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GROWTH OF THE WEIL–PETERSSON INRADIUS OF
MODULI SPACE

by Yunhui WU

Abstract. — In this paper we study the systole function along Weil–Petersson
geodesics. We show that the square root of the systole function is uniformly Lip-
schitz on Teichmüller space endowed with the Weil–Petersson metric. As an ap-
plication, we study the growth of the Weil–Petersson inradius of moduli space of
Riemann surfaces of genus g with n punctures as a function of g and n. We show
that the Weil–Petersson inradius is comparable to

√
ln g with respect to g, and is

comparable to 1 with respect to n.
Moreover, we also study the asymptotic behavior, as g goes to infinity, of the

Weil–Petersson volumes of geodesic balls of finite radii in Teichmüller space. We
show that they behave like o(( 1

g
)(3−ε)g) as g → ∞, where ε > 0 is arbitrary.

Résumé. — Dans cet article, nous étudions la fonction systole le long des
géodésiques de la métrique de Weil–Petersson. Nous montrons que la racine carrée
de la systole est uniformément Lipschitz sur l’espace de Teichmüller muni de la
métrique de Weil–Petersson. Comme application, nous étudions la croissance du
rayon de la plus grande boule métrique inscrite dans l’espace des modules des
surfaces de Riemann de genre g avec n piqûres en fonction de g et n. Nous montrons
que ce rayon est comparable à

√
ln g par rapport à g, et comparable à 1 par rapport

à n.
De plus, nous étudions aussi le comportement asymptotique, lorsque g tends

vers l’infini, des volumes de Weil–Petersson des boules géodésiques de rayons finis
dans l’espace Teichmüller. Nous montrons qu’ils se comportent comme o(( 1

g
)(3−ε)g)

quand g → ∞, où ε > 0 est arbitraire.

1. Introduction

Let Sg,n be a surface of genus g with n punctures with 3g + n > 4, and
Teich(Sg,n) be Teichmüller space of Sg,n endowed with the Weil–Petersson
metric. The mapping class group Mod(Sg,n) of Sg,n acts on Teich(Sg,n)
by isometries. The moduli space Mg,n of Sg,n, endowed with the Weil–
Petersson metric, is realized as the quotient Teich(Sg,n)/Mod(Sg,n).

Keywords: The moduli space, Weil–Petersson metric, inradius, large genus, systole.
2010 Mathematics Subject Classification: 32G15, 30F60.
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The moduli space Mg,n is Kähler [1], incomplete [13, 50] and geodesi-
cally complete [54]. It has negative sectional curvature [47, 53], strongly
negative curvature in the sense of Siu [44], dual Nakano negative cur-
vature [30] and nonpositive definite Riemannian curvature operator [60].
The Weil–Petersson metric completion Mg,n of moduli space Mg,n, as a
topological space, is the well-known Deligne–Mumford compactification of
moduli space obtained by adding stable nodal curves [32]. One may refer
to the book [58] for recent developments on the Weil–Petersson metric.
The asymptotic geometry ofMg,n as either g or n tends to infinity, has

recently become quite active. For example, Brock–Bromberg [6] showed
that the shortest Weil–Petersson closed geodesic in Mg,0 is comparable
to 1√

g . Mirzakhani [34, 35, 36, 37] studied various aspects of the Weil–
Petersson volume of Mg,n for large g. Together with M. Wolf [49], we
studied the `p-norm (1 6 p 6∞) of the Weil–Petersson curvature operator
ofMg,n for large g. The Weil–Petersson curvature ofMg,0 for large genus
was studied in [61]. Cavendish–Parlier [12] studied the asymptotic behavior
of the diameter diam(Mg,n) ofMg,n. They showed that limn→∞

diam(Mg,n)√
n

is a positive constant. They also showed that for large genus the ratio
diam(Mg,n)√

g is bounded below by a positive constant and above by a constant
multiple of ln g. For the upper bound, they refined Brock’s quasi-isometry
of Teich(Sg,n) to the pants graph [5]. As far as we know, the asymptotic
behavior of diam(Mg,n) as g tends to infinity is still open. For other related
topics, one may refer to [16, 22, 31, 39, 40, 45, 63] for more details.
Let ∂Mg,n be the boundary of Mg,n, which consists of nodal surfaces.

Let distwp( · , · ) be the Weil–Petersson distance function. Define the inra-
dius InRad(Mg,n) ofMg,n as

InRad(Mg,n) := max
X∈Mg,n

distwp(X, ∂Mg,n).

The inradius InRad(Mg,n) is the largest radius of geodesic balls (allowed
to contain topology) in the interior ofMg,n. In this paper, one of our main
goals is to study the asymptotic behavior of InRad(Mg,n) either as g →∞
or n→∞.

Notation. — In this paper, we use the notation

f1 �t f2

if there exists a universal constant C > 0, independent of t, such that
f2

C
6 f1 6 Cf2.

Our first result is
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Theorem 1.1. — For all n > 0 and g > 2, we have

InRad(Mg,n) �g
√

ln g.

We will show that as g → ∞, the inradius InRad(Mg,n) is roughly
realized by the family of surfaces constructed by Balacheff–Makover–Parlier
in [3] (based on the work of Buser–Sarnak [11]), whose injectivity radii
grow roughly as ln g. We remark here that the method used in the proof
of Theorem 1.1 also shows that InRad(Mg,[ga]) �g

√
ln g for all a ∈ (0, 1).

One can see Remark 5.4 for more details.
Our second result is

Theorem 1.2. — For all g > 0 and n > 4, we have

InRad(Mg,n) �n 1.

We remark that the method used in the proof of Theorem 1.2 also gives
that InRad(M[na],n) �n 1 for all a ∈ (0, 1). One can see Remark 5.6
for more details. We will give two different proofs for the lower bound in
Theorem 1.2, one of which is by applying Theorem 1.3.
The difficult parts for Theorem 1.1 and 1.2 are the lower bounds, which

rely on studying the systole function along Weil–Petersson geodesics.
For any X ∈ Teich(Sg,n), we refer to the length of a shortest essential

simple closed geodesic in X as the systole of X and denote it by `sys(X).
The systole function `sys( · ) : Teich(Sg,n) → R+ is continuous, but not
smooth as corners appear when it is realized by multiple essential isotopy
classes of simple closed curves. However, it is a topological Morse function
and its critical points can be characterized. One may refer to [2, 20, 42] for
more details. The lower bounds in Theorems 1.1 and 1.2 will be established
by using the following theorem, which gives a uniform lower bound for the
Weil–Petersson distance in terms of systole functions.

Theorem 1.3. — There exists a universal constant K > 0, independent
of g and n, such that for all X,Y ∈ Teich(Sg,n),∣∣∣∣√`sys(X)−

√
`sys(Y )

∣∣∣∣ 6 K distwp(X,Y ).

To the best of our knowledge, Theorem 1.3 is the first study of the sys-
tole function along Weil–Petersson geodesics, addressing a line of inquiry
that Wolpert raised in [56, p. 274]: determine the behaviors of the systole
function along Weil–Petersson geodesics. For the limits of relative systolic
curves along a Weil–Petersson geodesic ray in Thurston’s projective mea-
sured lamination space, one may see [8, 9, 10, 23] for more details.

TOME 69 (2019), FASCICULE 3
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The strategy for establishing Theorem 1.3 is to bound the Weil–Petersson
norm of the gradient ∇`

1
2
α(X) from above by a universal constant, indepen-

dent of g and n, when α is an essential simple closed curve in X which
realizes the systole of X. In order to do this, first by applying the real
analyticity of the Weil–Petersson metric [1] and the convexity of geodesic
length function along Weil–Petersson geodesics [54, 48], we make a thin-
thick decomposition for the Weil–Petersson geodesic g(X,Y ) ⊂ Teich(Sg,n)
connecting X and Y such that we can differentiate `sys( · ) along the geo-
desic g(X,Y ) in some sense (see Lemma 3.5). Then, for the thin part of
g(X,Y ) we use a result, due to Wolpert in [57] (see [57, Lemma 3.16] or
Lemma 4.2), to get a uniform upper bound for the Weil–Petersson norm
of the gradient ∇`

1
2
α(X). For the thick part of g(X,Y ) (here the injectivity

radius of some hyperbolic surface, which is a point on g(X,Y ), could be
arbitrarily large [11]), we apply a special case of a formula of Riera [41]
(see (4.2)) and some two-dimensional hyperbolic geometry theory to pro-
vide a uniform upper bound for the Weil–Petersson norm of the gradient
∇`

1
2
α(X), where α realizes the systole of X (see Proposition 4.4). The step

for the thick part almost takes up the entirety of Section 4. Then, Theo-
rem 1.3 follows by integrating along the Weil–Petersson geodesic segment
and the Cauchy–Schwartz inequality. See Section 4 for more details.
For any ε > 0, letM>ε

g,n be the ε-thick part of moduli space. The Mum-
ford compactness theorem tells that M>ε

g,n is compact. Denote by ∂M>ε
g,n

the boundary ofM>ε
g,n, which consists of ε-thick surfaces whose injectivity

radii are ε. It is clear that moduli spaceMg,n is foliated by ∂M>ε
g,n for all

s > 0. The following result bounds the Weil–Petersson distance between
two leaves.

Theorem 1.4. — There exists a universal constant K ′ > 0, indepen-
dent of g and n, such that for any s > t > 0,

√
s−
√
t

K ′
6 distwp(∂M>s

g,n, ∂M>t
g,n) 6 K ′(

√
s−
√
t).

As stated above, the asymptotic behavior of the Weil–Petersson volume
of Mg,0 has been well studied as g tends to infinity. We are grateful to
Maryam Mirzakhani for bringing the following interesting question to our
attention.

Question 1.5. — Fix a constant R > 0, are there any good upper
bounds for the Weil–Petersson volume Volwp(B(X;R)) as g tends to in-
finity? Here B(X;R) = {Y ∈ Teich(Sg,0); distwp(Y,X) < R} is the Weil–
Petersson geodesic ball of radius R centered at X.

ANNALES DE L’INSTITUT FOURIER
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The last part of this paper is to study Question 1.5. Let Sg = Sg,0 be the
closed surface of genus g and Teich(Sg) be Teichmüller space endowed with
the Weil–Petersson metric. Since the completion Teich(Sg) of Teich(Sg) is
not locally compact [55], it is well-known that the Weil–Petersson volume
of a geodesic ball of finite radius blows up if this ball in Teich(Sg) contains
a boundary point (see Proposition 6.2 for more details). Thus, we need to
assume that the Weil–Petersson geodesic balls in Question 1.5 stay away
from the boundary of Teich(Sg). For any positive constant r0, we define

U(Teich(Sg))>r0 := {Xg ∈ Teich(Sg); distwp(Xg; ∂Teich(Sg)) > r0}

where ∂Teich(Sg) is the boundary of Teich(Sg). The space U(Teich(Sg))>r0
is the subset in Teich(Sg) which is at least r0-distance to the boundary. By
applying Theorem 1.1 and Teo’s [46] uniform lower bound for the Ricci cur-
vature on the thick part of Teich(Sg), we will show that the Weil–Petersson
volume of any Weil–Petersson geodesic ball in U(Teich(Sg))>r0 rapidly de-
cays to 0 as g tends to infinity. More precisely,

Theorem 1.6. — For any r0 > 0, then for any constant ε > 0 we have

sup
B(Xg ;rg)⊂U(Teich(Sg))>r0

Volwp(B(Xg; rg)) = o

((
1
g

)(3−ε)g
)

where the supremum is taken over all the geodesic balls in U(Teich(Sg))>r0
and B(Xg; rg) := {Yg ∈ Teich(Sg); distwp(Yg, Xg) < rg}.

Remark 1.7. — From Theorem 1.1 and Wolpert’s upper bound for dis-
tance to strata (see Theorem 2.5), the largest radius of Weil–Petersson
geodesic balls in U(Teich(Sg))>r0 is comparable to

√
ln g as g → ∞. In

particular, Theorem 1.6 implies that for any constant a ∈ (0, 1
2 ),

lim
g→∞

inf
Xg∈Teich(Sg)

Volwp(B(Xg; (ln g)a)) = 0.

A direct consequence of Theorem 1.6 is the following result.

Corollary 1.8. — Fix a constant R > 0. Then there exists a constant
ε(R) > 0, only depending on R, such that for any ε > 0,

sup
Xg⊂U(Teich(Sg))>ε(R)

Volwp(B(Xg;R)) = o

((
1
g

)(3−ε)g
)
.

In particular, limg→∞ supXg⊂U(Teich(Sg))>ε(R) Vol(B(Xg;R)) = 0.

The corollary above answers Question 1.5 at least following a certain
interpretation.

TOME 69 (2019), FASCICULE 3
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Plan of the paper. Section 2 provides some necessary background and
the basic properties on two-dimensional hyperbolic geometry and the Weil–
Petersson metric. In Section 3 we will show that the systole function is
piecewise real analytic along Weil–Petersson geodesics, which will be ap-
plied to prove Theorem 1.3. We will prove Theorem 1.3 in Section 4. In
Section 5 we will prove Theorem 1.4 and apply Theorem 1.3 to prove The-
orem 1.1 and 1.2. In Section 6 we will establish Theorem 1.6 and Corol-
lary 1.8.

Acknowledgements. The author would like to thank Jeffrey Brock,
Hugo Parlier and Michael Wolf for their interest and useful conversations.
He also would like to thank Maryam Mirzakhani for helpful discussions
concerning Section 6. He especially would like to thank Scott Wolpert for
invaluable discussions on the various aspects of this paper. Without these
discussions, this paper would have been impossible to complete. Part of
this work was completed while visiting the Chern Institute of Mathematics
in June 2014, and while attending the special program entitled “Geometric
Structures on 3-manifolds” at the Institute for Advanced Study in October
2015. The author would like to give thanks for their hospitality. Most of
this work was finished when the author was a G. C. Evans Instructor at
Rice University. He would like to thank the Department of Mathematics of
Rice University for all of their support in the past several years.

2. Notations and Preliminaries

In this section we will set up the notations and provide some necessary
background on two-dimensional hyperbolic geometry, Teichmüller theory
and the Weil–Petersson metric.

2.1. Hyperbolic upper half plane

Let H be the upper half plane endowed with the hyperbolic metric
ρ(z)|dz|2 where

ρ(z) = 1
(Im(z))2 .

A geodesic line in H is either a vertical line or an upper semi-circle
centered at some point on the real axis. For z = (r, θ) ∈ H given in polar

ANNALES DE L’INSTITUT FOURIER
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coordinate where θ ∈ (0, π), the hyperbolic distance between z and the
imaginary axis iR+ is

(2.1) distH(z, iR+) = ln|csc θ + |cot θ||.

Thus,

(2.2) e−2 distH(z,iR+) 6 sin2 θ = Im2(z)
|z|2

6 4e−2 distH(z,iR+).

It is known that any eigenfunction with positive eigenvalue of the hyper-
bolic Laplacian of H satisfies the mean value property [15, Corollary 1.3].
For z = (r, θ) ∈ H given in polar coordinate, the function

u(θ) = 1− θ cot θ

is a positive 2-eigenfunction. Thus, u satisfies the mean value property. It is
not hard to see that min{u(θ), u(π−θ)} also satisfies the mean value prop-
erty. Since min{u(θ), u(π−θ)} is comparable to sin2 θ, from inequality (2.2)
we know that the function e−2 distH(z,iR+) satisfies the mean value property
in H. The following lemma is the simplest version of [57, Lemma 2.4].

Lemma 2.1. — For any r > 0 and p ∈ H, there exists a positive constant
c(r), only depending on r, such that

e−2 distH(p,iR+) 6 c(r)
∫
BH(p;r)

e−2 distH(z,iR+)dA(z)

where BH(p; r) = {z ∈ H; distH(p, z) < r} is the hyperbolic geodesic ball of
radius r centered at p and dA(z) is the hyperbolic area element.

2.2. Teichmüller space

Let Sg,n be a surface of genus g with n punctures which satisfies that
3g − 3 + n > 0. Let M−1 be the space of Riemannian metrics on Sg,n
with constant curvatures −1, and X = (Sg,n, σ|dz|2) ∈ M−1. The group
Diff+, which is the group of orientation-preserving diffeomorphisms, acts
by pull back on M−1. In particular this holds for the normal subgroup
Diff0, the group of diffeomorphisms isotopic to the identity. The group
Mod(Sg,n) := Diff+ /Diff0 is called the mapping class group of Sg,n.

The Teichmüller space T (Sg,n) of Sg,n is defined as

T (Sg,n) := M−1/Diff0 .

The moduli space M(Sg,n) of Sg,n is defined as

M(Sg,n) := T (Sg,n)/Mod(Sg,n).

TOME 69 (2019), FASCICULE 3
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The Teichmüller space T (Sg,n) is a real analytic manifold. Let α be
an essential simple closed curve on Sg,n, then for any X ∈ Teich(Sg,n),
there exists a unique closed geodesic [α] in X which represents for α in the
fundamental group of Sg,n. We denote by `α(X) the length of [α] in X. In
particular `α( · ) defines a function on T (Sg,n). The following property is
well-known.

Lemma 2.2 ([27, Lemma 3.7]). — The geodesic length function `α( · ) :
T (Sg,n)→ R+ is real-analytic.

Let X ∈ T (Sg,n) be a hyperbolic surface. The systole of X is the length
of a shortest essential simple closed geodesic in X. We denote by `sys(X)
the systole of X. It defines a continuous function `sys( · ) : T (Sg,n) →
R+, which is called the systole function. In general, the systole function
is clearly continuous and not smooth because of corners where there may
exist multiple essential simple closed geodesics realizing the systole. This
function is very useful in Teichmüller theory. Curves that realize the systole
are often referred to systolic curves. One may refer to [2, 20, 42] for more
details. In this paper we will study the behavior of this function along
Weil–Petersson geodesics and apply these results to different problems.
Fixed a constant ε0 > 0. The ε0-thick part of Teichmüller space of Sg,n,

denoted by T (Sg,n)>ε0 , is defined as follows.

T (Sg,n)>ε0 := {X ∈ T (Sg,n); `sys(X) > ε0}.

The space T (Sg,n)>ε0 is invariant by the mapping class group. The ε0-thick
part of moduli space of Sg,n, denoted byM(Sg,n)>ε0 , is defined by

M(Sg,n)>ε0 := T (Sg,n)>ε0/Mod(Sg,n).

It is known that M(Sg,n)>ε0 is compact for all ε0 > 0, which is due
to Mumford [38]. For more details on Teichmüller theory, one may refer
to [26, 27].

2.3. Weil–Petersson metric

The real-analytic space T (Sg,n) carries a natural complex structure. Let
X = (Sg,n, σ(z)|dz|2) ∈ Tg,n be a point. The tangent space atX is identified
with the space of harmonic Beltrami differentials on X which are forms of
µ = ψ

σ where ψ is a holomorphic quadratic differential on X. Let dA(z) =
σ(z)dxdy be the volume form of X = (Sg,n, σ(z)|dz|2) where z = x + yi.

ANNALES DE L’INSTITUT FOURIER
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The Weil–Petersson metric is the Hermitian metric on T (Sg,n) arising from
the Petersson scalar product

〈ϕ,ψ〉WP =
∫
X

ϕ(z)
σ(z)

ψ(z)
σ(z) dA(z)

via duality. We will concern ourselves primarily with its Riemannian part
gWP . We denote by Teich(Sg,n) the Teichmüller space endowed with the
Weil–Petersson metric. The mapping class group Mod(Sg,n) acts prop-
erly discontinuously on Teich(Sg,n) by isometries. Reversely, from Masur–
Wolf [33] and Brock–Margalit [7] the whole isometry group of Teich(Sg,n)
is exactly the extended mapping class group except for some low com-
plexity cases. The Weil–Petersson metric on Teichmüller space descends
into a metric on moduli space. We denote byMg,n moduli spaceM(Sg,n)
endowed with the Weil–Petersson metric.
The space Teich(Sg,n) is incomplete [13, 50], negatively curved [47, 53]

and uniquely geodesically convex [54]. The moduli spaceMg,n is an orbifold
with finite volume and finite diameter. One may refer to [27, 58] for more
details on the Weil–Petersson metric. The following fundamental fact is
due to Ahlfors [1], which will be used later.

Theorem 2.3 (Ahlfors). — The space Teich(Sg,n) is real-analytic
Kähler.

The following convexity theorem is due to Wolpert [54]. He used this
result to give a new solution to the Nielsen Realization Problem which
was first solved by Kerckhoff [29]. An alternative proof of this convexity
theorem was given by Wolf [48], through using harmonic map theory.

Theorem 2.4 (Wolpert). — For any essential simple closed curve α ⊂
Sg,n, the length function `α : Teich(Sg,n)→ R+ is strictly convex.

2.4. Augmented Teichmüller space

The non-completeness of the Weil–Petersson metric corresponds to finite-
length geodesics in Teich(Sg,n) along which some essential simple closed
curve pinches to zero. In [32] the completion Teich(Sg,n) of Teich(Sg,n),
called the augmented Teichmüller space, is described concretely by adding
strata consisting of stratum Tσ defined by the vanishing of lengths

`α = 0

for each α ∈ σ where σ is a collection of mutually disjoint essential simple
closed curves. The stratum Tσ are naturally products of lower dimensional

TOME 69 (2019), FASCICULE 3
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Teichmüller spaces corresponding to the nodal surfaces in Tσ [32]. The space
Teich(Sg,n) is a complete CAT(0) space. It was shown in [14, 55, 62] that
every stratum Tσ is totally geodesic in Teich(Sg,n). Since the completion
Tσ of Tσ is convex in Teich(Sg,n), by elementary CAT(0) geometry (see[4])
the nearest projection map

πσ : Teich(Sg,n)→ Tσ
is well-defined. Using Wolpert’s theorem on the structure of the Alexandrov
tangent cone at the boundary of Teich(Sg,n) (see [57, Theorem 4.18]) and
the first variation formula for the distance function, one can show that for
any X ∈ Teich(Sg,n), the image πσ(X) is contained in Tσ. One can see
more details in [17, 59].
The following result of Wolpert (see [57, Section 4] for more details) will

be used to prove the upper bounds in Theorems 1.1 and 1.2. Denote by
distwp( · , · ) the Weil–Petersson distance.

Theorem 2.5 (Wolpert). — For any X ∈ Teich(Sg,n), then we have

distwp(X,πσ(X)) 6
√

2π ·
∑
α∈σ0

`α(X).

It was shown by Masur [32] that the completion Mg,n of moduli space
Mg,n is homeomorphic to the Deligne–Mumford compactification of mod-
uli space. Recall that the inradius InRad(Mg,n) of Mg,n is defined as
maxX∈Mg,n distwp(X, ∂Mg,n). The inradius InRad(Mg,n) is the largest
radius of geodesic balls in the interior of Mg,n. Similarly, we also define
the inradius InRad(Teich(Sg,n)) of Teich(Sg,n) as

InRad(Teich(Sg,n)) := max
X∈Teich(Sg,n)

distwp(X, ∂Teich(Sg,n))

where ∂Teich(Sg,n) is the boundary of Teich(Sg,n).
In this article we will study the asymptotic behaviors of InRad(Mg,n)

and InRad(Teich(Sg,n)) either as g goes to infinity or as n goes to infinity.

3. The systole function is piecewise real analytic

As stated in Section 2, although the systole function `sys( · ) is continu-
ous over Teich(Sg,n), it is not smooth. In this section we will provide two
fundamental lemmas on the systole function `sys( · ) along a Weil–Petersson
geodesic such that we can take the derivative of the systole function along
the Weil–Petersson geodesic, which are crucial in the proof of Theorem 1.3.

ANNALES DE L’INSTITUT FOURIER
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Before stating the results, we provides three basic claims on geodesic length
functions. We always assume Weil–Petersson geodesics use arc-length pa-
rameters.

Claim 3.1. — For any essential simple closed curve α ⊂ Sg,n and γ :
[0, s]→ Teich(Sg,n) be a Weil–Petersson geodesic where s > 0 is a constant.
Then the geodesic length function `α(γ(t)) : [0, s] → R+ is real-analytic
on t.

Proof of Claim 3.1. — From Lemma 2.3 we know that Teich(Sg,n) is
real-analytic. In particular, all the Christoffel symbols are real-analytic.
Thus, the classical Cauchy–Kowalevski Theorem gives that the solution
of the Weil–Petersson geodesic equation is real-analytic. That is, every
Weil–Petersson geodesic is real-analytic. Then the claim follows from Lem-
ma 2.2. �

Let X ∈ Teich(Sg,n). We define the set sys(X) of systolic curves as

sys(X) := {β ⊂ Sg,n; `β(X) = `sys(X)}.

It is clear that the set sys(X) is finite for all X ∈ Teich(Sg,n).

Claim 3.2. — Let s > 0 and γ : [0, s] → Teich(Sg,n) be a Weil–
Petersson geodesic. Then the union ∪06t6s sys(γ(t)) is a finite set.

Proof of Claim 3.2. — First we denote by distT ( · , · ) the Teichmüller
distance. Since the image γ([0, s]) is a compact subset in Teich(Sg,n), there
exists a constant K > 0 such that the Teichmüller distance

max
t∈[0,s]

distT (γ(0), γ(t)) 6 K

and
max
t∈[0,s]

`sys(γ(t)) 6 K.

By [51, Lemma 3.1] we know that for all t ∈ [0, s] and β(t) ∈ sys(γ(t)) we
have `β(t)(γ(0)) 6 K · e2K . That is, the union satisfies

∪06t6s sys(γ(t)) ⊂ {β ⊂ Sg,n; `β(γ(0)) 6 K · e2K}

which is a finite set. Then the claim follows. �

We do not know whether the cardinality of the union ∪06t6s sys(γ(t)) in
the lemma above has any precise upper bound.

Claim 3.3. — Let s > 0 be a constant, the curve γ : [0, s]→ Teich(Sg,n)
be a Weil–Petersson geodesic and α, β ∈ sys(γ(0)) be two distinct essential
simple closed geodesics. Then either `α(γ(t)) ≡ `β(γ(t)) over [0, s] or there
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exists a constant 0 < s0 6 s such that either `α(γ(t)) < `β(γ(t)) over (0, s0)
or `β(γ(t)) < `α(γ(t)) over (0, s0).

Proof of Claim 3.3. — Since the image γ([0, s]) is contained in
Teich(Sg,n), we can extend the geodesic γ([0, s]) in both directions a little
bit longer. That is, there exists a positive constant ε > 0 such that γ :
(−ε, s+ ε)→ Teich(Sg,n) is well-defined. By Claim 3.1 we know that both
`α and `β are real-analytic along the Weil–Petersson geodesic γ(−ε, s+ε). If
all the derivatives `(k)

α (γ(0)) = `
(k)
β (γ(0)) for all k ∈ N+, then the Taylor ex-

pansions of `α and `β at γ(0) tells that `α(γ(t)) ≡ `β(γ(t)) over [0, s]. Oth-
erwise, there exists a positive integer k0 such that `(k)

α (γ(0)) = `
(k)
β (γ(0))

for all 0 6 k 6 k0 − 1 and `(k0)
α (γ(0)) 6= `

(k0)
β (γ(0)). The Taylor expansions

of `α and `β at γ(0) clearly imply the later case of the claim. �

Now we are ready to state the first lemma, which will be applied to prove
Proposition 4.3.

Lemma 3.4. — Let X 6= Y ∈ Teich(Sg,n), s = distwp(X,Y ) > 0 and
γ : [0, s]→ Teich(Sg,n) be the Weil–Petersson geodesic with γ(0) = X and
γ(s) = Y . Then there exist a positive integer k, a partition 0 = t0 < t1 <

· · · < tk−1 < tk = s of the interval [0, s] and a sequence of essential simple
closed curves {αi}06i6k−1 in Sg,n such that for all 0 6 i 6 k − 1,

(1) αi 6= αi+1.

(2) `αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.

Proof. — First by Claim 3.2 one may assume that the union

∪06t6s sys(γ(t)) = {βi}16i6n′

for some positive integer n′ where βi ⊂ Sg,n is an essential simple closed
curve for each 1 6 i 6 n′. Without loss of generality one may assume that
sys(γ(0)) consists of the first n0 curves for some 0 < n0 6 n′. That is

sys(γ(0)) = ∪16i6n0{βi}.

Thus, for all 1 6 i 6 n0 and n0 + 1 6 j 6 n′ we have

`βi(γ(0)) < `βj(γ(0)).

By the inequality above and using Claim 3.3 finite number of steps (in-
duction on n0), there exist a positive constant s0 6 s and an essential
simple closed curve in the set of systolic curves sys(γ(0)) of γ(0), which is
denoted by α0, such that for all 1 6 i 6 n′ we have

`α0(γ(t)) 6 `βi(γ(t)), ∀ 0 6 t 6 s0.
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Set

t1 = max{t′; `α0(γ(t)) 6 min
16i6n′

`βi(γ(t)), ∀ 0 6 t 6 t′}.

In particular,

`α0(γ(t)) = `sys(γ(t)), ∀ 0 6 t 6 t1.

It is clear that
0 < s0 6 t1 6 s.

We may assume that t1 < s; otherwise we are done.
Using the same argument above at γ(t1) there exist a positive constant

t2 with t1 < t2 6 s and an essential simple closed curve in sys(γ(t1)), which
is denoted by α1, such that

`α1(γ(t)) 6 min
16i6n′

`βi(γ(t)), ∀ t1 6 t 6 t2.

In particular,

`α1(γ(t)) = `sys(γ(t)), ∀ t1 6 t 6 t2.

From the definition of t1 we know that

α0 6= α1.

Thus, from Claim 3.3 and the definition of t1 we know that there exists
a constant r1 > 0 with r1 < t2 − t1 such that

`α1(γ(t)) < `α0(γ(t)), ∀ t1 < t < t1 + r1.

Then the conclusion follows by a finite induction.
We argue by contradiction. If not, then there exist two infinite sequences

of positive constants {ti}i>1 with ti < ti+1 < s, {ri}i>1 with 0 < ri <

t1+i − ti, and a sequence of essential simple closed curves

{αi}i>1 ⊂ ∪06t6s sys(γ(t)) = {βi}16i6n′

such that for all i > 1,

`αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.(3.1)
αi 6= αi−1.(3.2)

`αi(γ(t)) < `αi−1(γ(t)), ∀ ti < t < ti + ri.(3.3)

Since {ti} is a bounded increasing sequence, we assume that limi→∞ ti =
T . It is clear that 0 < T 6 s. Since {αi}i>1 ⊂ ∪06t6s sys(γ(t)) = {βi}16i6n′
which is a finite set, there exist two essential simple closed curves α 6= β ∈
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{βi}16i6n′ , a subsequence {t′i}i>1 of {t2i}i>1 and a subsequence {t′′i }i>1 of
{t2i + r2i

2 }i>1 such that for all i > 1,

t′i < t′′i < t′i+1.(3.4)
lim
i→∞

t′i = lim
i→∞

t′′i = T.(3.5)

`α(γ(t′i)) = `sys(γ(t′i)).(3.6)
`β(γ(t′′i )) = `sys(γ(t′′i )).(3.7)

Recall that t′′i is of form t2i + r2i
2 , (3.3) tells us that

(3.8) `β(γ(t′′i )) = `sys(γ(t′′i )) < `α(γ(t′′i )).

Since geodesic length functions are continuous over Teich(Sg,n),

`α(γ(T )) = `β(γ(T )) = `sys(γ(T )).

Consider the Weil–Petersson geodesic c : [0, T ] → Teich(Sg,n) which is
defined as c(t) = γ(T − t) for all 0 6 t 6 T . We apply Claim 3.3 to c at
c(0) = γ(T ). Then from inequality (3.8) and Claim 3.3 we know that there
exists a constant s′0 > 0 such that

(3.9) `β(c(t)) < `α(c(t)), ∀ t ∈ (0, s′0).

On the other hand, from (3.5) and (3.6) one may choose a number ε ∈
(0, s′0) to be small enough such that

(3.10) `α(c(ε)) = `α(γ(T − ε)) = `sys(γ(T − ε)) = `sys(c(ε))

which contradicts inequality (3.9). �

For any ε0 > 0 we denote by Teich(Sg,n)>ε0 the ε0-thick part of Teich-
müller space endowed with the Weil–Petersson metric. Let Teich(Sg,n)>ε0
be the interior of Teich(Sg,n)>ε0 . The following lemma will be applied to
prove Theorem 1.3.

Lemma 3.5. — Fix a constant ε0 > 0. Let X 6= Y ∈ Teich(Sg,n),
s = distwp(X,Y ) > 0 and γ : [0, s] → Teich(Sg,n) be the Weil–Petersson
geodesic with γ(0) = X and γ(s) = Y . Then there exist a positive in-
teger k, a partition 0 = t0 < t1 < · · · < tk−1 < tk = s of the interval
[0, s], a sequence of closed intervals {[ai, bi] ⊆ [ti, ti+1]}06i6k−1 and a se-
quence of essential simple closed curves {αi}06i6k−1 in Sg,n such that for
all 0 6 i 6 k − 1,

(1) αi 6= αi+1.

(2) `αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.

(3) γ([0, s]) ∩ (Teich(Sg,n)− Teich(Sg,n)>ε0) = ∪06i6k−1γ([ai, bi]).
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Proof. — First we apply Lemma 3.4 to the Weil–Petersson geodesic
γ([0, s]). Then there exist a positive integer k, a partition 0 = t0 < t1 <

· · · < tk−1 < tk = s of the interval [0, s] and a sequence of essential simple
closed curves {αi}06i6k−1 in Sg,n such that for all 0 6 i 6 k − 1 we have

(3.11) `αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.

Thus, Part (1) and (2) follows.
We apply Theorem 2.4 to the geodesic length function

`αi( · ) : γ([ti, ti+1])→ R+

for all 0 6 i 6 k − 1. Since `αi( · ) is strictly convex on γ([ti, ti+1]) and
γ([0, s]) ⊂ Teich(Sg,n), the maximal principle for a convex function gives
that `−1

αi ([0, ε0]) is a closed connected subset in γ([ti, ti+1]), which is denoted
by γ([ai, bi]) for some closed interval [ai, bi] ⊆ [ti, ti+1] (note that γ([ai, bi])
may be just a single point or an empty set). Then Part (3) clearly follows
from the choices of ai and bi. �

4. Uniformly Lipschitz

Recall that the systole function `sys( · ) : Teich(Sg,n)→ R+ is continuous
and not smooth. The goal of this section is to prove Theorem 1.3 which
says that the square root of the systole function is uniformly Lipschitz
continuous along Weil–Petersson geodesics. The method in this section is
influenced by [57]. For convenience we restate Theorem 1.3 here.
Theorem 4.1. — There exists a universal constant K > 0, independent

of g and n, such that for all X,Y ∈ Teich(Sg,n),∣∣∣∣√`sys(X)−
√
`sys(Y )

∣∣∣∣ 6 K distwp(X,Y ).

We begin by outlining the idea of the proof.
For any Weil–Petersson geodesic g(X,Y ) ⊂ Teich(Sg,n) joining X and

Y in Teich(Sg,n), first we apply Lemma 3.5 to make a thick-thin decompo-
sition for the geodesic g(X,Y ) such that both of the thick and thin parts
are disjoint closed intervals with certain properties. Then we use different
arguments for these two parts. For the thin part we will apply the following
result due to Wolpert.
Lemma 4.2 ([57, Lemma 3.16]). — There exists a universal constant

c > 0, independent of g and n, such that for all X ∈ Teich(Sg,n) and any
essential simple closed curve α ⊂ Sg,n,

〈∇`α,∇`α〉wp(X) 6 c · (`α(X) + `2α(X)e
`α(X)

2 ).
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Fix a constant k0 > 0, the lemma above implies that for all essential
simple closed curve α ⊂ Sg,n with `α 6 k0,

〈∇`α,∇`α〉wp(X) 6 C(k0)`α

where C(k0) is a constant only depending on k0.
Recall that the length `α could be arbitrarily large for any essential

simple closed curve α ⊂ Sg,n (Buser–Sarnak [11] constructed hyperbolic
surfaces whose injectivity radii grow roughly as ln g), actually for the thick
part of the geodesic g(X,Y ), no matter how large the injectivity radius
is, we will apply the following proposition, which is the main part of this
section.

Proposition 4.3. — Fix a constant ε0 > 0. Then there exists a positive
constant C(ε0), only depending on ε0, such that for any X,Y ∈ Teich(Sg,n)
with the Weil–Petersson geodesic g(X,Y ) ⊂ Teich(Sg,n)>ε0 , we have∣∣∣∣√`sys(X)−

√
`sys(Y )

∣∣∣∣ 6 C(ε0) distwp(X,Y ).

For any essential simple closed curve α ⊂ Sg,n, the geodesic length func-
tion `α( · ) is real-analytic over Teich(Sg,n). Gardiner in [18, 19] provided
formulas for the differentials of `α. Let (X,σ(z)|dz|2) ∈ Teich(Sg,n) be a
hyperbolic surface and Γ be its associated Fuchsian group. Since α is an
essential simple closed curve, we may denote by A be the deck transforma-
tion on the upper half plane H corresponding to the simple closed geodesic
[α] ⊂ X. Consider the quadratic differential

(4.1) Θα(z) =
∑

E∈〈A〉/Γ

E′(z)2

E(z)2 dz2

where 〈A〉 is the cyclic group generated by A.
Then the gradient ∇`α( · ) of the geodesic length function `α is

∇`α(X)(z) = 2
π

Θα(z)
ρ(z)|dz|2

where ρ(z)|dz|2 is the hyperbolic metric on the upper half plane. The tan-
gent vector tα = i

2∇`α is the infinitesimal Fenchel–Nielsen right twist de-
formation [52].
In [41] Riera provided a formula for the Weil–Petersson inner product of

a pair of geodesic length gradients. Let α, β ⊂ X be two essential simple
closed curves with A,B ∈ Γ be its associated deck transformations with
axes α̃, β̃ on the upper half plane. Riera’s formula [41, Theorem 2] says
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that

〈∇`α,∇`β〉wp(X) = 2
π

`αδαβ +
∑

E∈〈A〉\Γ/〈B〉

(
u ln

∣∣∣∣u+ 1
u− 1

∣∣∣∣− 2
)

for the Kronecker delta δ·, where u = u(α̃, E ◦ β̃) is the cosine of the inter-
section angle if α̃ and E ◦ β̃ intersect and is otherwise cosh (distH(α̃, E ◦ β̃))
where distH(α̃, E ◦ β̃) is the hyperbolic distance between the two geodesic
lines. Riera’s formula was applied in [57] to study Weil–Petersson gradient
of simple closed curves of short lengths. In this paper we will use Riera’s
formula to study the systolic curves which may have large lengths.
In particular setting α = β in Riera’s formula, then we have

(4.2) 〈∇`α,∇`α〉wp(X) = 2
π

`α +
∑

E∈{〈A〉\Γ/〈A〉−id}

(
u ln u+ 1

u− 1 − 2
)

where u = cosh (distH(α̃, E ◦ α̃)) and the double-coset of the identity ele-
ment is omitted from the sum. We can view the formula above as a function
on essential simple closed curves in Sg,n. In this section, we will evaluate
this function at α ∈ sys(X) and make estimates to prove the following
result, which is essential in the proof of Proposition 4.3.

Proposition 4.4. — Fix a constant ε0 > 0. Then there exists a positive
constantD(ε0), only depending on ε0, such that for anyX ∈ Teich(Sg,n)>ε0
and any systolic curve α ∈ sys(X) we have

〈∇`α,∇`α〉wp(X) 6 D(ε0) · `α(X).

Remark 4.5. — From Riera’s formula it is clear that

〈∇`α,∇`α〉wp(X) > `α(X).

Thus, 〈∇`α,∇`α〉wp(X) is comparable to `α(X) under the same conditions
as in Proposition 4.4.

Before we prove Proposition 4.4, let’s set up some notations and provide
two lemmas.

As stated above, we let X ∈ Teich(Sg,n) be a hyperbolic surface and
α ⊂ X be an essential simple closed curve. Up to conjugacy, we may assume
that the closed geodesic [α] corresponds to the deck transformation A : z →
e`α · z with axis α̃ = iR+ which is the imaginary axis and the fundamental
domain A = {z ∈ H; 1 6 |z| 6 e`α}. Let γ1, γ2 be two geodesic lines in H.
The distance distH(γ1, γ2) is given by

distH(γ1, γ2) = inf
p∈γ1

distH(p, γ2).
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The following lemma says that any two lifts of the closed geodesic [α] in
the upper half plane are uniformly separated. More precisely,

Lemma 4.6. — Fix a constant ε0 > 0. Then there exists a constant
C0(ε0) > 0, only depending on ε0, such that for any X ∈ Teich(Sg,n)>ε0 ,
α ∈ sys(X) and all B ∈ {〈A〉\Γ− id} we have

distH(α̃, B ◦ α̃) > ε0
4 .

Proof. — The proof follows from a standard argument in Riemannian
geometry (the so-called closing lemma). Since X ∈ Teich(Sg,n)>ε0 and
α ∈ sys(X), for every point m ∈ [α], the closed geodesic in X representing
α, we have the geodesic ball BX(m; ε04 ) ⊂ X, of radius ε0

4 centered at m,
is isometric to a hyperbolic geodesic ball of radius ε0

4 in H. Since [α] is a
systolic curve and X ∈ Teich(Sg,n)>ε0 , the intersection [α] ∩ BX(m; ε04 ) is
a geodesic arc of length ε0

2 with the midpoint m.

Claim. — distH(α̃, B ◦ α̃) > C0(ε0) for all B ∈ {〈A〉\Γ− id}.

We argue by contradiction for the proof of the claim. Suppose it does
not hold. Then we let p ∈ α̃ and q ∈ B ◦ α̃ such that

(4.3) distH(p, q) < ε0
4 .

Let BH(p; ε04 ) ⊂ H be the geodesic ball centered at p of radius ε0
4 . It is

clear that the covering map

π : BH

(
p; ε04

)
→ X

is an isometric embedding. Thus,

(4.4) π
(
BH

(
p; ε04

)
∩ α̃
)

= [α] ∩BX
(
π(p); ε04

)
Since the two geodesic lines α̃ and B ◦ α̃ are disjoint, by inequality (4.3)

we know that q ∈ BH(p; ε04 )−BH(p; ε04 ) ∩ α̃. Since q ∈ B ◦ α̃,

π(q) ∈ [α] ∩BX
(
π(p); ε04

)
which, together with (4.4), implies that the covering map π : BH(p; ε04 )→
X is not injective, which is a contradiction. �

Remark 4.7. — The condition α ∈ sys(X) is essential in Lemma 4.6.
Otherwise, the estimate above may fail if one think about that case that
the intersection of [α] with a geodesic ball of small radius is not connected.
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Recall that the axis α̃ of the closed geodesic [α] ⊂ X in the upper half
plane is the imaginary axis iR+. Let B ∈ {〈A〉\Γ/〈A〉− id}. It is clear that
the two geodesic lines B ◦ (iR+) and iR+ are disjoint, and have disjoint
boundary points at infinity. Since the distance function between two convex
subsets in H is strictly convex (one may see [4, p. 176] in a more general
setting), there exists a unique point pB ∈ B ◦ (iR+) such that

distH(pB , iR+) = distH(B ◦ (iR+), iR+).

The goal of the following lemma is to study the position of the nearest
projection point pB in H.

Lemma 4.8. — Let B ∈ {〈A〉\Γ/〈A〉 − id}. Then there exists a repre-
sentative B′ ∈ 〈A〉\Γ for B such that

1 6 rB′ 6 e`α

where pB′ = (rB′ , θB′) in polar coordinate be the nearest projection point
on B′ ◦ (iR+) from iR+.

Proof. — Recall that the fundamental domain of A, the deck transfor-
mation corresponding to [α], is A = {z ∈ H; 1 6 |z| 6 e`α}. For any
B ∈ {〈A〉\Γ− id}, the map B : A→ A is biholomorphic. Let pB = (rB , θB)
in polar coordinates be the nearest projection point on B ◦(iR+) from iR+.

Case (1): 1 6 rB 6 e`α . — Then we are done by choosing B′ = B.
Case (2): 0 < rB < 1 or rB > e`α . — First there exists an integer k

such that
Ak ◦ rB ∈ {(r, θ) ∈ H; 1 6 r 6 e`α}.

Choose B′ = Ak ·B. Then B′ = B ∈ {〈A〉\Γ/〈A〉− id} by the definition of
double-cosets. Since B′ = Ak ·B and Ak acts on iR+ by isometries,

distH(iR+, B′ ◦ (iR+)) = distH(iR+, Ak ◦ rB).

Let pB′ = (rB′ , θB′) in polar coordinates be the nearest point projection
on B′ ◦ (iR+) from iR+. Then we have 1 6 rB′ 6 e`α . �

Recall that in Riera’s formula (see (4.2)) the function (u ln u+1
u−1 − 2)

satisfies

lim
u→∞

u ln u+1
u−1 − 2
u−2 = 2

3 .

From Lemma 4.8 we know that the quantity u in (4.2) satisfies

u > cosh
(ε0

4

)
> 1
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provided that X ∈ Teich(Sg,n)>ε0 and α ∈ sys(X). Thus, there exists a
positive constant C2(ε0), depending only on ε0, such that

(4.5)
(
u ln u+ 1

u− 1 − 2
)
6 C2(ε0) · u−2.

Now we are ready to prove Proposition 4.4.
Proof of Proposition 4.4. — We will apply (4.2) to finish the proof.
First from (4.2) and (4.5) we have

〈∇`α,∇`α〉wp(X) 6 2
π

`α + C2(ε0)
∑

B∈{〈A〉\Γ/〈A〉−id}

e−2 distH(iR+,B◦(iR+))

.
Let pB ∈ B ◦ (iR+) such that

distH(pB , iR+) = distH(B ◦ (iR+), iR+).

Then,

(4.6) 〈∇`α,∇`α〉wp 6
2
π

`α + C2(ε0)
∑

B∈{〈A〉\Γ/〈A〉−id}

e−2 distH(iR+,pB)

.
Lemma 2.1 implies that the function e−2 distH(iR+,z) has the mean value

property. Set
r(ε0) = ε0

8 .

Thus, from Lemma 2.1 we know that

e−2 distH(iR+,pB) 6 c(r(ε0))
∫
BH(pB ;r(ε0))

e−2 distH(z,iR+)dA(z)

where c( · ) is the constant in Lemma 2.1.
From our assumption that X ∈ Teich(Sg,n)>ε0 , Lemma 4.6 and the tri-

angle inequality we know that the geodesic balls

{BH(pB ; r(ε0))}B∈{〈A〉\Γ/〈A〉−id}

are pairwise disjoint. Thus,∑
B∈{〈A〉\Γ/〈A〉−id}

e−2 distH(iR+,pB)

6 c(r(ε0))
∑

B∈{〈A〉\Γ/〈A〉−id}

∫
BH(pB ;r(ε0))

e−2 distH(z,iR+)dA(z)

= c(r(ε0))
∫
∪B∈{〈A〉\Γ/〈A〉−id}BH(pB ;r(ε0))

e−2 distH(z,iR+)dA(z).
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Since `α(X) > ε0 and r(ε0) 6 ε0
4 , from Lemma 4.8 we have that the

union of the geodesic balls satisfy that

∪B∈{〈A〉\Γ/〈A〉−id}BH(pB ; r(ε0)) ⊂ {(r, θ) ∈ H; e−`α 6 r 6 e2`α}.

Thus,

∑
B∈{〈A〉\Γ/〈A〉−id}

e−2 distH(iR+,pB)

6 c(r(ε0))×
∫
{(r,θ)∈H;e−`α6r6e2`α}

e−2 distH(z,iR+)dA(z).

From inequality (2.2) we have

(4.7)
∑

B∈{〈A〉\Γ/〈A〉−id}

e−2 distH(iR+,pB)

6 c(r(ε0))
∫ π

0

∫ e2`α

e−`α
sin2 θdA(z)

= c(r(ε0))
∫ π

0

∫ e2`α

e−`α

sin2 θ

r2 sin2 θ
rdrdθ

= c(r(ε0)) · 3π · `α

where in the first equality we apply dA(z) = |dz|2
y2 = rdrdθ

r2 sin2 θ .
Therefore, the conclusion follows from inequalities (4.6) and (4.7) by

choosing

D(ε0) = 2
π

(1 + C2(ε0) · c(r(ε0)) · 3π). �

Proof of Proposition 4.3. — Let s = distwp(X,Y ) > 0 and

γ : [0, s]→ Teich(Sg,n)>ε0

be the geodesic g(X,Y ) with γ(0) = X and γ(s) = Y . From Lemma 3.4 we
know that there exist a positive integer k, a partition 0 = t0 < t1 < · · · <
tk−1 < tk = s of the interval [0, s] and a sequence of essential simple closed
curves {αi}06i6k−1 in Sg,n such that for all 0 6 i 6 k − 1 we have

`αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.
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Then,∣∣∣∣√`sys(X)−
√
`sys(Y )

∣∣∣∣ 6 k−1∑
i=0

∣∣∣∣√`sys(γ(ti))−
√
`sys(γ(ti+1))

∣∣∣∣
=
k−1∑
i=0

∣∣∣√`αi(γ(ti))−
√
`αi(γ(ti+1))

∣∣∣
=
k−1∑
i=0

∣∣∣∣∫ i+1

ti

〈∇`
1
2
αi(γ(t)), γ′(t)〉wpdt

∣∣∣∣
6
k−1∑
i=0

∫ ti+1

ti

‖∇`
1
2
αi(γ(t))‖wpdt

where || · ||wp is the Weil–Petersson norm.
Since γ([0, s]) ⊂ Teich(Sg,n)>ε0 , from Proposition 4.4 we have for all

0 6 i 6 (k − 1) and ti 6 t 6 ti+1,

||∇`
1
2
αi(γ(t))||wp 6

√
D(ε0)

4 .

Recall that distwp(X,Y ) = s = tk and t0 = 0. Therefore, the two in-
equalities above yield that∣∣∣∣√`sys(X)−

√
`sys(Y )

∣∣∣∣ 6
√
D(ε0)
2 distwp(X,Y ).

Then the conclusion follows by choosing C(ε0) =
√
D(ε0)
2 . �

Remark 4.9. — It is not hard to see that the constant C(ε0) → ∞ as
ε0 → 0.

Before we prove Theorem 1.3, let us introduce the following result which
is a direct consequence of Lemma 4.2.

Lemma 4.10. — There exists a universal constant c > 0, independent
of g and n, such that for any X ∈ Teich(Sg,n), and α ⊂ Sg,n which is an
essential simple closed curve with `α(X) 6 1, then the following holds

〈∇`
1
2
α ,∇`

1
2
α〉wp(X) 6 c.

Now we are ready to prove Theorem 1.3.
Proof of Theorem 1.3. — Let X 6= Y ∈ Teich(Sg,n), s = distwp(X,Y ) >

0 and γ : [0, s] → Teich(Sg,n) be the Weil–Petersson geodesic with γ(0) =
X and γ(s) = Y . We apply Lemma 3.5 to the geodesic γ([0, s]) with
ε0 = 1. So there exist a positive integer k, a partition 0 = t0 < t1 <
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· · · < tk−1 < tk = s of the interval [0, s], a sequence of closed intervals
{[ai, bi] ⊆ [ti, ti+1]}06i6k−1 and a sequence of essential simple closed curves
{αi}06i6k−1 in Sg,n such that for all 0 6 i 6 k − 1,

`αi(γ(t)) = `sys(γ(t)), ∀ ti 6 t 6 ti+1.(4.8)

γ([0, s]) ∩ `−1
sys([0, 1]) = ∪06i6k−1γ([ai, bi]).(4.9)

Since [ai, bi] ⊆ [ti, ti+1] for all 0 6 i 6 k− 1, from (4.9) we know that for
all 0 6 i 6 k − 1,

(4.10) `sys(γ(t)) > 1, ∀ t ∈ [ti, ai] ∪ [bi, ti+1].

Then,∣∣∣∣√`sys(X)−
√
`sys(Y )

∣∣∣∣
=
∣∣∣∣√`sys(γ(0))−

√
`sys(γ(s))

∣∣∣∣
6
k−1∑
i=0

(∣∣∣∣√`sys(γ(ti))−
√
`sys(γ(ai))

∣∣∣∣+
∣∣∣∣√`sys(γ(ai))−

√
`sys(γ(bi))

∣∣∣∣
+
∣∣∣∣√`sys(γ(bi))−

√
`sys(γ(ti+1))

∣∣∣∣) .
From (4.10) and Proposition 4.3 we have∣∣∣∣√`sys(X)−

√
`sys(Y )

∣∣∣∣(4.11)

6
k−1∑
i=0

(C(1) · |ai − ti|+ C(1) · |ti+1 − bi|)

+
k−1∑
i=0

∣∣∣∣√`sys(γ(ai))−
√
`sys(γ(bi))

∣∣∣∣
=
k−1∑
i=0

C(1) · (ti+1 − ti + ai − bi) +
k−1∑
i=0

∣∣∣∣√`sys(γ(ai))−
√
`sys(γ(bi))

∣∣∣∣
=
k−1∑
i=0

C(1) · (ti+1 − ti + ai − bi) +
k−1∑
i=0

∣∣∣√`αi(γ(ai))−
√
`αi(γ(bi))

∣∣∣
where we apply (4.8) in the last step.
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Using (4.8) and (4.9), we apply Lemma 4.10 to the geodesic segment
γ([ai, bi]). Then for all 0 6 i 6 k − 1,

(4.12)
∣∣∣√`αi(γ(ai))−

√
`αi(γ(bi))

∣∣∣
=

∣∣∣∣∣
∫ bi

ai

〈∇`
1
2
αi(γ(t)), γ′(t)〉wpdt

∣∣∣∣∣
6
∫ bi

ai

‖∇`
1
2
αi(γ(t))‖wpdt 6

√
c · (bi − ai)

where || · ||wp is the Weil–Petersson norm.
Combine inequalities (4.11) and (4.12) we get

(4.13)
∣∣∣∣√`sys(X)−

√
`sys(Y )

∣∣∣∣
6
k−1∑
i=0

C(1) · (ti+1 − ti + ai − bi) +
k−1∑
i=0

√
c · (bi − ai)

6 max{C(1),
√
c} · (tk − t0)

= max{C(1),
√
c} · distwp(X,Y ).

Then the conclusion follows by choosing K = max{C(1),
√
c}. �

Remark 4.11. — For the case (g, n) = (1, 1) or (0, 4), we let α, β ⊂ Sg,n
be any two essential simple closed curves which fill the surface Sg,n. The
strata Tα and Tβ are two single points. By [14, 55, 62] the Weil–Petersson
geodesic I joining Tα and Tβ is contained in Teich(Sg,n) except the two
end points. The Collar Lemma [28] implies that there exists at least one
point Z ∈ I such that `sys(Z) > 2 arcsinh 1. Then Theorem 1.3 gives that
`(I) = distWP (Z, Tα) + distWP (Z, Tβ) > 2

√
2 arcsinh 1
K > 0. One can see [55,

Corollary 22] for a more general statement, and see [6, Theorem 1.7] for a
more explicit lower bound. Since the completion Mg,n contains M0,2g+n
as a totally geodesic subspace, up to a uniform multiplicative constant the
quantity √g serves as a lower bound for the diameter diam(Mg,n) for large
genus, as observed in [12, Proposition 5.1].

5. Proofs of Theorems 1.1, 1.2 and 1.4

In this section we will first prove Theorem 1.4 and then apply Theo-
rem 1.3 to finish the proofs of Theorems 1.1 and 1.2.
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Proof of Theorem 1.4. — For the lower bound, by the Mumford com-
pactness theorem we may assume that X ∈ ∂M>s

g,n and Y ∈ ∂M>t
g,n such

that
distwp(∂M>s

g,n, ∂M>t
g,n) = distwp(X,Y ).

From Theorem 1.3 we know that distwp(X,Y ) > K(
√
s−
√
t). Thus,

distwp(∂M>s
g,n, ∂M>t

g,n) > K(
√
s−
√
t).

For the upper bound, for any X ∈ ∂M>s
g,n we let α ⊂ X such that

`sys(X) = `α(X) = s.

Recall that (4.2) (Riera’s formula) tells that

(5.1) 〈∇
√

2π`α,∇
√

2π`α〉wp > 1.

It follows from standard ODE theory that there exists a smooth curve γ
of arc-length parameter r inMg,n such that

γ(0) = X and γ′(r) = −
∇
√

2π`α(γ(r))
||∇
√

2π`α(γ(r))||wp
.

The length function `α is decreasing along γ because for r1 > r2 > 0,√
2π`α(γ(r1))−

√
2π`α(γ(r2)) =

∫ r1

r2

〈∇
√

2π`α(γ(r)), γ′(t)〉wpdr

= −
∫ r1

r2

‖∇
√

2π`α(γ(r))‖wpdr

< 0.

By the inequality above we know that the curve γ will go to the stratum
whose pinching curve is α. Since s > t > 0 and `α(γ(0)) = s, we may
assume that r0 > 0 is a constant such that

`α(γ(r0)) = t.

Then we have
√

2πs−
√

2πt =
√

2π`α(γ(0))−
√

2π`α(γ(r0))

=
∫ 0

r0

〈∇
√

2π`α(γ(r)), γ′(t)〉wpdr

=
∫ r0

0
‖∇
√

2π`α(γ(r))‖wpdr

> r0 (by (5.1))
> distwp(X, γ(r0))

where the last inequality uses the fact that γ uses the arc-length parameter.
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Since `α(γ(r0)) = t < s = `α(X), the Weil–Petersson geodesic joining X
and γ(r0) will cross the leaf ∂M>t

g,n. Thus,

distwp(X, γ(r0)) > distwp(X, ∂M>t
g,n).

Since `α(X) = s, the two inequalities above imply that

distwp(∂M>s
g,n, ∂M>t

g,n) 6 distwp(X, ∂M>t
g,n)

6
√

2π(
√
s−
√
t).

Then the conclusion follows by choosing

K ′ = max
{√

2π, 1
K

}
. �

Remark 5.1. — The argument in the proof of Theorem 1.4 also gives that
max

X∈∂M>s
g,n

distwp(X, ∂M>t
g,n) is uniformly comparable to (

√
s−
√
t).

Although Teichmüller space is non-compact, the systole function `sys( · ) :
Teich(Sg,n)→ R+ is bounded above by a constant depending on g and n.
Follow [3] we define

sys(g, n) := sup
X∈Teich(Sg,n)

`sys(X).

By Mumford’s compactness theorem [38] this supremum is in fact a maxi-
mum. We list some bounds for sys(g, n) which will be useful in the proofs
of Theorems 1.1 and 1.2. One can see [3] for more details on sys(g, n).
We always assume that 3g + n − 3 > 0. Since the set of shortest closed

geodesics of a maximal surface fills the surface, the Collar Lemma [28] gives
that

(5.2) sys(g, n) > 2 arcsinh 1.

Buser and Sarnak proved in [11] that there exists a universal constant
U > 0 such that sys(g, 0) > U ln g. And actually they also proved that
there exists a subsequence {gk}k>1 of {g}g>1 such that sys(gk, 0) > 4

3 ln gk.
If we allow the surface to have punctures, based on Buser–Sarnak’s work,
Balacheff, Makover and Parlier [3, Proposition 2] proved the following lower
bound which will be useful to prove Theorem 1.1.

(5.3) sys(g, n) > min
{
U ln g, 2 arccosh

(
2(g − 1)

n
+ 1
)}

.

An interesting upper bound for sys(g, n) was provided by Schmutz in [43],
which says that if n > 2, sys(g, n) 6 4 arccosh ( 6g−6+3n

n ). If g > 1, Part 1
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of [3, Theorem] tells that sys(g, 0) < sys(g, 1) < sys(g, 2). Thus, these two
results give that for all g, n with 3g + n− 3 > 0,

(5.4) sys(g, n) 6 min
{

4 arccosh (3(g + 1)), 4 arccosh
(

6g − 6 + 3n
n

)}
.

Now we are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. — For any X ∈Mg,n, we let α ⊂ X be a systolic
curve, i.e., `α(X) = `sys(X). Inequality (5.4) tells that if g > 2,

(5.5) `sys(X) 6 4 arccosh (4g).

Let Tα ⊂Mg,n be the stratum whose vanishing curve is α. Then we have
for all g > 2,

distwp(X, ∂Mg,n) 6 distwp(X, Tαg,n)

6
√

2π`α(X), (by Theorem (2.5))

=
√

2π`sys(X)

6
√

2π · 4 arccosh (4g) (by inequality (5.5))

<
√

32π ·
√

ln g.

Since X ∈Mg,n is arbitrary, we have

InRad(Mg,n) 6
√

32π ·
√

ln g.

For the lower bound, from inequality (5.3) one may choose a surface
Y ∈Mg,n such that

(5.6) `sys(Y ) > min
{
U ln g, 2 arccosh

(
2(g − 1)

n
+ 1
)}

.

Thus, there exists a constant k(n), only depending on n, such that

`sys(Y ) > k(n) · ln g.

We let Z ∈ ∂Mg,n such that

distwp(Y, Z) = distwp(Y, ∂Mg,n).
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Then we have

InRad(Mg,n) > distwp(Y, ∂Mg,n)
= distwp(Y,Z)

>
1
K

∣∣∣∣√`sys(Y )−
√
`sys(Z)

∣∣∣∣ (by Theorem 1.3)

= 1
K

√
`sys(Y ) (because `sys(Z) = 0)

>

√
k(n)
K

√
ln g

where K is the universal constant from Theorem 1.3. �

Remark 5.2. — The proof of Theorem 1.1 also leads to the following
result.
Theorem 5.3. — For all g, n with g > 2, then

InRad(Teich(Sg,n)) �g
√

ln g.

Remark 5.4. — In the proof of the lower bound of Theorem 1.1, the
quantity 2 arccosh ( 2(g−1)

n + 1) is applied. Observe that for any constant
a ∈ (0, 1), the quantity 2 arccosh ( 2(g−1)

ga + 1) is comparable to ln g as g
goes to infinity. So we also get that

InRad(Mg,[ga]) �g
√

ln g.

The proof of Theorem 1.2 is similar to the one of Theorem 1.1.
Proof of Theorem 1.2. — For any X ∈Mg,n, we let α ⊂ X be a systolic

curve, i.e., `α(X) = `sys(X). From inequality (5.4) we know that there
exists a constant d(g) > 0, only depending on g, such that for all n > 4,

(5.7) sys(g, n) 6 d(g).

Let Tα ⊂Mg,n be the stratum whose vanishing curve is α. Then we have
for all n > 4,

distwp(X, ∂Mg,n) 6 distwp(X, Tαg,n)

6
√

2π`α(X), (by Theorem (2.5))

=
√

2π`sys(X)

6
√

2π · d(g) (by inequality (5.7)).

Since X ∈Mg,n is arbitrary, we have

InRad(Mg,n) 6
√

2π · d(g).
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For the lower bound, we will give two different proofs: the first one will
apply Theorem 1.3, and the other one will apply Lemma 4.10 instead of
Theorem 1.3.

Method (1): we apply Theorem 1.3. — First from inequality (5.2) one
may choose a surface Y ∈Mg,n such that

(5.8) `sys(Y ) > 2 arcsinh 1.

We let Z ∈ ∂Mg,n such that

distwp(Y, Z) = distwp(Y, ∂Mg,n).

Then we have

InRad(Mg,n) > distwp(Y, ∂Mg,n)
= distwp(Y,Z)

>
1
K

∣∣∣∣√`sys(Y )−
√
`sys(Z)

∣∣∣∣ (by Theorem 1.3)

= 1
K

√
`sys(Y ) (because `sys(Z) = 0)

>

√
2 arcsinh 1

K

where K is the universal constant from Theorem 1.3.

Method (2): we apply Lemma 4.10 without using Theorem 1.3. — Sim-
ilarly from inequality (5.2) one may choose a surface Y ∈Mg,n such that

(5.9) `sys(Y ) > 2 arcsinh 1.

We let Z ∈ ∂Mg,n such that

distwp(Y, Z) = distwp(Y, ∂Mg,n).

Let α ⊂ Sg,n be a pinched curve on Z, i.e., `α(Z) = 0. Consider the
shortest Weil–Petersson geodesic γ : [0, s]→Mg,n such that γ(0) = Y and
γ(s) = Z where s = distwp(Y, Z). Since `α(Z) = 0, the constant

s0 := inf{t0 ∈ [0, s]; `α(γ(t)) 6 1, ∀ t0 6 t 6 s}

is well-defined. Since 2 arcsinh 1 > 1, from inequality (5.9) and the defini-
tion of s0 we have

`α(γ(s0)) = 1.
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We apply Lemma 4.10 to the geodesic γ([t0, s)). Then,

1 =
∣∣∣√`α(γ(s0))−

√
`α(γ(s))

∣∣∣
=
∣∣∣∣∫ s

s0

〈∇`
1
2
α(γ(t)), γ′(t)〉wpdt

∣∣∣∣
6
∫ s

s0

||∇`
1
2
α(γ(t))||wpdt.

Since `α(γ(t)) 6 1 for all s0 6 t 6 s, from Lemma 4.10 we have

1 6
√
c · (s− s0) 6

√
c · distwp(Y,Z)

where c is the constant in Lemma 4.10.
Thus,

InRad(Mg,n) > distwp(Y, ∂Mg,n)
= distwp(Y, Z)

>
1√
c
.

The positive lower bounds from the two methods above are different. But
both of them are independent of g and n.

The proof is complete. �

Remark 5.5. — The proof of Theorem 1.2 also leads to

InRad(Teich(Sg,n)) �n 1.

Remark 5.6. — In the proof above, the quantity 4 arccosh ( 6g−6+3n
n ) is

applied to establish the upper bound. Observe that for any constant a ∈
(0, 1), 4 arccosh ( 6na−6+3n

n ) is comparable to 1 as n goes to infinity. Actually
the proof of Theorem 1.2 also yields that

InRad(M[na],n) �n 1.

6. Weil–Petersson volume for large genus

For simplicity, we will focus on Teichmüller space of closed surfaces en-
dowed with the Weil–Petersson metric, which is denoted by Teich(Sg). The
results in this section are still true for surfaces with punctures. The space
Teich(Sg) is incomplete [13, 50], negatively curved [47, 53] and uniquely
geodesically convex [54]. We will study the asymptotic behavior of the
Weil–Petersson volumes of geodesic balls of finite radii in Teich(Sg) as the
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genus g goes to infinity. The main goal in this section is to prove Theo-
rem 1.6.
The proof of Theorem 1.6 involves using Theorem 1.1 together with the

following theorem due to Teo [46] on the Ricci curvature on the thick-part
of the Teichmüller space. Let ε0 > 0. Recall that Teich(Sg,n)>ε0 is the
ε0-thick part T (Sg,n)>ε0 endowed with the Weil–Petersson metric.

Theorem 6.1 ([46, Proposition 3.3]). — The Ricci curvature of
Teich(Sg,n)>ε0 is bounded from below by −C ′(ε0) where C ′(ε0) > 0 is
a constant which only depends on ε0.

The constant C ′(ε0) above roughly behaves like 2
πε20

as ε0 goes to 0.
Huang [24] showed that the Weil–Petersson sectional curvature is not

bounded below by any negative constant. For suitable choice of ε0 > 0,
in [49] it was shown that the minimal Weil–Petersson sectional curvature
over Teich(Sg,n)>ε0 is comparable to −1 even as g goes to infinity. For the
most recent developments on the Weil–Petersson curvature on the thick
part of Teichmüller space, one may refer to [25, 49, 61].
Since the completion Teich(Sg) of Teich(Sg) is not locally compact [55],

the Weil–Petersson volume of a geodesic ball of finite radius in Teich(Sg)
may blow up. The following result is well-known to experts. We provide it
here for completeness.

Proposition 6.2. — Let Xg ∈ Teich(Sg). Then, for any positive con-
stant r with r > distwp(Xg, ∂Teich(Sg)) the Weil–Petersson volume satis-
fies

Volwp(B(Xg; r)) =∞
where B(Xg; r) = {Y ∈ Teich(Sg); distwp(Y,Xg) < r}.

Proof. — Let s = distwp(Xg, ∂Teich(Sg)) < r and γ : [0, s] → Teich(Sg)
be the Weil–Petersson geodesic such that γ(0) = Xg and γ(s) ∈ ∂Teich(Sg).
By results in [14, 55, 62] we know that the image satisfies

γ([0, s)) ⊂ Teich(Sg,n).

Since γ(s) ∈ ∂Teich(Sg), we may assume that γ(s) ∈ Tσ where Tσ is some
stratum. Let τσ = Πα⊂σ0τα be the Dehn-twist on the multi curves in σ0.
Take a number 0 < ε < r−s

2 . Since the mapping class group acts properly
discontinuously on Teich(Sg) [27], there exists a positive constant ε′ < ε

such that the geodesic balls {τkσ ◦B(γ(s− ε); ε′)}k>0 are pairwise disjoint.
It is clear that τkσ ◦γ(s) = γ(s) and τkσ ◦B(γ(s− ε); ε′) = B(τkσ ◦γ(s− ε); ε′)
for all k > 0. Then, for any k > 0 and Z ∈ B(τkσ ◦ γ(s− ε); ε′), the triangle
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inequality tells that

distwp(Z,Xg) 6 distwp(Z, τkσ ◦ γ(s− ε))

+ distwp(τkσ ◦ γ(s− ε), γ(s)) + distwp(γ(s), Xg)
< ε′ + ε+ s

< 2ε+ s

< r.

That is, for all k> 0, τkσ ◦B(γ(s− ε); ε′)⊂B(Xg; r). Since {τkσ ◦B(γ(s− ε);
ε′)}k>0 are pairwise disjoint, we have

Volwp(B(Xg; r)) > Volwp(∪k>0τ
k
σ ◦B(γ(s− ε); ε′))

=
∑
k>0

Volwp(τkσ ◦B(γ(s− ε); ε′))

=∞

where in the last step we use that fact τσ is an isometry on Teich(Sg). �
Let {Xg}g>2 be a sequence of points in Teichmüller space and {rg}g>2

be a sequence of positive numbers. In this section we will study the asymp-
totic behavior of {Volwp(B(Xg; rg))}g>2 as g tends to infinity. In light of
Proposition 6.2, we need to assume that the completions {B(Xg; rg)}g>2 ⊂
Teich(Sg) always do not intersect the boundary of Teichmüller space. For
any r0 > 0, we define U(Teich(Sg))>r0 to be the subset in Teich(Sg) which
is at least r0-away from the boundary. More precisely,

U(Teich(Sg))>r0 := {Xg ∈ Teich(Sg); distwp(Xg; ∂Teich(Sg) > r0}.

Theorems 1.1 and 2.5 tell that the largest radius of the geodesic ball in
the set U(Teich(Sg))>r0 is comparable to

√
ln g as g goes infinity.

Before we prove Theorem 1.6, we first provide a lemma which says that
the set U(Teich(Sg))>r0 is contained in some thick part of Teichmüller
space. More precisely,

Lemma 6.3. — For any r0 > 0, there exists a constant ε(r0), only de-
pending on r0, such that

U(Teich(Sg))>r0 ⊂ Teich(Sg)>ε(r0).

Proof. — The proof is a direct application of Theorem 2.5. For any
Xg ∈ U(Teich(Sg))>r0 we let αg ⊂ Xg be an essential simple closed curve
such that `αg (Xg) = `sys(Xg), and Tα be the stratum in Teich(Sg) whose
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vanishing curve is α. Then, by Theorem 2.5 we have

r0 6 distwp(Xg, Tαg )

6
√

2π`sys(Xg).

Thus,

Xg ∈ Teich(Sg)>
r20

4π2 .

Then the conclusion follows by choosing

ε(r0) = r2
0

4π2 . �

Now we are ready to prove Theorem 1.6.
Proof of Theorem 1.6. — Let B(Xg; rg) ⊂ U(Teich(Sg))>r0 be an arbi-

trary geodesic ball where Xg ∈ Teich(Sg) and rg > 0. Lemma 6.3 tells that
there exists a constant ε(r0), only depending on r0, such that

B(Xg; rg) ⊂ Teich(Sg)>ε(r0).

By Teo’s curvature bound (see Theorem 6.1) there exists a constant
C ′(r0) > 0, only depending on r0, such that the Ricci curvature satisfies

Ric |B(Xg;rg) > −C ′(r0)(6.1)

= (6g − 7) ·
(
−C ′(r0)
6g − 7

)
.

From the Gromov–Bishop Volume Comparison Theorem [21] we have

(6.2) Volwp(B(Xg; rg)) 6 VolEuc(S6g−7)
∫ rg

0

 sinh
(√

C′(r0)
6g−7 t

)
√

C′(r0)
6g−7


6g−7

dt

where VolEuc(S6g−7) is the standard (6g − 7)-dimensional volume of the
unit sphere. By Stirling’s formula we have

VolEuc(S6g−7)(√
C′(r0)
6g−7

)6g−7 6
2π

6g−7
2

Γ( 6g−7
2 )

(
6g − 7
C ′(r0)

) 6g−7
2

6 2π
6g−7

2

(
2

6g − 9

)3g− 9
2
(

6g − 7
C ′(r0)

) 6g−7
2

6 Cg
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for some constant C > 0. Thus,

(6.3) Volwp(B(Xg; rg)) 6 Cg
∫ rg

0

(
sinh

(√
C ′(r0)
6g − 7 t

))6g−7

dt.

Since B(Xg; rg) ⊂ U(Teich(Sg))>r0 , Theorem 1.1 (or Remark 5.2) tells
that rg 6

√
32π ln g for all g > 2. Note that limg→∞

ln g
g = 0, thus one may

assume that there exists a constant D > 0 such that

sinh
(√

C ′(r0)
6g − 7 t

)
6
Dt
√
g
, ∀ 0 6 t 6 rg.

Thus,

(6.4) Volwp(B(Xg; rg)) 6 Cg
∫ rg

0

(
Dt
√
g

)6g−7
dt.

Recall that rg 6
√

32π ln g. A direct computation gives that

(6.5) Volwp(B(Xg; rg)) 6 Eg
(ln g)g

g3g

for some constant E > 0. Observe that for any ε > 0,

lim
g→∞

Eg (ln g)g
g3g

( 1
g )(3−ε)g = 0.

Then, there exists a constant F > 0 such that

(6.6) Volwp(B(Xg; rg)) 6 F ·
(

1
g

)(3− ε2 )g
.

Since the geodesic ball B(Xg; rg) ⊂ U(Teich(Sg))>r0 is arbitrary, the
conclusion follows. �

Proof of Corollary 1.8. — Let r0 = 1 in Theorem 1.6. For any fixed
constant R > 0, by Theorem 1.6 it suffices to show that there exists a
constant ε(R) > 0 such that

(6.7) B(Xg;R) ⊂ U(Teich(Sg))>1, ∀ Xg ∈ U(Teich(Sg))>ε(R).

We choose ε(R) = R + 1. The triangle inequality tells that for all Y ∈
B(Xg;R),

distwp(Y, ∂(Teich(Sg,n)) > distwp(Xg, ∂(Teich(Sg,n)))− distwp(Y,Xg)
> ε(R)−R
= 1.

Then (6.7) follows since Y ∈ B(Xg;R) is arbitrary. �
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Remark 6.4. — Theorem 4.2 in [36] tells that the Weil–Petersson volume
of moduli spaceMg is concentrated in the thick part as the genus g tends to
infinity, which blows up rapidly. Theorem 1.6 says that the Weil–Petersson
volume of any Weil–Petersson geodesic ball in the thick part of moduli
space will decay to 0 as g tends to infinity. It would be very interesting to
study the asymptotic shape ofMg as g tends to infinity.
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