The seminal work by Brezis and Merle has been pioneering in studying the bubbling phenomena of the mean field equation with singular sources. When the vortex points are not collapsing, the mean field equation possesses the property of the so-called “bubbling implies mass concentration”. Recently, Lin and Tarantello pointed out that the “bubbling implies mass concentration” phenomena might not hold in general if the collapse of singularities occurs. In this paper, we shall construct the first concrete example of non-concentrated bubbling solution of the mean field equation with collapsing singularities.
Le travail séminal de Brezis et Merle a été pionnier dans l’étude des phénomènes de bulles de l’équation du champ moyen avec des sources singulières. Lorsque les points de vortex ne s’affaissent pas, l’équation du champ moyen possède la propriété de ce que l’on appelle « le bouillonnement implique une concentration de masse » . Récemment, Lin et Tarantello ont remarqué que les phénomènes de « bouillonnement implique une concentration de masse » pourraient ne pas s’appliquer en général s’il y a effondrement des singularités se produit. Dans cet article, nous construisons le premier exemple concret de solution bulleuse non concentrée de l’équation du champ moyen avec des singularités d’effondrement.
Accepted:
Published online:
DOI: 10.5802/aif.3261
Keywords: bubbling phenomena, mean field equation
Mot clés : phénomènes de bulles, équation de champ moyen
@article{AIF_2019__69_2_895_0, author = {Lee, Youngae and Lin, Chang-Shou and Yang, Wen}, title = {Existence of bubbling solutions without mass concentration}, journal = {Annales de l'Institut Fourier}, pages = {895--940}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3261}, zbl = {07067422}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3261/} }
TY - JOUR AU - Lee, Youngae AU - Lin, Chang-Shou AU - Yang, Wen TI - Existence of bubbling solutions without mass concentration JO - Annales de l'Institut Fourier PY - 2019 SP - 895 EP - 940 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3261/ DO - 10.5802/aif.3261 LA - en ID - AIF_2019__69_2_895_0 ER -
%0 Journal Article %A Lee, Youngae %A Lin, Chang-Shou %A Yang, Wen %T Existence of bubbling solutions without mass concentration %J Annales de l'Institut Fourier %D 2019 %P 895-940 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3261/ %R 10.5802/aif.3261 %G en %F AIF_2019__69_2_895_0
Lee, Youngae; Lin, Chang-Shou; Yang, Wen. Existence of bubbling solutions without mass concentration. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 895-940. doi : 10.5802/aif.3261. https://aif.centre-mersenne.org/articles/10.5802/aif.3261/
[1] Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differ. Equ., Volume 6 (1997) no. 1, pp. 1-38 | MR | Zbl
[2] Profile of blow-up solutions to mean field equations with singular data, Commun. Partial Differ. Equations, Volume 29 (2004) no. 7-8, pp. 1241-1265 | DOI | MR | Zbl
[3] On the Ambjorn-Olesen electroweak condensates, J. Math. Phys., Volume 53 (2012) no. 7, 073704, 15 pages | DOI | MR | Zbl
[4] Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys., Volume 229 (2002) no. 1, pp. 3-47 | DOI | MR | Zbl
[5] Existence and non-existence results for the SU (3) singular Toda system on compact surfaces, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3750-3807 | DOI | MR | Zbl
[6] Uniform estimates and blow-up behavior for solutions of in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1223-1253 | DOI | MR | Zbl
[7] Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Volume 3 (2015) no. 1-2, pp. 127-274 | DOI | MR | Zbl
[8] Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 189-221 | DOI | MR | Zbl
[9] Prescribing Gaussian curvature on , Acta Math., Volume 159 (1987) no. 3-4, pp. 215-259 | DOI | MR | Zbl
[10] Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., Volume 55 (2002) no. 6, pp. 728-771 | DOI | MR | Zbl
[11] Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1667-1727 | DOI | MR | Zbl
[12] Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1237-1272 | DOI | MR | Zbl
[13] Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., Volume 68 (2015) no. 6, pp. 887-947 | DOI | MR | Zbl
[14] Green function, Painlevé VI equation, and Eisenstein series of weight one, J. Differ. Geom., Volume 108 (2018) no. 2, pp. 185-241 | DOI | MR | Zbl
[15] Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 2, pp. 313-338 | DOI | MR | Zbl
[16] Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in , J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1734-1761 | DOI | MR | Zbl
[17] Existence of mixed type solutions in the SU(3) Chern-Simons theory in , Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 17, 30 pages | DOI | MR | Zbl
[18] Asymmetric blow-up for the Toda system, J. Funct. Anal., Volume 271 (2016) no. 3, pp. 495-531 | DOI | MR | Zbl
[19] On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 227-257 | DOI | MR | Zbl
[20] Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differ. Equations, Volume 227 (2006) no. 1, pp. 29-68 | DOI | MR | Zbl
[21] Singular limits for Liouville-type equations on the flat two-torus, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 613-647 | DOI | MR | Zbl
[22] Sharp estimates for solutions of mean field equations with collapsing singularity, Commun. Partial Differ. Equations, Volume 42 (2017) no. 10, pp. 1549-1597 | DOI | MR | Zbl
[23] Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equations, Volume 264 (2018) no. 7, pp. 4343-4401 | DOI | MR | Zbl
[24] Degree counting for Toda system with simple singularity: one point blow up (2017) (https://arxiv.org/abs/1707.07156)
[25] Existence of non-topological solutions in the Chern–Simons model in , part I (preprint)
[26] Harnack type inequality: the method of moving planes, Commun. Math. Phys., Volume 200 (1999) no. 2, pp. 421-444 | MR | Zbl
[27] Blow-up analysis for solutions of- u=Ve u in dimension two, Indiana Univ. Math. J., Volume 43 (1994) no. 4, pp. 1255-1270 | MR | Zbl
[28] An expository survey on the recent development of mean field equations, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 2, pp. 387-410 | MR | Zbl
[29] When “blow-up” does not imply “concentration”: A detour from Br�zis–Merle’s result, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 5, pp. 493-498 | DOI | Zbl
[30] On rank-2 Toda systems with arbitrary singularities: local mass and new estimates, Anal. PDE, Volume 11 (2018) no. 4, pp. 873-898 | DOI | MR | Zbl
[31] Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 2, pp. 353-392 | MR | Zbl
[32] Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equ., Volume 13 (2008) no. 11-12, pp. 1109-1129 | MR | Zbl
[33] Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Volume 18 (2007) no. 4, pp. 391-412 | DOI | MR | Zbl
[34] A variational analysis of the Toda system on compact surfaces, Commun. Pure Appl. Math., Volume 66 (2013) no. 3, pp. 332-371 | MR | Zbl
[35] On the Leray-Schauder degree of the Toda system on compact surfaces, Proc. Am. Math. Soc., Volume 143 (2015) no. 7, pp. 2985-2990 | DOI | MR | Zbl
[36] On a Sharp Sobolev-Type Inequality on Two-Dimensional Compact Manifolds, Arch. Ration. Mech. Anal., Volume 145 (1998) no. 2, pp. 161-195 | DOI | MR | Zbl
[37] Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999) no. 1, pp. 31-94 | MR | Zbl
[38] Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Volume 24 (2005) no. 1, pp. 47-81 | DOI | MR | Zbl
[39] On a class of elliptic problems in : symmetry and uniqueness results, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 4, pp. 967-985 | MR | Zbl
[40] Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry (Lecture Notes in Mathematics), Volume 1410, Springer, 1989, pp. 296-306 | DOI | MR | Zbl
[41] The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., Volume 186 (1997) no. 1, pp. 199-218 | MR | Zbl
[42] Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer, 2001, xxiv+553 pages | Zbl
Cited by Sources: