A quantum splitting principle and an application
Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 2067-2088.

We propose an analogy of splitting principle in genus-0 Gromov–Witten theory. More precisely, we show how the Gromov–Witten theory of a variety X can be embedded into the theory of the projectivization of a vector bundle over X. An application is also given.

Nous proposons un analogue du principe de décomposition en théorie de Gromov–Witten de genre zéro. Plus précisément, nous montrons comment réaliser la théorie de Gromov–Witten d’une variété X dans la théorie de la projectivisation d’un fibré vectoriel sur X. Nous donnons également une application.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3289
Classification: 14N35
Keywords: Gromov–Witten theory, splitting principle, projective bundle
@article{AIF_2019__69_5_2067_0,
     author = {Fan, Honglu},
     title = {A quantum splitting principle and an application},
     journal = {Annales de l'Institut Fourier},
     pages = {2067--2088},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {5},
     year = {2019},
     doi = {10.5802/aif.3289},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3289/}
}
TY  - JOUR
TI  - A quantum splitting principle and an application
JO  - Annales de l'Institut Fourier
PY  - 2019
DA  - 2019///
SP  - 2067
EP  - 2088
VL  - 69
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3289/
UR  - https://doi.org/10.5802/aif.3289
DO  - 10.5802/aif.3289
LA  - en
ID  - AIF_2019__69_5_2067_0
ER  - 
%0 Journal Article
%T A quantum splitting principle and an application
%J Annales de l'Institut Fourier
%D 2019
%P 2067-2088
%V 69
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3289
%R 10.5802/aif.3289
%G en
%F AIF_2019__69_5_2067_0
Fan, Honglu. A quantum splitting principle and an application. Annales de l'Institut Fourier, Volume 69 (2019) no. 5, pp. 2067-2088. doi : 10.5802/aif.3289. https://aif.centre-mersenne.org/articles/10.5802/aif.3289/

[1] Bernardara, Marcello A semiorthogonal decomposition for Brauer Severi schemes, Math. Nachr., Tome 282 (2009) no. 10, pp. 1406-1413 | Article | MR: 2571702 | Zbl: 1179.14013

[2] Brown, Jeffrey Gromov-Witten Invariants of Toric Fibrations (2009) (https://arxiv.org/abs/0901.1290)

[3] Coates, Tom; Givental, Alexander Quantum Riemann–Roch, Lefschetz and Serre, Ann. Math., Tome 165 (2007) no. 1, pp. 15-53 | MR: 2276766 | Zbl: 1189.14063

[4] Fan, Honglu Chern classes and Gromov–Witten theory of projective bundles (2017) (https://arxiv.org/abs/1705.07421)

[5] Fan, Honglu; Lee, Yuan-Pin On Gromov–Witten theory of projective bundles (2016) (https://arxiv.org/abs/1607.00740)

[6] Graber, Tom; Pandharipande, Rahul Localization of virtual classes, Invent. Math., Tome 135 (1999) no. 2, pp. 487-518 | Article | MR: 1666787 | Zbl: 0953.14035

[7] Grothendieck, Alexander Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies in Pure Mathematics) Tome 3, North-Holland, 1968, pp. 46-188

[8] Kim, Bumsig; Kresch, Andrew; Pantev, Tony Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Tome 179 (2003) no. 1, pp. 127-136 | MR: 1958379 | Zbl: 1078.14535

[9] Kresch, Andrew Cycle groups for Artin stacks, Invent. Math., Tome 138 (1999) no. 3, pp. 495-536 | Article | MR: 1719823 | Zbl: 0938.14003

[10] Lai, Hsin-Hong Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol., Tome 13 (2007) no. 1, pp. 1-48 | MR: 2469512 | Zbl: 1159.14030

[11] Lee, Yuan-Pin; Lin, Hui-Wen; Qu, Feng; Wang, Chin-Lung Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Tome 4 (2014) no. 3, pp. 333-401 | Article | MR: 3550285 | Zbl: 1365.14076

[12] Liu, Chiu-Chu M. Localization in Gromov–Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Volume II (Advanced Lectures in Mathematics (ALM)) Tome 25, International Press., 2013, pp. 353-425 | MR: 3184181 | Zbl: 1322.14010

[13] Manolache, Cristina Virtual pull-backs, J. Algebr. Geom., Tome 21 (2012) no. 2, pp. 201-245 | MR: 2877433 | Zbl: 1328.14019

[14] Mustata, Anca; Mustata, Andrei Gromov–Witten invariants for varieties with C* action (2015) (https://arxiv.org/abs/1505.01471)

[15] Ruan, Yongbin Surgery, quantum cohomology and birational geometry, Northern California symplectic geometry seminar (Advances in the Mathematical Sciences) Tome 196, American Mathematical Society, 1999, pp. 183-198 | MR: 1736218 | Zbl: 0952.53001

Cited by Sources: