We propose an analogy of splitting principle in genus- Gromov–Witten theory. More precisely, we show how the Gromov–Witten theory of a variety can be embedded into the theory of the projectivization of a vector bundle over . An application is also given.
Nous proposons un analogue du principe de décomposition en théorie de Gromov–Witten de genre zéro. Plus précisément, nous montrons comment réaliser la théorie de Gromov–Witten d’une variété X dans la théorie de la projectivisation d’un fibré vectoriel sur X. Nous donnons également une application.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3289
Keywords: Gromov–Witten theory, splitting principle, projective bundle
Mots-clés : théorie de Gromov–Witten, principe de décomposition, fibré projectif
Fan, Honglu 1

@article{AIF_2019__69_5_2067_0, author = {Fan, Honglu}, title = {A quantum splitting principle and an application}, journal = {Annales de l'Institut Fourier}, pages = {2067--2088}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3289}, zbl = {07034550}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3289/} }
TY - JOUR AU - Fan, Honglu TI - A quantum splitting principle and an application JO - Annales de l'Institut Fourier PY - 2019 SP - 2067 EP - 2088 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3289/ DO - 10.5802/aif.3289 LA - en ID - AIF_2019__69_5_2067_0 ER -
%0 Journal Article %A Fan, Honglu %T A quantum splitting principle and an application %J Annales de l'Institut Fourier %D 2019 %P 2067-2088 %V 69 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3289/ %R 10.5802/aif.3289 %G en %F AIF_2019__69_5_2067_0
Fan, Honglu. A quantum splitting principle and an application. Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 2067-2088. doi : 10.5802/aif.3289. https://aif.centre-mersenne.org/articles/10.5802/aif.3289/
[1] A semiorthogonal decomposition for Brauer Severi schemes, Math. Nachr., Volume 282 (2009) no. 10, pp. 1406-1413 | DOI | MR | Zbl
[2] Gromov-Witten Invariants of Toric Fibrations (2009) (https://arxiv.org/abs/0901.1290)
[3] Quantum Riemann–Roch, Lefschetz and Serre, Ann. Math., Volume 165 (2007) no. 1, pp. 15-53 | MR | Zbl
[4] Chern classes and Gromov–Witten theory of projective bundles (2017) (https://arxiv.org/abs/1705.07421) | MR
[5] On Gromov–Witten theory of projective bundles (2016) (https://arxiv.org/abs/1607.00740)
[6] Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl
[7] Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 46-188 | MR
[8] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Volume 179 (2003) no. 1, pp. 127-136 | MR | Zbl
[9] Cycle groups for Artin stacks, Invent. Math., Volume 138 (1999) no. 3, pp. 495-536 | DOI | MR | Zbl
[10] Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol., Volume 13 (2007) no. 1, pp. 1-48 | MR | Zbl
[11] Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Volume 4 (2014) no. 3, pp. 333-401 | DOI | MR | Zbl
[12] Localization in Gromov–Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Volume II (Advanced Lectures in Mathematics (ALM)), Volume 25, International Press., 2013, pp. 353-425 | MR | Zbl
[13] Virtual pull-backs, J. Algebr. Geom., Volume 21 (2012) no. 2, pp. 201-245 | MR | Zbl
[14] Gromov–Witten invariants for varieties with C* action (2015) (https://arxiv.org/abs/1505.01471)
[15] Surgery, quantum cohomology and birational geometry, Northern California symplectic geometry seminar (Advances in the Mathematical Sciences), Volume 196, American Mathematical Society, 1999, pp. 183-198 | MR | Zbl
Cited by Sources: