. Math., Inst. Hautes Étud. Sci. (1974) no. 44, pp. 5-77 | DOI | MR | Zbl
[8] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and -functions (Oregon State University, Corvallis, Oregon, 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume XXXIII, American Mathematical Society, 1979, pp. 247-289 | MR | Zbl
[9] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | MR | Zbl
[10] Complements to Mordell, Rational points (Bonn, 1983/1984) (Aspects of Mathematics), Volume E6, Vieweg & Sohn, 1984, pp. 203-227 | DOI | MR | Zbl
[11] Un foncteur norme, Bull. Soc. Math. Fr., Volume 126 (1998) no. 1, pp. 1-49 | DOI | MR | Zbl
[12] Half twists of Hodge structures of cm-type, J. Math. Soc. Japan, Volume 53 (2001) no. 4, pp. 813-833 | DOI | MR | Zbl
[13] Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., Volume 23 (1974), pp. 73-77 | DOI | MR | Zbl
[14] points on Shimura varieties of abelian type, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 819-914 | DOI | MR | Zbl
[15] On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992) no. 3, pp. 603-636 | DOI | MR | Zbl
[16] Abelian varieties, -adic representations, and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | DOI | MR | Zbl
[17] -independence for a system of motivic representations, Manuscr. Math., Volume 145 (2014) no. 1-2, pp. 125-142 | DOI | MR | Zbl
[18] On the Tate and Mumford–Tate conjectures in codimension for varieties with , Duke Math. J., Volume 166 (2017) no. 4, pp. 739-799 | DOI | MR | Zbl
[19] Models of Shimura varieties in mixed characteristic, J. Algebr. Geom., Volume 5 (1996) no. 1, pp. 187-207 | MR | Zbl
[20] Classe de conjugaison du Frobenius d’une variété abélienne sur un corps de nombres, J. Lond. Math. Soc., Volume 79 (2009) no. 1, pp. 53-71 | DOI | MR | Zbl
[21] The system of representations of the Weil–Deligne group associated to an abelian variety, Algebra Number Theory, Volume 7 (2013) no. 2, pp. 243-281 | DOI | MR | Zbl
[22] Subgroups of maximal rank of reductive groups, Autour des schémas en groupes. Vol. III (Panoramas et Synthèses), Volume 47, Société Mathématique de France, 2015, pp. 147-172 | MR | Zbl
[23] The Mumford–Tate conjecture for Drinfeld-modules, Publ. Res. Inst. Math. Sci., Volume 33 (1997) no. 3, pp. 393-425 | DOI | MR | Zbl
[24] Galois action on division points of Abelian varieties with real multiplications, Am. J. Math., Volume 98 (1976) no. 3, pp. 751-804 | DOI | MR | Zbl
[25] Periods of Hecke characters, Lecture Notes in Mathematics, 1301, Springer, 1988, xvi+160 pages | DOI | MR | Zbl
[26] Zeta and -functions, Arithmetical Algebraic Geometry (Proceedings of a Conference held at Purdue Univiversity, December 5–7, 1963), Harper & Row, 1965, pp. 82-92 | MR | Zbl
[27] Abelian -adic representations and elliptic curves, Research Notes in Mathematics, 7, A K Peters, 1998, 199 pages (With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original) | MR | Zbl
[28] Lectures on , CRC Research Notes in Mathematics, 11, CRC Press, 2012, x+163 pages | MR | Zbl
[29] Good reduction of abelian varieties, Ann. Math., Volume 88 (1968), pp. 492-517 | DOI | MR | Zbl
[30] Algebraic number fields and symplectic discontinuous groups, Ann. Math., Volume 86 (1967), pp. 503-592 | DOI | MR | Zbl
[31] Reductive groups over local fields, Automorphic forms, representations and -functions (Oregon State University, Corvallis, Oregon, 1977), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume XXXIII, American Mathematical Society, 1979, pp. 29-69 | MR | Zbl
[32] Mumford–Tate and generalised Shafarevich conjectures, Ann. Math. Qué., Volume 37 (2013) no. 2, pp. 255-284 | DOI | MR | Zbl
[33] Some cases of the Mumford–Tate conjecture and Shimura varieties, Indiana Univ. Math. J., Volume 57 (2008) no. 1, pp. 1-75 | DOI | MR | Zbl
Cité par Sources :