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EXISTENCE OF BUBBLING SOLUTIONS WITHOUT
MASS CONCENTRATION

by Youngae LEE, Chang-Shou LIN & Wen YANG

ABSTRACT. —  The seminal work by Brezis and Merle has been pioneering in
studying the bubbling phenomena of the mean field equation with singular sources.
When the vortex points are not collapsing, the mean field equation possesses the
property of the so-called “bubbling implies mass concentration”. Recently, Lin and
Tarantello pointed out that the “bubbling implies mass concentration” phenomena
might not hold in general if the collapse of singularities occurs. In this paper, we
shall construct the first concrete example of non-concentrated bubbling solution of
the mean field equation with collapsing singularities.

RESUME. —  Le travail si;'%minal de Brezis et Merle a i %ti;'% pionnier dans
I'i; %2tude des phi; %nomi; snes de bulles de I'ij “2quation du champ moyen avec des
sources singulii; Yeres. Lorsque les points de vortex ne s’affaissent pas, 1'i; %2quation
du champ moyen possiy %2de la proprii 4ti; %4 de ce que 'on appelle « le bouillonne-
ment implique une concentration de masse ». Ri;%cemment, Lin et Tarantello ont
remarqui; 2 que les phij2nomi; %enes de « bouillonnement implique une concentra-
tion de masse » pourraient ne pas s’appliquer en gij%nijral s’il y a effondrement
des singulariti; ¥s se produit. Dans cet article, nous construisons le premier exemple
concret de solution bulleuse non concentri;%e de 1'ij%2quation du champ moyen
avec des singularitij s d’effondrement.

1. Introduction

Let (M, g) be a compact Riemann surface with volume 1, and p > 0 be
a real number. We consider the following mean field type equation:

h,e"
(1.1) Au+p (u - 1) =47 Y ai(d,, —1) on M,
Jos e € dog =

where A is the corresponding Laplace—Beltrami operator, S C M is a finite
set of distinct points g;, o, > —1, and §,, is the Dirac measure at ¢; € S.

Keywords: bubbling phenomena, mean field equation.
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896 Youngae LEE, Chang-Shou LIN & Wen YANG

The point ¢; € S is called vortex point or singular source. Throughout this
paper, we always assume h, > 0 and h, € C%7(M).

The equation (1.1) arises in various areas of mathematics and physics. In
conformal geometry, the equation (1.1) is related to the Nirenberg problem
of finding prescribed Gaussian curvature if S = (), and the existence of a
positive constant curvature metric with conic singularities if S # @ (see [9,
40] and the references therein). Moreover, if the parameter p = 47> o
and M is a flat surface (for example, a flat torus), the equation (1.1) is an
integrable system, which is related to the classical Lame equation and the
Painleve VI equation (see [7, 14] for the details). The equation (1.1) is also
related to the self-dual equation of the relativistic Chern—Simons—Higgs
model. For the recent developments related to (1.1), we refer to the readers
to [2, 3,4, 5,6, 10,11, 12, 13, 15, 28, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42]
and references therein.

The seminal paper [6] by Brezis and Merle had initiated to study the
blow up behavior of solutions of (1.1). Among others, they showed the
following “bubbling implies mass concentration” result:

THEOREM 1.1 ([6]). — Suppose S = () and uy, is a sequence of blow up
solutions to (1.1) with py. Then there is a non-empty finite set B (namely,
blow up set) such that

h, etk

pkm — Zﬁpép as k — +00, where ﬁp > 4.

peEB

It was conjectured in [6] that if S = (), the local mass /3, at each blow
up point p € B satisfies 3, € 87N, where N is the set of natural numbers.
This conjecture has been successfully proved by Li and Shafrir in [27],
and Li in [26] showed that the local mass 3, equals 87 exactly. For the

equation (1.1), p : e“d is called the mass distribution of the solution
« e dug

u. Thus Theorem Ai[.l just says that if uy blows up as k — +o00, then the
mass is concentrated. Later, Bartolucci and Tarantello in [4] have extended
Theorem 1.1 to include the case S # (). They also proved that if a blow
up point coincides with some singular point ¢; € S, then §,, = 87(1 + «y,)
(see also [2]).

Recently, Lin and Tarantello in [29] found a new phenomena such that
if some of the vortices in (1.1) are collapsing, then a sequence of blow
up solutions might not concentrate its mass. Indeed, they considered the
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following equation:

h, et
1.2 Ai - . = . 1
(1.2) utJrP(th*eut dv, >

2

N
= 4772 @;i(0g,4) — 1) + 4772 a;(0q, — 1) in M,
=3

i=1

where limy0qi(t) = q ¢ {qs,---,an}, i = 1,2, and qi(t) # ¢2(t). Then
the following theorem was stated in [29]:

THEOREM 1.2 ([29]). — Assume «; € N and p € (8m,167). Suppose
that u; is a sequence of blow up solutions of (1.2) ast — 0. Then uw; — W
uniformly locally in C*(M \ {q}), where W satisfies

AW + (p — 8m) ( o e 1)

Jag T e®
N
=dm(an + o2 — 2)(0g — 1) + 47 Y 8y, — 1) in M.
=3

The proof of Theorem 1.2 was sketched in [29]. For the complete proof,
see [22]. In Theorem 1.2, there is no restriction on a; and aq, because

€ (8m,16m). If p > 167, then we have to put some conditions on «; and
@ in order to extend Theorem 1.2. Indeed, in [22], we generalize Theorem B
and obtain a sharp estimate of u; under some nondegenerate conditions.
To state the result in [22], we let G(z,p) be the Green’s function of —A on
M satisfying

—AG(z,p) =0, — /G—O

Throughout this paper, we fix a point q € M, and without loss of generality,
we may choose a suitable coordinate centered at q and

q=0, q(t) =1t qa(t)=—té, where & is a fixed unit vector in S'.
To simplify our argument, we assume that
(13) a1 = Qg = 1.
Now we consider the following equation, which is equivalent to (1.2):
u —G(Z)(ac)
Auy + hed —-1] =0,
(14) t p (fM heut_G§2)(I) d’Ug

Sy wdvg =0,  uy € C=(M),
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898 Youngae LEE, Chang-Shou LIN & Wen YANG
(1.5) G (2) = 4nG(, &) + 4nG(z, —tE),

N
(1.6)  h(z) = ha(z)exp (—47rZaZG(x, qz-)> >0,
=3

h € C*7(M), h(0)> 0.

We note h(z) > 0 except at a finite set Sy = {gs3, - ,qn}, where 0 € Sy.
Now we can state the following result:

THEOREM 1.3 ([22]). — Assume «; € N,i > 3, and p ¢ 87N. Suppose
that u, is a sequence of blow up solutions of (1.4) ast — 0. Then u; —
w + 87G(x,0) uniformly locally in C*(M \ {0}), where w satisfies

he?

Jarhev

Furthermore, if the linearized equation of (1.7) at w is non-degenerate,
then for any T € (0,1), there is a constant c¢; > 0, independent of t > 0,

(1.7) Aw+(p—87r)< —1) =0 in M, we C*(M).

satisfying
(1.8) |ut(z) — w(z) — 87G(z, tpe)[l o1 (M\Barry (0)) < €t

where tp; is the maximum point of uy — w in M, and Ry > 2 is a fixed
constant.

In Theorem 1.3, the non-degenerate condition of w is defined as follows:

DEFINITION 1.4. — A solution w of (1.7) is non-degenerate if 0 is the
unique solution of the following linearized problem:
w he® ¢pdvg .
s s (o= B o i
(]_9) the“’ dvg thew dog
Sy @dvg = 0.

By the transversality theorem, we can always choose h such that any
solution of (1.7) is non-degenerate, i.e., the linearized equation (1.9) admits
only the trivial solution. We refer the readers to [23, Theorem 4.1] for the
details of the proof.

We remark the estimate (1.8) which holds outside of a very tiny ball is
rare in literature. Indeed, the non-degenerate assumption plays an impor-
tant role in the proof of (1.8). In Section 2, we shall review some estimates
related to Theorem 1.3.

ANNALES DE L’INSTITUT FOURIER
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In this article, inspired by Theorem 1.2 and Theorem 1.3, we are in-
terested in constructing a family of non-concentrated blow up solutions
with the collapse of singular sources. Our construction relies heavily on the
non-degenerate assumption for (1.7). Under the non-degenerate assumption
for (1.7) and the estimation established in Theorem 1.3, we could construct
an accurate approximation solution and then succeed in obtaining the first
concrete example of non-concentrated bubbling solution of (1.4) with col-
lapsing singularities.

THEOREM 1.5. — Let h satisfies (1.6) with «; € N for ¢ > 3, and
p ¢ 87N. Assume that w is a non-degenerate solution of (1.7). Then there
is a small number to > 0 such that if t € (0,t0), then there is a solution
ug of (1.4) such that u,(x) blows up at x = 0, and wu,(x) converges to

w(x) + 87G(z,0) in CZ (M \ {0}).

The construction of the bubbling solution without mass concentration is
completely different from the previous ones [11, 19, 20, 21, 31]. Indeed, the
equation (1.4) can not be reduced to a singular perturbation problem:

Au+cehe" =0, 0<exl1,
which was treated by [19, 20, 21] and [31], because the total mass of (1.4)
remains bounded, i.e.,

. _a®
}m}o he"t =% du, # +oc.
—

M

Our construction is inspired by the ideas in [11]. However, it is more com-
plicate than the one treated in [11] due to non-concentration of the mass
distribution of wu;.

We remark that a related phenomena was also studied by D’Aprile, Pis-
toia, and Ruiz in [18], where the authors proved the existence of solution
for 2 x 2 Toda system such that both components blow up at the same
point, and only one component has mass concentration, but the other one
does not. However, their construction requires certain symmetry condition.
We believe that our method in this paper might be able to construct such
kind of solutions without symmetry condition. We will discuss later in a
forthcoming project.

To prove Theorem 1.5, at first, we find a suitable approximate solution
by using the estimations in Section 2. After that, we have to prove the
invertibility of the linearized operator Qy4L¢ 4, which is the one of most
important parts in this paper (see Section 4 for the definition of Qq 4L; ).
The most crucial step is to find the orthogonality condition for the lin-
earized operator L; , (see Eqtq,p and Fy ¢4, in Definition 4.2). To do it,

TOME 69 (2019), FASCICULE 2
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we note that the blow up phenomena in Theorem C does require a dou-
ble scaling (see [22] or Section 2 below). In a very tiny ball B;g, (tp:), the
second time re-scaled one from the original solution of (1.4) becomes a
perturbation of an entire solution v of Liouville equation:

(1.10) Av+e”=0 inR%

It is well known that solutions to (1.10) have been completely classified by
Prajapat and Tarantello in [39] such that

8 et
1+ et |z +al?)?’

(1.11) v(2) =vua(z) =In (

where 1 € R, a = (a1,as) € R? can be arbitrary. So the equation (1.10)
has invariance under dilations and translations. The linearized operator L
for vg g is defined by

8

_ in R2.
v epE? ™

(1.12) Lo = Ao+

In [1, Proposition 1], it has been known that there are three kernels Y, Y7,
Y5 for the linearized operator L, where

YO(Z) = % — _1 + 2 — (9’0“_’{1

T+|z|2 1+[z[? op (11,0)=(0,0)"
ov
1.13 Yi(2) = it = —3 5 7
(1.13) &)= 957 = =150 | 0y 00)
Yalz) = iy = 100 -
2(2) = 77 179> |, )=(0.0)

However, after a long computation, we found that due to the non-
concentration of mass, the orthogonality with Y;(2) should be not included
in the finite-dimensional reduction like [19, 21]. However, it causes a lot of
difficulties in proving the invertibility of the linearized equation. To over-
come those difficulties, some of the idea comes from our previous work on
SU(3) Chern—Simons system [25] (see also [17, 16] for the recent develop-
ments in SU(3) Chern—Simons system). We consider this part as one of the
main technical novelties in our paper.

Before ending the introduction, we would like to make some comments
on the phenomena of the collapsing singularities. It arises naturally from

ANNALES DE L’INSTITUT FOURIER
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the study of the following Toda system:

Aug + Kq1p1 <f ZI ‘z: dvg 1)
M g

h2 Cu2 _ .
+K12p2 (fM ho e¥2 dug 1> =0

Aug + Ko1p1 (f ZI EZI o, !
M g9

h2 Cu2 _ .
+Koopo (fM o o3 o, 1> =0

(1.14) in M,

where K = (ﬁg; %z) is the Cartan matrix of rank two of the Lie algebra

g, pi > 0, hi(z) = hl(z) e_4ﬂZP€Si %’iG(z’p), hf>0in M, ap; € N, and
S; is a finite set of distinct points in M, i =1, 2.

In order to compute the topological degree for the Toda system (1.14),
we should calculate the degree jump due to blow up solutions of Toda
system. For example, let (u1x,us2r) be a sequence of solutions of (1.14)
with (p1g, par) — (47, pa) satisfying ps ¢ 47N and max ps(u1x, k) — +00.
In [24, Theorem 1.7], it was proved that

plk% — 4wy, Q € M\ Sy, and
M

Uop, = w+ 4T K2 G (2, Q) in CL(M\ {Q}),

loc

where (w, Q) is a solution of the so-called shadow system of the Toda
system:

Aw + 2 < hy W HATK21G(E.Q) 1) o,

f ho ew+4nK21G(x,Q)
M

(1.15)
V(log h1 e%w) le=0=0, and Q ¢ S1,

In [23, Theorem 1.4], it was shown that the calculation of the degree con-
tributed by blow up solutions (u1g, uax) of (1.14) can be reduced to comput-
ing the topological degree of (1.15). To find the a priori bound for solutions
of (1.15), it is inevitable to encounter with the difficult situation due to the
phenomena of collapsing singularities. Indeed, there might be a sequence
of solutions (wg, Q) of (1.15) such that Qi ¢ S1 U S2 and Qx — Qo € Sa.
For the details, we refer to the readers to [23, 24].

This paper is organized as follows. In Section 2, we put some estimations
in order to give a motivation for the construction of approximate solution.
In Section 3, we construct an approximate solution. In Section 4, we in-
troduce some function spaces and the linearized operator. In Section 5,

TOME 69 (2019), FASCICULE 2



902 Youngae LEE, Chang-Shou LIN & Wen YANG

we prove the invertibility of linearized operator for the equation (1.4). In
Section 6, we finally prove Theorem 1.5.

2. Preliminaries

In this section, we introduce some estimations from [22] in order to illus-
trate the idea of constructing a suitable approximate solution.

Let u; be a sequence of blow up solutions of (1.4), where w(x)+8rG(x,0)
is its limit in C2_ (M \ {0}) and w satisfies (1.7).

Define the local mass o of u; at 0 by

@
phe =G du
(2.1) oo = lim lim fB"(O) ) !
r—0t—0 fM h e“t—Gt dvg

To understand the blow up phenomena of u; near 0, we consider the func-
tion

(2.2) ve(y) = ue(ty) — In (/ hen =G dvg) +6Int.
M

Then v;(y) satisfies the following equation:

(2.3) Ay'Ut +ph(ty)\y o é’]2|y + aQG_Riz)(ty) evt(y) _ pt2,
where
(2:4) R (x) = 4nR(x,18) + 4n R(x, —1¢),

and R(z,() = G(z,¢) + 5|z — (| is the regular part of the Green function.
Let

— . _ A2 2 — R (ty) 4 ()
mo = lim lim BR(O)ph(ty)\y elfly+éle e dy.

In [24], the following Pohozaev type identity was derived:
(25) (0'0 — mo)(O'O + mo) = 2471'(0'0 — mo).

Combined with Theorem C, we get o9 = mo = 8w. Therefore, the scaled
function vy defined in (2.2) blows up only at the origin 0 as t — 0.
We set

(2.6) or(x) = w(z) — w(z) — pGla, tpy),
. . he“t7G£2) d’Ug ~
where p, = —otfo‘rt) — . Then our estimation on ¢; is stated in
he"t™%t  dug

M
the proposition below:

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 2.1 ([22]). — Assume «; € N for i > 3, and p ¢ 87N.
Let u; be a sequence of blow up solutions of (1.4), where w(zx) +87G(x,0)
is its limit in C{,.(M \ {0}). Suppose that w is a non-degenerate solution
of (1.7). Then for any 0 < 7 < 1, there is a constant ¢, > 0, independent
of t > 0, satisfying

H(bt(m)HLW(M\Bgf,RO(tm)) < ert?, Hvz@(m)”Lw(M\BmRo(tpt)) <erth.

We have already known that the scaled function v; blows up only at 0
in R?. To give a more description for the behavior of v; near 0, we fix a
constant ro € (0,1), and define
(2.7) A= yergi}%()) ve(y) = v(pe), where v(y) = v (y) — w(ty),

By using the Pohozaev identity as in [10, Estimate B], we can derive the
following estimation for the maximum point p; of vy:

PROPOSITION 2.2 ([22]). — Suppose that the assumptions in Propo-
sition 2.1 hold. Then there is a constant ¢ > 0, independent of t > 0,
satisfying

pe| < ct.

From Proposition 2.1 and Proposition 2.2, we get the blow up solution
uy can be approximated by w + p;G(z, tp;) well outside a tiny ball which is
centered at 0 and its maximum point p; is sufficiently close to 0. Then the
left issue is to understand the blow up rate ;. In order to get a estimation
for ¢, we have to find out the difference between w; and the standard
bubble in the tiny ball Bag,t(tp:). Following the arguments in [10], we set

et
(28) Ly =l (1+ CreM |y — q]*)?
where
(2.9) Cy = ph(tp;) e“Pe) [p, — §2|pt + 512‘3_1%52)““)’
and ¢; satisfies that
(2.10) Vyli(y) v —tpi Vo R(tp:, x) oty lg: — pe| < 1.
It is not difficult to see
(2.11) Ipt — @] = O(te ™), and [Li(p:) — M| = O(t? e~ ™).

TOME 69 (2019), FASCICULE 2
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Let the error term n:(y) in Bag, (pt) be defined by

(212)  nu(y) = ve(y) — Le(y) — pe(R(ty, tpe) — R(tpe, tpe))

for y € Bag, (pt)-
Then (2.11) and (2.10) yield
(2.13) e(pe) = Ve(pe) — Le(pe) = O(t* 1) and Vi (p,) = 0.

By performing a scaling y = R, 12 + py, we define
1 t
(2.14) m(z) = m(R; 'z +py) for |z| <2R Ry, R, =Cf ¥

Notice that 7;:(z) is scaled twice from the original coordinate in a neigh-
borhood of 0 € M. The reason for us to do this double scaling is that 7;(y)
also blows up at 0. Applying the arguments in [10], we get the following
result:

PROPOSITION 2.3 ([22]). — Suppose that the assumptions in Proposi-
tion 2.1 hold. Then for any ¢ € (0, %), there exists a constant C, indepen-
dent of t > 0 and z € Bap,r,(0) such that

17 (2)] < Ce(tl| el + £2[Int]) (1 + [2])* for |2] < 2R Ro,
where [[¢¢ll« = [9tllcr (ar\Bacry (tp0))-
Notice that
h(oeut(C)*Gim(C)

(2.15) :
[y hew =G du,

d¢ = 8C, "W (1 + Hy (y, ny))dy,

where ¢ = ty,
(2.16)  Hi(y,s)

w _p®
_ h(ty) e (tU) |y — é12|y + é12 e Rt (ty) es+pt(R(ty)tpt)_R(tputpt)) 1
2
h(tp) €2 |p, — &2|p; + &2 e~ Ri” (tp1)

_ phity) e”™) |y — e’ly + € e R ) o5+ (R(ty,tp) ~R(tpe tp0)) _q
8Ct ’
and
(2.17) Hi(y,m) = He(y, s) :
s=n:(y)
After a straightforward computation, we can see that H;(y, n:) admits the
following expansion,
(2.18)
He(y,m) = He(y,0) + He(y, 0)ne + O(1)(Inel) for y € Bag, (pe)-

ANNALES DE L’INSTITUT FOURIER
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Together with (2.15) and Proposition 2.3, we have the following result:

PROPOSITION 2.4 ([22]). — Suppose that the assumptions in Proposi-
tion 2.1 hold. Then there is a constant ¢ > 0 which is independent of t such
that

Ipr — 871 < c(t|Bell. + #2/In ).
From (2.2), (2.6) and (2.12), we see that for y € 9Bag,(p:),
ni(y) = Ge(ty) + (pr — 87)G(ty, tp) +41n [y — gi| — 41n |y — pi|
+ A +2InCy + 2Int + 87 R(tp:, tpr) — ln/ B oue—GY dvy
M
(CeeMly — ail)?
(L+Cre |y — qf?)
Combined with Proposition 2.1-2.4, we have the following result:

—In

5 + (8™ — p) (R(ty, tpr) — R(tpe, tpt)).

PROPOSITION 2.5 ([22]). — Suppose that the assumptions in Proposi-
tion 2.1 hold. Then for any 0 < 7 < 1, there is a constant ¢, > 0 which is
independent of t such that

At +2Int +2InCy 4+ 87 R(tp, tpr) — In < p / hew> < e t?T.
M

p—8m

Remark 2.6. — Proposition 2.1-Proposition 2.5 provide us almost all the

information for the construction of the blow up solutions w; of (1.4). Pre-

cisely, by Proposition 2.1 and Proposition 2.4, we need to make the ap-
proximate solution U; , admit the following behavior

(2.19) Uiq(z) = w(z) + 8nG(z,tp:) + o(1) in M \ Bag, (tps).

While from Proposition 2.3 and (2.11), the approximate solution Uy 4 should
satisfy

et

n
10(1+ S5 |z — tpy [2)

+8n(R(x,tpr) — R(tps, tpe)) +0o(1)  in Bar, (tpe).

Next, the blow up rate \; given in Proposition 2.5 could help us to well

combine (2.19) and (2.20). Finally, following the arguments in [31], we
make some small modification on such function. Then the modified function

(2.20) Up4(x) =1 i w(z) + ln/ hewt=G dug

M

becomes our approximate solution and it is in C'(M). See Section 3 for
the exact form of the approximate solution for (1.4).

Remark 2.7. — In [22], the estimations in this section were proved even
for a general cases including oy = as = 1. Notice that the general cases
have a slightly different order for ¢, due to the setting of a; and «as.

TOME 69 (2019), FASCICULE 2
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3. Approximate solutions

Let w be a non-degenerate solution of (1.7). Note that (1.7) is invariant
by adding a constant to the solutions. Therefore, we may assume that

(3.1) / wdvg = 0.
M

Throughout Section 3-Section 6, we use O(1) to mean uniform bounded-
ness, independent of ¢ > 0 and ¢, and fix some constants ry € (0, %) and
Ry > 2.

For any q € By, (0), and t > 0, we define

(3.2) Hiq(y)

= h(ty)|y — @2y + &2 e~ T () +8TR(ty ta)—8R(tata)+w(ty) ~w(ta)

(3.3) Aig:=—2Int—2In <fﬂt§1(q)>

— 87 R(tq,tq) — w(tq) + In < p8 /M he“’) .

p—8m
To simplify our notation, we set

8 1,1 Ata 1 2t
(34) Ct,q = m, At,q = Ct,qt e 2, Ft,q = Ct,q e 2 RO-
»q

By (3.3), we note that
(3.5) Aty =0@1"%) and Ty, =0(").

The function Hy;g4 and A4 are motivated by [11]. Clearly, Hy 4 is related
to Hi(y,0) (see (2.16)) and A, is related to the height of the bubbling
solutions v; (see (2.7) and Proposition 2.5). Using Remark 2.6 with the
modification of [31], we set
(3.6) .
In W + 87 R(x,tq)(1 — 0;,4) — 87 R(tq, tq)
+w(x) — w(tq) + In (ﬁ Sy he? dvg) on Big,(tq),
* et
uy ,(z) =4 In W + 87 (G(z, tq) + 5= In [tRo|) (1 — 644)
— 8nR(tq, tq) + w(z) — w(tq)
+1H (P—p87r fM he® dUg) on M \ BtRo(tq)a
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where 6; 4 is chosen as

1

3.7 Orq: = ——5—
( ) t,q 1_'_1'\%7[1

=O0(t%).

Then uf,, € C'(M). Now we define an approximate solution Uy 4 for (1.4)
by

(3.9) Usg(2) = uf o () — /M ] o dv,.

At first sight, the expression of (3.6) seems complicated, but the following
result will simplify the expression in (3.6) for x ¢ Big,(tq).

LEMMA 3.1.
(1) [y ui dvg = O(t*[Int]).
(2) Upy(@) = w(w) + 87G(x,tg) + O(|Int]) on M\ By, (tq).
(3)

2
heUt,q*Gi )
Us. _G(2)
Sy heVra=G dug

S0 H, o (3)(140())
3,
AT ot g O Bero(ta),
p—8m j‘ he”
= P hew du,
M 2
+0(1) (15,0 (@) (527 + o) + t2lint] + tlg])

on M\ Big,(tq),

where 2, is a constant satisfying 2, = O(t|q]) + O(t*|Int|),
1Br0(0)(x) =1ifz € By, (0), and IBYO(Q)(JZ) =0 if z ¢ By, (0).

Proof.
Step 1. — Let
F2
(39) By, = —4(In|tRo|)f; 4 +2In L) = O(t*Int]).
’ ’ 1+TI%,
By the definition of uj ,, we see that
F2
up () = w(z) + 87G(x, tq)(1 — 0yq) + 2In | —L— | — 4(In [tRo|)0y
4 ’ 1+T7, ’

(3.10) = w(x)+87G(z,tq)(1 —0rq)+Bry in M\ Big,(tq),
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where we used (3.3). Similarly, we also see that
(3.11)  uf  (7) = w(x) + 87G(z,tq)(1 — b 4)
A% q|x - tq|2 .
+2In | —5———= | —4Injz —tq|b4 in Big,(tq).

14+ A7 |z — tq|?

Together with [, wdv, = [,, G(z,tq)dv, = 0, we see that

(3.12) /uzqdvg
b

/ + / uy ,dvg
M\Byr, (tq) Birg (tq)

/ w(y)
M\ Btr, (tq)

+ 87G(x,tq)(1 — bt,9) + By qdvg + / u;qdvg

BtRO (tQ)
-/ By + [ - ul)
M\ Bir,(tq) Birg (tq)

— 8wG(z,tq)(1 — 04 q)dvg.

B +/ o [ Abalr=ta” ), In|z—tq| — By, | d
=B, n| —5———5 | — 40t qIn |z —1q| — 5, oF
¢ BtRO(tq) 1+A?,q|x_tq‘2 ! ! I

= O(t*|Int|).

This proves Lemma 3.1(1). Moreover, combined with (3.9)—(3.10)
and (3.12), we get Lemma 3.1(2).

Step 2. — From (3.10), we have
(3.13)

. ()
/ hetta=Ct dvg
M\BiRQ (tQ)

_ e%f’q / hew+87TG(a:,tq)(170t,q)747TG(I,7té')747rG(:L’,té‘) d?)g
M\BiRo (tQ)

/ he“’(l—l—O(l)(l <t|q| P )
= By, (0
M\ By (1) O\ —tg] " Jo —tql?

+ t%[In ¢| +t|q|>) dv,

_ / h() @ dvy + O(1) (tlg| + [Int]) .
M
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Using (3.6), we get
(3.14)
(p—8m) h(x) e“f*wfcgm(z) dvy
J Big (tq)

At _ _
— he¥ dv 8Ht,q(ct7q ei% z+ q) e 87TR(A‘=;Z+tq’tq)0t’q dz
" ! Hyq(q)(1 + |27)?
M Br, ,(0) Pt q\q

Atoq
" 8 (1+ VH}{:?S) . (C’tyq e 2 z) +0(1)(e M |2)? +t2)>
= he dvg TESPRE dz
M Brt,q(o)

:87r/ he® dv, + O(t*[Int|).
M

From (3.13)—(3.14), we obtain

(3.15) /h(x)e“:aqGEZ)("”)dvg—< P /hewdvg) (1+2A,),
M M

p— 87

where 20, , = O(1)(t|q| + t?|Int|) is a constant.
Note that

h(.’l?) eUt,,q(x)—GEQ)(x) h(m) eu:,q(ﬁ)—G?)(w)

_ @ - = _(2) :
fM hevaq Gt d’l}g theut,q Gt d’l)g

Together with the definition of uy ., (3.10), and (3.15), we get the left
conclusion of Lemma 3.1 and it finishes the proof. g

4. Linearized operator
4.1. Function spaces

Let x¢,4 be the cut-off function satisfying

(41)  0<xeg <L [Vaxeg(@)] =007, [Vixeg(2) =07,

1 on Bun (tg),
2

(4.2) Xt,q(T) = xt,q(|x —tq]) = {0 on M\ By, (tq),

We denote z = (21, 22) € R?, and set

(4.3) p(z) = (1+]2]) 7175,
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We recall the function Y;(z), ¢ = 0, 1, 2, defined in (1.13). We set fori = 1,2,

(4.4) Vrai(@) = Xea(@)Yi (vl — t0))
. SA2 \
(45) Lo @) i= —AgTrgi(@) + aXea) V101 (2)

(1+ A7 e —tq?)*

In this section, we often use x as the original coordinate in a neighbor-
hood of 0 € M and z = Ay 4(« — tq) as the double scaled coordinate. For
convenience, we write

(4.6) f(2) = f(Ar = +ta).
Using the notion above, we have

1 on Br, (0),

0<Xrq <1,
0 on R2\Brt=q(0), b

(A7) Xeq(2) = Xeq(l2]) = {

and [V.Xi4(2)] = O(t), [ViXiq(2)] = O(t?).
Concerning for Z; 4 ;(x), we have the following result.

LEMMA 4.1.

(1) [us Ze,q.i(x)dvg =0 fori =1,2.
(2) Fori=1,2,
| Zras@)¥igitarde,
M
= A2 / Zra ()N (2)Yi(2)dz
Brt,q (0)

_ o s S
= oy o O+ S

(3) fM Zt,q,i(x)yt,q,j(x)dx = A;g fBFtyq(O) Zt,q,i(z)XT,q(z)Yj(z)dZ =0
fori #j.
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Proof.
(1) From the definition of Z; , ;(x) and Y; ,(x), we have for i = 1,2,

(4.8) Zigi(2) = Zt,q,i(A;;z +tq)

8A%,th,q($)Yt,q,i(x) »
a::A;qlz+tq (1 + Aiq|.§6 — tq|2)2 I:Atquthq

= _Axﬁ,q,i(w)

= — Ay (Xt.q(2)Y; (Apg(z — tq))) ‘

SA%,qX%q('r)Y;' (At,q(x — tq))

I:A;iz+tq

(1+ Af7q|x — tq|?)? z=A; ) z+tq
—_— 8Xtg " (2)Yi(2)
2 ,
= A, <_A2(Xt,q(z)yi(z)) + (1q+ EDEAA

After direct computation, we have for 1 < i # j < 2,

(4.9) BYi(z)zl—f-Z]z—Ziz 8Yi(z): —22;2;
Y T T PR 0z QPR
822‘
M= R
and
o SEERYR)
_ 2 dxiq(2) [z (1425 —27) 22;22
= (A, g TAL Z -
BXea LGy P27 ae \ Rl Ga R AL Re

g2 (1 + Xrq(12])2i
(1+22)? '

Combined with (4.8), we get Lemma 4.1(1).
(2) For the functions Z; ,;(x) and Y; 4.(x), we have for 1 <1, < 2,

(4.11) / Z1g (2 Vg5 (x) vy
M
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Note Xz,4(z) = 0 on R? \ Br, (0). Using (4.8) and the integration
by parts, we get

(4.12) /B o, B R Vi()a:

Zt.q,i(2)Xt.q(2)Yi(2)dz

/.
[ ( (Xiae >Y<z>>+W)m(zm<z>dz
A

(1+2)

ey SO Y
o (PP SR o

Then Lemma 4.1 (2) follows from (4.11) and (4.12).
(3) We can obtain Lemma 4.1(3) by (4.11), (4.8), and (4.10). O

Following [8], we will introduce some function spaces with different norms

for the different regions M \ Bir, (tq) and Big, (tq).
2

DEFINITION 4.2. — For any 0 < o < 1 and p € (1,2],
(1) A function ¢(x) on M is said to be in X4, if [, ¢dvg = 0 and

11 xa.0 = 18:8(2) 1+ 120 2| 2By, o) + [0(2)p(2) ] L2 (v, , (0))
+ 1ABl Lo (M\B 1y (t0)) + 1D Lo (A By (1)) < F00,
2 2

where A, ¢(z) = 37, 8?;(;).

(2) A function g(x) on M is said to be in Yo 1, if [,, gdvy = 0 and

lgllva.p = [t €™ G(2) (1 +|2]) 2 ||L2(Br, (0)

+ ||g||Ll”(M\B%(tq)) < too.
(3) Eatgp _{¢eXat,p\fM¢ tai(x)dog =0, i=1,2}.
(4) Fa,t,q,p = {g € Ya,t,p ‘ fMg ( )dvg = 07 L= 172}

Note we can get X tp, Yatp © L'(M) from Hij%lder inequality, even
though Br, ,(0) is not uniformly bounded. Furthermore, we have the fol-
lowing result.

LEMMA 4.3. — || Z; 4illv.., = O(1).
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Proof. — By (4.8), we see that
(4.13)

||Zt,q,i|

oo = e T4 2

L2(Br, ,(0))

+ 1Ze.q.ill Lo A\ B 15y (2a))
2

(H{ th Y(Z))+w}(l+|z‘)l+g

(1+12[%)

+ ”_Aa: (Xt,q(x)yi (At,q(x - tq)))”LP(BtRo(tq))\BtRo (tq))
=

L2(Br, , (0))

A7 Y (A g2 — tq))
(1 —|— A? gl — tq|?)?

LP(Biry (t9))\B 1Ry (tq)) )
2

Recall that |Vxi4| = O(t), [V*Xi4] = O(t?) and p € (1,2], we can obtain
the Lemma 4.3 from (4.13) by direct computation. O

4.2. Projection and Linearized operator

We define the projection Q4 : Yo ,t.p = Fat,qp DY

(Qt qg) Zczthz

where ¢; is chosen so that Q49 € Fit,9.p-
We shall prove that the projection Qy 4 is a well-defined, and bounded
map.

LEMMA 4.4.

(1) Q4 is well-defined, that is, for any g € Yo +p, there exists a unique
constant cq;, 1 = 1,2 such that g — 25:1 Cq.iZt,q,i € Fatqp-

(2) Q4 is bounded, that is, there exists to > 0 such that if 0 < t < tg,
then

1Qte9llya ., <cllgllv.,

for some constant ¢ > 0, which is independent of t € (0,tq) and
g€ Yarp
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Proof.
(1) For any g € Yo 15, let

fBFﬁ,q (0) AZ??(Z)XT,q(Z)YL(Z)dZ
_ Xt,q(%))3(Yi(2))? ’
Je, @ (IV=(Xaa(2) V()2 + SO0 ) 0

1=1,2.

)

(4.14) ¢4 =

By Lemma 4.1, we get that for i = 1,2,

2

/M<g<x> = gk Zagk (2))Vh g (1),

k=1

— [ geeaViAg(a ~ )i
Bir, (tq)

2
- /M (; cgﬁthq,k(x)) Y} q.i(z)da

- / A7 2g(2)Xra(2)Yi(2)dz
Bptyq(O)

o o s ST
/B<> (1wt + SR o
Using (4.14), we get

2

(4.15) / (0) — 3 ey Zoqn(e)Vigs(@)do, =0, i=1,2.
M k=1

From Lemma 4.1 we have

/ Zt,q,’i}/}t,q,idvg > 0 and / Zt,q,iift,q,jdvg = 0’ 'L # j'
M M

As a consequence, we can uniquely get ¢, ; such that (4.15) holds.

This proves Lemma 4.4(1).
(2) Using (4.14) and Hi; '%lder inequality, we get that

- e, 0y 29 g ()i ()2

Cg,i = 2 y— - 5
— (Xt.q(2))3(Yi(2))

(4.16) I,y (IV=(aa (Vi) + SR ) ds

<O Nlglva e Vi) A + D)7 F |22 (re))
<OM)(llgllyar.,)-
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By (4.16) and Lemma 4.3, we have

2
1Qtq9llva,, < Mgl + D leg.i
=1

which implies Lemma 4.4 (2). Thus we finish the proof. O

1Zt,q,illve.,, < OM)(llgllvas,)s

Let
(4.17) Ly ¢ = A¢(x)

h(z) eUta(@=Gi (@) @ [y V=G pau,
:I; - .
fM heUt‘q_GEZ) dv, fM heUqu—GE,z) dv,

Then we state the main result in this section.

+p

THEOREM 4.5. — There exist rg,tg > 0 such that if 0 < t < tg and
g € By,(0), then the map Q4L : Eatqp — Fatqp IS isomorphism.
Moreover, for any (¢,9) € Eqt,qp X Fa,t,qp such that Qq L; ¢ = g, the
following inequality holds:

(4.18) 16l Lo (ary + 10l x, ., < Cllnt]lg]

for some constant C' > 0 independent of (t,q,$,g) € (0,t9) x By (0) x
Eatqp % Fatqp-

Ya,t,p>

We will give the proof in Section 5. It is remarkable that for the linearized
operator L; 4, the orthogonality conditions shall be considered with only
the approximate kernels due to translations, i.e. Y7, Y5. Heuristically, since
the dilations part Yy does not vanish at infinity, the non-concentration
phenomena of mass disturbs the element caused by dilations to be a good
approximate kernel. It causes the main difficulty to prove Theorem 4.5. This
is completely different from the previous works related to concentration
phenomena of mass (for example, see [11, 31]).

We note that the norm of (Q¢ 4Lt )" is O(|Int|), which was appeared
in [8] by Chan, Fu, Lin for the study of Chern—Simons-Higgs equation (see
also [31, 38]).

5. Invertibility of Linearized operator
First of all, we want to show the inequality (4.18). We shall prove it by

contradiction. Suppose that as ¢ — 0, there is a sequence ¢, (¢, 9:) €
Eotgip X Fat,q,,p satistying Qy ¢, q,¢r = g¢, and

(5.1) ¢t oy + 10ellxa = 1, llgtllva.,, = o(nt] ™).

TOME 69 (2019), FASCICULE 2



916 Youngae LEE, Chang-Shou LIN & Wen YANG

To simplify our notation, we write ¢; by ¢.
Since ¢ satisfies Q ¢Li q¢: = g¢, we could find constants c; g4, ¢ = 1,2
such that

(5.2) A¢r+p

h(z) eUt,q(I)7G£2>(I) @ fM h eUW*GiQ) budv,
(x) —
Jag a6 du, foy el

2
= gt(x) + Z CtgiZt,q.i(T);
i=1

and
(5.3)

J

g?q,i(x)dvg

h(w) Vts(@)=G" @) hePea=G g dy
Apy +p (x)e () — fM $rduy

U —G® V-G 1.
thc ta= G d, thc La=G o,

2
= / (gt(z) + Zcz,qinm,i(az)) Yiq.5(x)dv, for j=1,2.
M i=1

Because the proof is long and complicated, we would like to first explain
the ideas behind all computations. It is not difficult to see that ¢, — ¢g
in C’IOO’E(M \ {0}) for some ¢o. Then we need to show ¢y = 0 to derive
a contradiction to (5.1). To achieve our goal, we need to complete the

following three steps,
(i) The (RHS) of (5.2) tends to zero,

(2)
.. heVtia— G p—8m he ; 0
(ii) T - (2 )thervg in CO_(M\ {0}),
(i) theUt,q—Gf) brdug . f,, he® dodvg
111 .
theth’Gim du, thew dvg

Once we get (i)-(iii), we can show that equation (5.2) converges to

hev Jahe? godug\
Ado+(p - 87T)thewdvg <¢O Bl Sy hev dug ) =0

Then from the non-degenerate condition on w, we can get ¢g = 0. Among
the steps (i)—(iii), (ii) was already proved (see Lemma 3.1(3)) and (i) is
not to difficult. However, the proof of (iii) is very difficult and complicate.
To verify it, we have to prove some identities resulting from the bubbling
behavior at 0.

For the equation (5.2) in the tiny ball B;g,(tq), we apply the doubly
scaling as in (4.6) and define

_ heVra=Gi” ¢,dv
(5.4) Unl2) = Bu(e) — vy,
fM heUta—G, dv,
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By (5.4) and (5.1), we have

(5.5) Vel Lo (e, , 0)) < 20Dell Lo (ar) < 2.

We note that

58 Aa(e) = Aol 10) = A2 (Bati(e) ).
= A z+tq

By Lemma 3.1(3), we see that 1), satisfies

At.q
Bupy () el St 20 (14 O(1) (¢lq] + ¢2[Int])
1+ =)

2
=\ (gt(z) + Z ct,q,izt,q,i(z)> on Br, (0).
1=1

In the following lemma, we give an estimation on ¢ 44, 2 = 1,2

(5.7)  Axthu(z) +

LEMMA 5.1. — |ctq.illl Zt,q,illye ., = O(t) for i =1,2.

Proof. — Multiplying Xz4(2)Y;(2) on both sides of (5.7) and using
Lemma 4.1, we have

| NN (o e W )
i e n )R + R

Tt,q

- 8Ui(z) . O()(a(2)l(e™ 5" |2 + tlg| + £2[in )
‘/Brt o {Awt+(1+lzl2)2+ TENERE

-2 Xt.q(2)z)
G L

We note that fB gt( )ﬁ_‘i(‘z‘)zj dz =0 from g; € F, 1,4, After integra-
tion by parts, we have

| N (v &) LA
ctas | T+ SR

N
- s dxmate) o + 2 ¥ (ot ) s
/Brt,qw)\Brt,q(m ' P 1 |22) AN

_ zj 8Xt.q4(2)7; }
! /Bm«» () { (o) (1 Tp) e

OW)([(2)llz31 (=" [2] + tlal + 2|int]))
*/BM@ L+ [12)3

dz

=K1+ Koy + K3t
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For the right hand side of the above equation, using (5.5) and (4.1), we get
K14 = O(t) and K3, = O(t). In the end, we can show the term Koy = 0

from the equation A (H_z‘jz‘z> + (H_S‘sz‘z)g = 0. Together with Lemma 4.3,

we prove Lemma 5.1. O

Next, we give a description on the asymptotic behavior of ¢; as t — 0.

LEMMA 5.2. — There is a constant dy € R such that ast — 0,

i(z) = doYo(z) in COF (R?).

loc

Proof. — From (5.5), we have ||wt\|Lx(Bth(0)) < O(1). We also note
that '

1A (2) (14 ) # 2, ) = 185B () (L + |2 F 2o, o) < L

Using Sobolev embedding theorem, we can find a function vy such that
Yy — o in COF(R?) and 190l oo (r2y < O(1). Moreover, by Lemma 5.1

loc
and || g¢|ly..,, = o(/Int|~), we can conclude that the limit of equation (5.7)

1S

8
(58) Aty + W% =0 in R2.

Since |[¢g || (r2) < O(1), we can apply [1, Proposition 1] to get

(5.9) Po(z) = Z d;Yy(2),

where d;, i = 0,1, 2, are some constants. By (4.8), we have

Z1.4i(2) = Zi,q.i(Af g2 + tq)

- 8, (- + TR

(1+12[2)?
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@
theUt"qict ¢rdvug

&)
fz\4thﬁ'Q7Gt dvg
&1 € Eqgt.q.p- Together with (4.8), we have

helea=G” 4.d
0= / qbt(at)—fM ¢ (Zfbt Y9 7, ,i(@)de
Birg (tq) Sy heVea=C du,

_ o (A (Y (o)) 4 e DY)
= o0 (o + T 4

(AXt,q)%i Zi
= 1/) (Z) (_7_2VX7 B v/ L — dz
/Brt,q(o)\BFt,q(O) AR v V@ D)

8Xt.q(1 + Xt.q)Yi(2)
+/ Pz : : dz
T P

= Ritq+ Rotg

By Lemma 4.1(1), we can derive ¢; — € Equtq,p from

By (5.5) and (4.1), we have R4 = o(1). As a consequence, we can get
R2.4,4 = o(1) from the above equation. On the other hand, since ¥, — 1y
in CO 5(R?), we get that

loc
1 Y;
0=1lim R4 = / Mdz,
10 R (14]2%)
which implies d; =0, i =1,2. Therefore, we get the conclusion. |
BY fre ehrdz = [ {52krdz = 0, (5.5), and Lemma 5.2, we have
do Y,
(5.10) lim iz )2 dz=/ %dz:o.
=0 g, o) (1+]2?) Rz (1412[%)
We will improve the estimation (5.10) in the following result. The proof
makes use of the test function 71(z) = —Yp(2) — 1.
LEMMA 5.3.

1) fBrt (0) %dz—o(ﬂnﬂ b.
) fBrtwq(o) —Atpy(z))dz = o([Int|~1).

Proof. — Let n1(2) = —=Yo(2) — 1 = ﬁilz) Then 7, satisfies

8m(z) in R
(.11) A+ e = e R
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Multiplying 71 (2)Xz.4(%) on both sides of (5.7) and using the integration
by parts, we have

(5.12)

0:/ [l/ft(Z){(Am(Z))Xt,q(Z)JFQVm(Z)Vm(z)ﬂh(z)(AXt,q(z))
Br, ,(0)

8+ O(1)(e= 72" |z| + t|g| + *[Int]) —
+ ( ENEDE )nl(Z)Xt,q(Z)}

— A (%(z) +> Z()) m(Z)Xt,q(Z)] dz.

Using Hi; %%lder inequality, we have

(5.13) /B

A;t? <|gt )|+ Z |Ct,q,i Zt,q, ) 71 (2)Xt.4(2)|dz

<o() (IIgtIIYa,t,p ailllZt.q.i a,t,p> :
=1

a1 [ e {@nenme - T b,

Tt,q

By (5.11), we see that

(1+ 2%

_ 8¢ (2)Xra(2)
SR

By (5.5), (4.1) and m1(2) = O(1/(1 + |2]?)), we have

(5.15) /
Brtq

- e {2V (2) VX (2) + 11 (2) (AT (2)) oz
Br, ,(0\Br, , (0)

=0(t?),

o {2 VRE() + m(a) (A%ia(e)

and

-4 2
Br, ,(0) (

1+ [2]2)2 1q(2)dz = O(t).
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From (5.12)—(5.16), we have

8¢t (2)Xt,q(2)
(517 /Bw “arpy ¢

2
=0(1) <||9t||Ya,t,p + Y letqill Zegillva., + t) :

i=1

Together with |gly,,, = o(/lnt|™') and Lemma 5.1, we prove the
Lemma 5.3(1).
By (5.7), we see that

AU Ny — _Shi(z)
I RO e

- O() (|4 (2) =" |2| + tlg| + £*[Int])
B, . ) T+ [2P)2

dz
+OM)(llgellvae)-

By (5.17) and ||g¢||y. ., = o(|lnt|™!), we get the Lemma 5.3(2). O
By Lemma 5.3, we get the following result.
LEMMA 5.4.

S heUta—Gi? drdv, fM\B,,RO(tq) he grdug

fM heUea—Gi? dvg - fM he dug

+o(|lnt|™h).

()
) heVtam % ¢,du,
Proof. — In order to estimate =L

o) , we divide M into
helta=C dug

M
M \ Big,(tq) and Big,(tq). Using Lemma 3.1, we have
_a®
fM\BtRU(tq) helUta—Gy ¢rdug
[y heVra=G du,
_(p—8r fM\B,,RO(tq) h(z) e ¢rdu,
B p Sy hew dug

_ 2
00 (10 (M) ]+l vy

\Bir (ta) |z —tq|?

(5.19)
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and

Utq—Gy?
JBuny 1) € rdu

Jar helta=6 du,
_ / C’f)qA§7th7q (t_lx) (14 O(tlq| + t3|Int]))d¢(x)
i ED VT

(5.20)

dx.

From the changing of variable z — A;;Z + tq, we get from (5.20) that

Ut,q—G>
JBuny i) M@ rdu

U. 7G(2>
Sy heVra=G " dug

—— \Hiq(A 7 et
_/ 86e(z) "G T (14 Ot]g| + 2[lnt]))
Bpt,q(O)

p(L+[2%)?

(5.21)

dz

dz

_/ 864 (2)(1 4+ O(e= 2% |2| + t|q| + t2|Int]))
Br, ,(0) p(1+]z2[2)?

8¢+ (2)
- —————55dz 4+ O (t]|¢¢] Lo _
/Brt,q(O) p(]- + |Z|2)2 ( ” t”L (M))

Moreover, from Lemma 5.3 and the definition of v;, we have

(5.22) o(|lnt|™)

8
:/ 7%(23 de
Br, ,(0) (1+ 2%
" heUhq*C’ng) qbtdvg)

8| ¢u(2) —
-, ( O L,
Br, ,(0)

(1 + |z|2)2
bs _a®
Prea(®) (1 - |Z|2)2 fM heUW*G?) dvg
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Using (5.19)—(5.22), we finally get that

@
Juh eUra=G ¢, dv,

©)
Jurh eVta=Gi du,

h Ut,q*GiZ)
= / +/ © (2)@ dvg
M\Biry(ta) /Birg(ta)) [y, heVra=CG" du,

- (1 871') IM\BtRO (tq) h(x) ew(x) ¢rdug
p fM ew dUg
8 [y, helra=G gdu,
Py heUra—GY d,

which proves Lemma 5.4. ]

+o([lnt|™h),

For any function g satisfying g(2)(1 + |2])'*% € L%(R?), we recall the
following inequality, which will be useful for our later arguments.

LEMMA 5.5 ([8]). — There is a constant ¢ > 0, independent of x €
R?\ By(0) and g, such that

’/RZ (In |z — 2| — In]a|)g(2)dz| < clz[~% (Infa]+1)|g(z)(1+[2)"FF ] p2me).

By Hi; Y2lder inequality and Lemma 5.1, we get the following estimation
for ¢, satisfying (5.2).

LEMMA 5.6.
/M |Adi|dvg <OM)(¢ellx.,,) < OM)(I¢ell Lo (any) + o[t ~).

Proof. — By Hi; '%lder inequality and the change of variables x = A;_ ;z—i—
tq € Big, (tq), we have

(5.23) /M Ay dv,

<O(1) (”A(thLP(M\BtRO(tq)) +/ : Az@(z)(b’)

Tt,q

<O(1) (||A¢tHLp(M\BtRO(tq)) + 1Az (2)(1 + ‘Z|)1+%HL2(BF,,,1{1(O)))
< O(M)(lellx..r.,)-
On the other hand, we see that

(5.24)  lee(2)p(2)IL2(my, ) + 10l Lo 0\ B1sg 2)) < OQ)([[ e Lo0),
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where we used Hp||Lz(Bth(0)) = O(1). Combined with equation (5.2)
and (5.7), we get from (5.5) and Lemma 3.1(3),

(5.25) [ AG,()(1+ 12D E | 2(r, o) + 1AG| o (5 g (1)
2

(H(m ;) (DS

(2) _a®@
N h(z) eUta(@)=G* (w)( () — [oy heVra=Ce ¢>tdvg>

(2) (2)
fjwheUt=q7Gt dUg theUf-,quf, d’Ug

L2(Br, ,(0))

L‘“(M\B@ (t9))

2
+lgelva, + ICt,q,illth,q,iYa,t,p>

i=1

2
<Oo() <II¢tILw<M> +lgelYan + ICt,qﬂ‘IIIZt,mIIYa,t,p) :

i=1
By (5.24)-(5.25), we get
2
D¢l X0, < O(L) <||¢t||Loo(M) +lgel v+ |Ct,q,i|||Zt,q,i||Ya,t‘p> -
i=1

Together with ||g;[|y, ,, = o(|ln¢|™*) and Lemma 5.1, we get Lemma 5.6.
O

By the Green representation formula and Lemma 5.5, we compare the
differences for the value of ¢; in different regions.

LEMMA 5.7.

(1) If |z —tq| < |2’ —tq| and z,z’ € By, (0) \ Biro (tq), then
2

|pe(z) — ¢t($/)|

2" — tq]

2(p—1)
Ay(2)dz| + o — tg] ™7 |1n|x’tq|>

|J,‘ — tQ| Br, ,(0)

alt g

+ O()\t7q e
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(2) Forx € B@ (tq) \ Bizg, (tq),

|pe(z) — de(tq)|

<o(1) (\ [ wmlelav |+ gl - ) A%(z)dz\)
Bptwq(O) Bptyq(O)
2(p—1) |z — tq| Bkl |z — tq|
+ O(l) (t P |1nt| + <t2> ln <t2 .
Proof.
Step 1. — By the Green representation formula, we have for any z,z’ €
B, (0),

(526  &i(x) — du(a’) = / (G’ €) — G, ) Ady(O)dC.

M

By Lemma 5.6, we see that

(5.27) / (G(.¢) — G, ) Adr(C)dC
M\ Bar, (0)

+ [ (R0 - RELOD(OK
Bax (0)

<O)(Jz ~'lI6lx....,) < OW)(lx — a']).

Step 2. — Suppose that |z —tq| < |2/ —tq| and z, 2" € By, (0)\ Bire (tq).
2
By Hi; '%lder inequality, we see that for some 6 € (0, 1),

(5.28)

|2’ — <|>
1 A d
/B?TO(O)\BtRO(tq) . < |$ — C‘ b (C) ¢

/

|2 — x|

<
/BQTO(O)\BQI/tq(tq) Olz" — ¢ + (1 = 0)|z — ¢

+f (tnfa’ = ¢l + in = CIDIAG()Idg
By|o/ —1q| (ta)\Btr, (tq)

[A¢:(€)|dC

2(p
13

—1)
< 0(1) (I = ta 5 [ |2 = talll|AGtl| 1 (Bany 01\ ey 101 )

2(p—1)
p

< OM)(|2" — tq] In[z" — tql]),
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where we used |z — 2’| < 2|2’ — tq|. By the change of variables, we also see
that

( ) /B”:io (tq) " ( ‘l‘ C| > t(C) C
|15/ iq At,(}z‘

= In | ———— | Ayy(z)dz
‘/Bl"t,q(o) (xthZ;z|> t( )

|At q(m’ - tq) — Z|>
" ’ Ay (z)dz.
/Brt,q(o) ( |At 4 (z —tq) — 2| ¢ (2)

Let
[Ag,q(2" —1q)| |2’ —q
3., =ln<’ Atpdz =In Az,
ha [Atq(e—1tq)l ) B, (0) ! |z —tql /) /b, (0 !

By adding and substituting the same constant 3; , in the last line of (5.29),

we get

N Ix’—€>
(5.30) /Bmo(tq)l (xCI Ad(¢)dC

| Ay q(2" —tq) — 2|
= 3 , —|—/ {ln ( .
b Br, ,(0) |Atq(2" —tq)]

(e peen

Since

1
§At,qROt <A q(@ —tq)] < Ay q(a" —tg)],

by applying Lemma 5.5, we see that

2’ = <|> o e Lo
say [ g ( T A0(O4C = 31+ O e H).

By (5.26)—(5.31), we obtain Lemma 5.7 (1).
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Step 3. — Suppose that © € Ber, (tq) \ Bi2g, (tq). By Hij%lder inequal-
2

ity, we see that for some 0 € (0,1)

W—Co
1 Ap (O
Lzro (0)\B:r, (tq) . < |l‘ — <| ¢t (C) <

</’ |tg — x|

Barg (0\Bery (tg) 01t — ¢ + (1 = 0)[z — (]
p=2

< 0(1) (| = tglt " A AG 1o (e 0\ B 101 )

2(p

<OMET ).

By the change of variables, we also see that

Iw—d>
5.33 ] A .
( ) /BtRO(tq) . ( |.T — C‘ ¢t(<) C
|At__qlz\
/Brt,q(o) n <|xth;;Z> ¢t(z) z

:L )Am@m.

Tiq= <ln |At,q(x — tq)] Awtdz> .
BFt,q (0)

By adding and substituting the same constant Y, 4 in the last line of (5.33),
we get

|w—d>A
(5.34)/Bmo(tq)m<|x_C ¢:(€)d¢

= _ Mw@p¢@_4)}A oy
/Brmm) {ln 2/ = ( |Atq(7 — tq)] Py (2)dz tq-

We note that |A¢ 4(z —tq)| = Ay qRot? = co > 0 for some constant co > 0
independent of ¢ > 0. By applying Lemma 5.5, we see that

|w—d>
o) f i (=8 avdoac

= / In [2|Aty(2)dz — In |Ay 4(z — tq)] Ay (2)dz
Br, ,(0)

Br, ,(0)

o (=51

12

(5.32)

|Ad:(C)]dS

m( |2
(0) |Atq(z —tq) — 2|

Tt,q

Let

|z — tq]
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By (5.26)—(5.27) and (5.32)~(5.35), we obtain Lemma 5.7 (2).

Youngae LEE, Chang-Shou LIN & Wen YANG

LEMMA 5.8.
(1) ¢y — 0in COP(M\ {0}) as t — 0.

2)

3)

loc

||¢tHL°°(M\BtRO (tq)) = 0(1).

©)
J,, he 1T gudu,

=o(1).

)
f heVta~ Gt dug

Proof.
(1) Since [¢¢]l Lo () + 1 Ab¢ || Lo (M\ By (1)) < 15 by the Sobolev imbed-

ding theorem, ¢; — ¢¢ in C’S)f(M \ {0}). In addition, we get
lfollzoeary < 1 and quSOdvg = 0 from |[¢¢|peo(ary < 1 and
Sy #edvg = 0. By Lemma 3.1, Lemma 5.4, Lemma 5.1, and

||gtHLp(M\BtRO (tq)) = o(|[lnt|~1), the equation (5.2) implies

(5.36) Ado-+ (p—8m) L <¢>O _ WM) — 0in M\ {0}.

(5.37)

3)

(5.38)

fM e du,

Since ||¢ol o (ary) < 1, ¢o is smooth near 0, then we can extend the
equation (5.36) to M. By the non-degeneracy assumption for (5.36)
and [, podvg = 0, we get ¢ = 0 in M and it proves (1).

We prove Lemma 5.8(2) by contradiction. Suppose for ¢t > 0 small,

S hev dug

@l Lo (Ar\B 1y (1)) = |Pe(@e)| = o > 0,
2

where ¢g > 0 is a constant independent of ¢ > 0. By Lemma 5.8 (1),
we have lim;_,o |2¢| = 0. Using Lemma 5.3(2) and Lemma 5.7, we
get for any d € (0,ry),

|t (1) — Pt (tq + de)| < cd (1),

where ¢ > 0 is a constant, independent oft > 0and d e (0,rg), We

choose d > 0 such that cd”7 \ln d| < % and fix such d. Combined
with Lemma 5.8(1), we get hmt_>0 | e (xt)\ < %, which contradicts
to |¢pe(xe)] = co > 0. So Lemma 5.8(2) holds.

By Lemma 5.4, we have

fM heUt,q—G?) (btdvg _ fM\BtRO (tq) he® ¢tdvg
fM heUea—Gi? dvg fM he dug

Then Lemma 5.8 (3) follows from Lemma 5.8(2). O

+o(1).
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In order to get the rid of the factor dy from dilations (see Lemma 5.2),
we need to introduce the function

4 1— |22 8
=-In(1 2
n2(2) 3 n(1+ [2| )(1+|Z|2) + 3(1+|Z|2)7

which satisfies

82 (2) 16(1 — |2]?) 16Yp(2) . 4
5.39 A = = R~
039 AR Ry T AR @
The function 7, was firstly introduced by Esposito, Grossi, and Pistoia
n [19], and then also used in [20, 21, 31] later.

LEMMA 5.9.
(1) ¢(2) = 0 and ¢¢(z) — 0 in COP(R2) as t — 0.

loc

(2) For any fixed constant R > 0, |[¢¢]| Lo (B, ,(tq)) = (1)
) lI9tll Lo (ary = o(1).

Proof.

(1) Multiplying n2(2)Xz.4(#) on (5.7) and using the integration by parts,
we see that

a0 [ (O)wxz){A(m(z)m(z))

z *|in
8(1 +O(t(|1|:|i||q2)2+t I tl))m(z)m(z)} dz

[ AmCm (v ()
BFt,q (O)

By Hi; '4lder inequality, we see that

(5.41) /B Az lge(2)m2(2)Xeq(2)dz < O()(llgellvi..,,) = o(|nt[™).

Tt,q

By the equation (5.39), we see that

6 [ {OmEE) + et Tt o
[ ek,
R (T

By (5.5), we have ||wt||Loo(BFtyq(0)) < O(1), and thus

[¥e(2)|(t]2] + tlg| + *[Int])
(5.43) /BFW(O) TENERE n2(2) Xz

q(2)dz = O(1).
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From (5.40)—(5.43) and supp (VXz,4) € Br, ,(0) \ Br., (0), we get

that
1691(2)Xq (2)(1 — |2%)
5.44 —/ ’ dz
N Ak
-/ n(2) (29(2)- Vi (2)
Br, ,(0\Br, , (0)
+12(2) (AXi(2)) ) d2 + o(1).
Let
Li.g = t(A¢ gt Ro€) (2Vn2 - VXt + 12AXz,4) dz.

Br, ,(0)
By adding and substituting the same constant £, in the second
line of (5.44), we see that
(5.45) /B ( )wt(Z) (2Vn2(2) - VXiq(2) + m2(2)(AXiq(2))) dz
Tyq (0

= / ( )Wt(z) — Pi(Ar gt Ro€)) (2Vn2 - VXt g + 12(AXeg)) dz + L1 4
Br, ,(0

= / o (gbt(A;;z +tq) — ¢(tRo€ + tq)) 2Vny - VX,qdz
Br, (0

+ / (6(ALz + tg) — 6y(tRo? + tq)) 1a(2) AXigdlz
Brt‘q(o)

@
Jag hre% = dudug
B)
Joy heVra=C doy

+ <¢t (tR0€+ tq) —

x / (297 - Vg +(ATig)) .
Br, ,(0)

From the definition of X ; and integration by parts, we see that

/ 2V - Vg + 1a(AXi))
Br, ,(0)

(2Vng - VXtg + 12(AXtq))

/Brt,q (0\Br,_, (0)
2

= / Vo - Vixi,q = O(1),
Br, ,(0\Br,, ()
2
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where we used [Vn2(2)| < O(1)( ) and |Vxi4| = O(t). We also
note that |n2(z)| < O(1)(In(1 +| |)) Combined with |V?y;,| =
O(t?), we get that

sy | 12(2) AXeg | + 21V - Vi ldz = O(fm )
: Br, ,(O\Br,., (0)
2

From Lemma 5.3, we have [ (o) Ati(z)dz = o([Int|~1). To-
gether with Lemma 5.7(1), we get for x € Big, (tq) \ Bire (tq),
2

akt,q
(At,q e4)>

From (5.44)—(5.47) and Lemma 5.8, we obtain as ¢ — 0,

160 ()1 = o)
R e

(5.47)  |oe(x) — ¢u(tq + tRo€)|

. ‘tRoa ) (
< om(‘(l =  bu)

=o(|lnt|™).

By (5.5), we have [|¢)4| 10 (Br, ,(0)) < O(1). Since 94(z) — doYo(2)

in C2F(R?) from Lemma 5.2, we can see that

[ .2 2
0 — lim ¢t(Z)Xt,q(Z)(21 . |2 )dz _ do/ YO(Z)2 dz,
=0/ Br, (0 (1+1[2%) r2 (1+[2]?)

which implies dy = 0 and ¥,(z) — 0 in C’IOO’CB (R?). Using Lemma 5.8,

_ | het = pedug . ~0,8/m2
we also get that ¢:(z) = ¥(2)+ f = — 0in Cp 7 (R?)
t ’Ug

Thus, Lemma 5.9 (1) holds.
(2) We can easily get Lemma 5.9(2) from ¢, (z) = d)t(Atf;z +1tq) — 0
in CO2 (R?).

(3) We shall prove lim; o ||¢¢[/zoc(ary = O by contradiction. Suppose
that

|b¢llLoe(ary = |P¢(w¢)| = co for small >0,

where ¢y > 0 is a constant independent of ¢ > 0. Then by
Lemma 5.8(2) and Lemma 5.9(2), we have
tRo . xe —tq

(5.48) |z — tq] < = lim

t—0 t2 = too
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By Lemma 5.7 (2), we have

(5.49)  |pi(ws) — P4(tq)]

<0(1)< ln\z|Awt(z)dz’+|lnt\‘/B ; Aty (2)dz

0)

|z — tq] _%1 |z — tq
R e— n——— .
) 2

— olnt| )

Br, ,(0)

+0(1) <

From Lemma 5.3, we have

/ Ay (z)dz
Br, ,(0)

Using equation (5.7) and Hi; 'Alder inequality, we get

(5.50)

[ s
Br, ,(0)

Oln |2][4(2)])
<o) (/B<> L+ |22 )

+0(1) (/ Jln [2][¢% e~ A0 (g2 (2 |+Z|thz|\thz )|)>
Brtq(o)

(H 1+|z| 1+%

Then we can apply Lemma 5.9(1), Lemma 5.1, and |[|g¢|lv, .,
o(|lnt|=1) to get

+lgellva.e, + Z lct,q,illl Zt,q,i |Ya,t,p>-
L2?(Br, ,(0)) i=1

(5.51) [ mllavlds = o)
Ftyq(o
Finally, using (5.48)—(5.51) and Lemma 5.9(2), we obtain
limy_q |¢¢(x¢)] = 0, which contracts to |¢¢(x:)| = ¢o. Thus, we
finish the whole proof. g

Proof of Theorem 4.5. — By Lemma 5.6 and Lemma 5.9, we have
lim ([|6l| e ar) + 162 x.0.0.p) = 0,

which contradicts to the assumption (5.1). Therefore, we get the inequal-
ity (4.18) and it implies that Q; 4IL; 4 is one-to-one from Eqy ¢ g t0 Fo t,g,p-

To complete the proof of Theorem 4.5, we follow the arguments in [31]
to show that Q; 4L¢ 4 is onto from Ey ;4 t0 Fy tqp- As in [31], we define
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]Ittq such that

8A?,th,q (33)
(1+ A7,z —tq]?)

Liq(¢) := Ag — S 0.

Then Qt’qﬂt’q is an isomorphism from FE,¢gqp to Faygp, and thus
ind(Q;,4L¢,4) = 0. Moreover, we see that

QugLiq® = QugLigd + Qug(Lig — Lig)o.
Since Qyq(L¢q — ]I;;q) is a compact operator, we get
dim(ker(Q¢ glLt,¢)) — codim(ran(Q¢ gLt ¢)) = ind(Qy,qL¢ )
= ind(Q,4L¢,q) = 0.

By (4.18), we have dim(ker(Q; 4L;,)) = 0 and codim(ran(Q; 4L;4)) = 0.
As a consequence, we get Q; ,LL; , is onto from E, ;4 to Futq,p and it
proves Theorem 4.5. O

6. Proof of Theorem 1.5

In this section, we are going to construct a solution of (1.4) with the
form

Uy = u;q — / u;qdvg + qbt,q = qug + (bt,q-
M
Then we need to find ¢, 4 solving the following system:

(6.1) Ltg (¢t,q) = Gt,q (Dt,q9)
where
ph Ura—G+¢
oy helra=G+6 4o,
ph oUta—G{” T hUta—GY ¢dv,
[y heVea=6" du, [y heVua=6 dv, )
Now we are going to prove Theorem 1.5 with the following steps.

Step 1. — Let 0 < a < min{%, @}. We claim that there exists ¢; €

(0,t0) such that if 0 < ¢ < t; and g € Byjin(0), then there is ¢; 4 € Ea t,qp
satisfying

Gtq (@) = —Aug g +p =

(6.2) {@aqhmwt,q) = Qug(r.a(900)),

2
¢t.qllzoean) + Ibegllxe.., <2t
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Using Theorem 4.5, we can write (6.2) as

Gt.q = Bi,g(pt,q), where By y(¢rq) := (Qt,th,q>_1(Qt,qgt,q<¢t,q>)-

From Theorem 4.5 and Lemma 4.4, we have
(6.3)  I1Btg(dr.a)llze=ary + 1Beg(dr,a)l xa sy < Clnt[llge,q(De)llvay
for some generic constant C'. Let
2
64)  Sii={0€ Fauap [I0lieon + 16lx..., < 5t}

To prove the existence of the solution for (6.2), we will show that By, is
a contraction map from S; to Sy provided ¢t > 0 is sufficiently small and
q € Byjin¢/(0). By Lemma 3.1, we have for x € M \ Byg,(tq),

(6.5)  gi,q(0)()

h w
=8ml,q+ (p— 87 °

)fM hev du,
h(z) eVra(®) =G (@)

U 7G(2)
Sy heVra=C " dug

t
—0<1>(1Br(,<0><x>( i >+t21nt|+t|q|+||¢%m<M)).

_'_
|z —tq| |z —tq|?
Using Lemma 3.1 again, we see that for = € By, (tq),

+O0M) (ol (ar)

) he® N 8AZ,
Sy hevdvg (14 A7 |z —tq]?)?
et t2pH, g (2) (1+ 016 ar) + 1)
T AL PP R

Gt,q(@)(x) = 87b; 4 + (p — 87

which implies for z € Br, ,(0),

(6.6) 1% gy 4(0)(2)
=t2e 9 gy o (8)(Ar 2 + tq)
pHiglq)  PHia(Aigt ™2+ @)1+ O)(1lI7~ sy +1°))

= 4
ICEREDE (T+ [22)2(1 + s ) +0O(t)
_ pHyq(q) (1 _ 1 ) _ pVH;.(q)- (A;;t_lz)
(14 [2[2) (1+2L9) (L4 [217)2(1 + 24 )
O(e ™M [2]2 + [|@]|2 wopy + 12
@4 W + )

(1+12*)?

A
here we used the Taylor expansion of Hy 4(Cy 4 e 2 4 q).

ANNALES DE L’INSTITUT FOURIER



SOLUTIONS WITHOUT MASS CONCENTRATION 935
Recall 2 , = O(1)(t|g| +t*[Int|). We also note that VHy ,(q) = O(1)(t+
lg|). Then |g| < t|Int| and (6.5)—(6.6) yield

1964 ()1¥aep = OE + 8117 (a1))-

Combined with (6.3), we see that By 4 : Sy — S, provided ¢ is sufficiently
small. Following a similar argument, we also get that if ¢1, ¢o € S;, then

19t,4(91) = gt.q(d2) v 0.,
= O0(1) ((Irll o ary + D2l Lo (ary) lP1 = D2l Lo (ary) -

Together with (6.3), we see that if ¢ > 0 is small, then

| Bt,q(#1) — Bt g(d2)l Lo (ar) + [ Be,g(d1) — Brg(d2)l X0

1
< 3 (61 — d2llpoe(ary + |01 — M2l x.,,) for any ¢1,¢2 € Sy

Therefore, we have B, , is a contraction map from S to S; for small ¢ > 0.
As a consequence, we get the existence of ¢y 4 € Eq 1 4, satistying (6.2).

Step 2. — In Step 1, we have proved that for some t; € (0,%p) such that
if t € (0,¢1) and q € Byjin(0), then there exist

(Bt.q>Ct.g,15Ctg.2) € Batgp X RXR

satisfying (5.2) and (5.3) with g:(z) is replaced by g¢q(¢¢q). For conve-
nience, we write g q(¢¢,q) by gt,q. To complete the proof of Theorem 1.5,
it is enough to find ¢ € R? satisfying ¢ 4,; = 0 for i = 1,2. We denote

@)
Ju helta™ G gy qduy

U _a®
Joy heVra=C duy

Veq(2) = @14(2)
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Then v, 4 satisfies (5.7) with g;(z) replaced by G;4(2). As in the proof of
Lemma 5.1, we apply Lemma 4.1 and the integration by parts to get

| vy ST E)?
61) era | T e+ SR

- /Brm(m ol {3 o+ 290 ()

— Zj 8Xt,q(2)2;
! /BFM(O) o) {Tra(2)A ((1 T |z|2>> MrEREo

O(1) ([g()Y; (2)l(e= " |2] + tha] + )
+/BFW 1+ [2P)? :

Zj

- A3 T6q(2)Xq(2) 7o d2
/B<> P (T 2P?)

= mt,q,l + mt,qﬂ + mt7q73 + mt7q,4-

Next, we shall compute the right hand side of (6.7) term by term.
(i) By Wtﬁq”Lw(Brt,q(O)) = O(1)(|#t.qllL>(ar)), we have

sﬁtq,i% = O(D@H‘Z’t,q

| Lo (ar))-
(ii) Using |[VXzql = O(t) and |Vx7 4| = O(t?), we get

M g1 = O) (| dt,qll Lo (ar))-

(iii) We can easily get My 42 = 0 from A <(1+Z|"Z|2)) + (1522)3 =0.
(iv) By using (6.6) and Xz.4(2) = Xz.4(|2]), we have

~j

Nt ga = —/ Ay 2G4 (2)Xq(2) —2—<dz
! Be, @ T+ [P

“ [ENERIEN RN ) A CEN F IRy
O(e |22+ |42 ) +12)
FENFRE

Mg L
=C? / PV i q(q)Ctq ?_T Z?Xtyq(|z|)
" Jbr, ,(0) 1+ [2[2)3(1 + 24y

+ O(||1,qll7 o (ar) + £°)-

e /Brt,q(o){(th,q(q) (1_( 1 )_pVHt,q(Q)~(t‘1AZ§Z)

+ 0 P (al)

dz
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Fix p € (1,2). From (6.7), (i)—(iv), and ||¢¢q
we get

2
‘Loo(]v[) g tr ‘11’1t|2,

8z (2)* V() |
(1+ )2

- Tl e | 8C14 22X (2)
Hyg(0) b, (o (LF PP+ 2 )
+ Ot begllLoeary + De,qll7 ary +°)
- Tl e | 8C14#2Xia (%)
Hyq(q) Br, . (0) (L4 [27)?(1+ Ay q)
where 9; , ; = O(t?). We note that VHy 4(0) = O(t) and V?H, ,(0)
is invertible for small ¢ > 0 and ¢ € Byjn¢/(0). Therefore, for small
t > 0, there is ¢ = O(t) satisfying

ViHug,(g) ~2ta / 8Ch.q, 27 Xtar (2)
Hyq,(40) Be, (0 (L+ PP+ 2,

+Dt,qt,j =0 for j = 1,2,

/ VX ()Y () +
Brt,q 0)

dz

dz + Dt,q,j,

Tt,q

dz

and thus ¢, 4, ; = 0 for j = 1,2. Now we complete the proof of
Theorem 1.5.
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