Existence of bubbling solutions without mass concentration
[Existence de solutions bouillonnantes sans concentration de masse]
Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 895-940.

Le travail séminal de Brezis et Merle a été pionnier dans l’étude des phénomènes de bulles de l’équation du champ moyen avec des sources singulières. Lorsque les points de vortex ne s’affaissent pas, l’équation du champ moyen possède la propriété de ce que l’on appelle « le bouillonnement implique une concentration de masse » . Récemment, Lin et Tarantello ont remarqué que les phénomènes de « bouillonnement implique une concentration de masse » pourraient ne pas s’appliquer en général s’il y a effondrement des singularités se produit. Dans cet article, nous construisons le premier exemple concret de solution bulleuse non concentrée de l’équation du champ moyen avec des singularités d’effondrement.

The seminal work by Brezis and Merle has been pioneering in studying the bubbling phenomena of the mean field equation with singular sources. When the vortex points are not collapsing, the mean field equation possesses the property of the so-called “bubbling implies mass concentration”. Recently, Lin and Tarantello pointed out that the “bubbling implies mass concentration” phenomena might not hold in general if the collapse of singularities occurs. In this paper, we shall construct the first concrete example of non-concentrated bubbling solution of the mean field equation with collapsing singularities.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3261
Classification : 53A30,  35B44,  35J15,  82D55
Mots clés : phénomènes de bulles, équation de champ moyen
@article{AIF_2019__69_2_895_0,
     author = {Lee, Youngae and Lin, Chang-Shou and Yang, Wen},
     title = {Existence of bubbling solutions without mass concentration},
     journal = {Annales de l'Institut Fourier},
     pages = {895--940},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3261},
     zbl = {07067422},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3261/}
}
Lee, Youngae; Lin, Chang-Shou; Yang, Wen. Existence of bubbling solutions without mass concentration. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 895-940. doi : 10.5802/aif.3261. https://aif.centre-mersenne.org/articles/10.5802/aif.3261/

[1] Baraket, Sami; Pacard, Frank Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differ. Equ., Volume 6 (1997) no. 1, pp. 1-38 | MR 1488492 | Zbl 0890.35047

[2] Bartolucci, Daniele; Chen, Chiun-Chuan; Lin, Chang-Shou; Tarantello, Gabriella Profile of blow-up solutions to mean field equations with singular data, Commun. Partial Differ. Equations, Volume 29 (2004) no. 7-8, pp. 1241-1265 | Article | MR 2097983 | Zbl 1062.35146

[3] Bartolucci, Daniele; De Marchis, Francesca On the Ambjorn-Olesen electroweak condensates, J. Math. Phys., Volume 53 (2012) no. 7, 073704, 15 pages | Article | MR 2985263 | Zbl 1276.81124

[4] Bartolucci, Daniele; Tarantello, Gabriella Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys., Volume 229 (2002) no. 1, pp. 3-47 | Article | MR 1917672 | Zbl 1009.58011

[5] Battaglia, Luca; Malchiodi, Andrea Existence and non-existence results for the SU (3) singular Toda system on compact surfaces, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3750-3807 | Article | MR 3478872 | Zbl 1338.35156

[6] Brezis, Haïm; Merle, Frank Uniform estimates and blow-up behavior for solutions of -Δu=V(x)e u in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1223-1253 | Article | MR 1132783 | Zbl 0746.35006

[7] Chai, Ching-Li; Lin, Chang-Shou; Wang, Chin-Lung Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Volume 3 (2015) no. 1-2, pp. 127-274 | Article | MR 3356357 | Zbl 1327.35116

[8] Chan, Hsungrow; Fu, Chun-Chieh; Lin, Chang-Shou Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 189-221 | Article | MR 1946331 | Zbl 1018.58008

[9] Chang, Sun-Yung Alice; Yang, Paul C. Prescribing Gaussian curvature on S 2 , Acta Math., Volume 159 (1987) no. 3-4, pp. 215-259 | Article | MR 908146 | Zbl 0636.53053

[10] Chen, Chiun-Chuan; Lin, Chang-Shou Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., Volume 55 (2002) no. 6, pp. 728-771 | Article | MR 1885666 | Zbl 1040.53046

[11] Chen, Chiun-Chuan; Lin, Chang-Shou Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1667-1727 | Article | MR 2001443 | Zbl 1032.58010

[12] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1237-1272 | Article | MR 2644788 | Zbl 1211.35263

[13] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., Volume 68 (2015) no. 6, pp. 887-947 | Article | MR 3340376 | Zbl 1319.35283

[14] Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Wang, Chin-Lung Green function, Painlevé VI equation, and Eisenstein series of weight one, J. Differ. Geom., Volume 108 (2018) no. 2, pp. 185-241 | Article | MR 3763067 | Zbl 1390.34242

[15] Choe, Kwangseok; Kim, Namkwon Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 2, pp. 313-338 | Article | MR 2396525 | Zbl 1145.35029

[16] Choe, Kwangseok; Kim, Namkwon; Lee, Youngae; Lin, Chang-Shou Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in 2 , J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1734-1761 | Article | MR 3666727 | Zbl 1367.81109

[17] Choe, Kwangseok; Kim, Namkwon; Lin, Chang-Shou Existence of mixed type solutions in the SU(3) Chern-Simons theory in 2 , Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 17, 30 pages | Article | MR 3605842 | Zbl 1370.35109

[18] D’Aprile, Teresa; Pistoia, Angela; Ruiz, David Asymmetric blow-up for the SU(3) Toda system, J. Funct. Anal., Volume 271 (2016) no. 3, pp. 495-531 | Article | MR 3506954 | Zbl 1343.35105

[19] Esposito, Pierpaolo; Grossi, Massimo; Pistoia, Angela On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 227-257 | Article | MR 2124164 | Zbl 1129.35376

[20] Esposito, Pierpaolo; Musso, Monica; Pistoia, Angela Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differ. Equations, Volume 227 (2006) no. 1, pp. 29-68 | Article | MR 2233953 | Zbl 1254.35083

[21] Figueroa, Pablo Singular limits for Liouville-type equations on the flat two-torus, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 613-647 | Article | MR 3148129 | Zbl 1287.35040

[22] Lee, Youngae; Lin, Chang-Shou; Tarantello, Gabriella; Yang, Wen Sharp estimates for solutions of mean field equations with collapsing singularity, Commun. Partial Differ. Equations, Volume 42 (2017) no. 10, pp. 1549-1597 | Article | MR 3764920 | Zbl 1401.35119

[23] Lee, Youngae; Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equations, Volume 264 (2018) no. 7, pp. 4343-4401 | Article | MR 3758525 | Zbl 1394.35166

[24] Lee, Youngae; Lin, Chang-Shou; Yang, Wen; Zhang, Lei Degree counting for Toda system with simple singularity: one point blow up (2017) (https://arxiv.org/abs/1707.07156)

[25] Lee, Youngae; Lin, Chang-Shou; Zhong, Xuexiu Existence of non-topological solutions in the SU(3) Chern–Simons model in 2 , part I (preprint)

[26] Li, Yan Yan Harnack type inequality: the method of moving planes, Commun. Math. Phys., Volume 200 (1999) no. 2, pp. 421-444 | MR 1673972 | Zbl 0928.35057

[27] Li, Yan Yan; Shafrir, Itai Blow-up analysis for solutions of- Δu=Ve u in dimension two, Indiana Univ. Math. J., Volume 43 (1994) no. 4, pp. 1255-1270 | MR 1322618 | Zbl 0842.35011

[28] Lin, Chang-Shou An expository survey on the recent development of mean field equations, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 2, pp. 387-410 | MR 2335753 | Zbl 1159.35025

[29] Lin, Chang-Shou; Tarantello, Gabriella When “blow-up” does not imply “concentration”: A detour from Br�zis–Merle’s result, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 5, pp. 493-498 | Article | Zbl 1387.35310

[30] Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen; Zhang, Lei On rank-2 Toda systems with arbitrary singularities: local mass and new estimates, Anal. PDE, Volume 11 (2018) no. 4, pp. 873-898 | Article | MR 3749370 | Zbl 1383.35078

[31] Lin, Chang-Shou; Yan, Shusen Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 2, pp. 353-392 | MR 3005320 | Zbl 1260.35155

[32] Malchiodi, Andrea Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equ., Volume 13 (2008) no. 11-12, pp. 1109-1129 | MR 2483132 | Zbl 1175.53052

[33] Malchiodi, Andrea; Ndiaye, Cheikh Birahim Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Volume 18 (2007) no. 4, pp. 391-412 | Article | MR 2349995 | Zbl 1148.35021

[34] Malchiodi, Andrea; Ruiz, David A variational analysis of the Toda system on compact surfaces, Commun. Pure Appl. Math., Volume 66 (2013) no. 3, pp. 332-371 | MR 3008227 | Zbl 1275.35095

[35] Malchiodi, Andrea; Ruiz, David On the Leray-Schauder degree of the Toda system on compact surfaces, Proc. Am. Math. Soc., Volume 143 (2015) no. 7, pp. 2985-2990 | Article | MR 3336622 | Zbl 1315.35086

[36] Nolasco, Margherita; Tarantello, Gabriella On a Sharp Sobolev-Type Inequality on Two-Dimensional Compact Manifolds, Arch. Ration. Mech. Anal., Volume 145 (1998) no. 2, pp. 161-195 | Article | MR 1664542 | Zbl 0980.46022

[37] Nolasco, Margherita; Tarantello, Gabriella Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999) no. 1, pp. 31-94 | MR 1710938 | Zbl 0951.58030

[38] del Pino, Manuel; Kowalczyk, Michal; Musso, Monica Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Volume 24 (2005) no. 1, pp. 47-81 | Article | MR 2157850 | Zbl 1088.35067

[39] Prajapat, Jyotshana; Tarantello, Gabriella On a class of elliptic problems in 2 : symmetry and uniqueness results, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 4, pp. 967-985 | MR 1855007 | Zbl 1009.35018

[40] Troyanov, Marc Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry (Lecture Notes in Mathematics), Volume 1410, Springer, 1989, pp. 296-306 | Article | MR 1034288 | Zbl 0697.53037

[41] Yang, Yisong The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., Volume 186 (1997) no. 1, pp. 199-218 | MR 1462762 | Zbl 0874.58093

[42] Yang, Yisong Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer, 2001, xxiv+553 pages | Zbl 0982.35003

Cité par document(s). Sources :