In recent studies, 4-dimensional analogs of the Painlevé equations were listed and there are 40 types. The aim of the present paper is to geometrically characterize these 40 Painlevé-type equations. For this purpose, we study the autonomous limit of these equations and degeneration of their spectral curves. The spectral curves are 2-parameter families of genus two curves and their generic degeneration are one of the types classified by Namikawa and Ueno. Liu’s algorithm enables us to find the degeneration types of the spectral curves for our 40 types of integrable systems. This result is analogous to the following fact; the families of the spectral curves of the autonomous 2-dimensional Painlevé equations , , , , , , and define elliptic surfaces with the singular fiber at of the Dynkin types , , , , , , and , respectively.
Dans des études récentes, des analogues en 4 dimensions des équations de Painlevé ont été répertoriés et il existe 40 types. Le but du présent article est de caractériser géométriquement ces 40 équations de type Painlevé. A cet effet, nous étudions la limite autonome de ces équations et la dégénérescence de leurs courbes spectrales. Les courbes spectrales sont des familles à 2 paramètres de courbes de genre deux et leur dégénérescences génériques sont d’un des types classés par Namikawa et Ueno. L’algorithme de Liu nous permet de trouver le types de dégénérescence de courbes spectrales pour nos 40 types de systèmes intégrables. Ce résultat est analogue au fait suivant ; les familles des courbes spectrales des équations de Painlevé autonomes bidimensionnelles , , , , , , et définissent des surfaces elliptiques avec une fibre singulière à des types Dynkin , , , , , , et , respectivement.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3260
Keywords: integrable system, Painlevé-type equations, isospectral limit, spectral curve, hyperelliptic curve, degeneration of curves
Mot clés : Limite autonome des équations 4-dimensionnelles de type Painlevé, dégénérescence des courbes de genre deux
@article{AIF_2019__69_2_845_0, author = {Nakamura, Akane}, title = {Autonomous limit of the 4-dimensional {Painlev\'e-type} equations and degeneration of curves of genus two}, journal = {Annales de l'Institut Fourier}, pages = {845--894}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3260}, zbl = {07067421}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3260/} }
TY - JOUR AU - Nakamura, Akane TI - Autonomous limit of the 4-dimensional Painlevé-type equations and degeneration of curves of genus two JO - Annales de l'Institut Fourier PY - 2019 SP - 845 EP - 894 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3260/ DO - 10.5802/aif.3260 LA - en ID - AIF_2019__69_2_845_0 ER -
%0 Journal Article %A Nakamura, Akane %T Autonomous limit of the 4-dimensional Painlevé-type equations and degeneration of curves of genus two %J Annales de l'Institut Fourier %D 2019 %P 845-894 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3260/ %R 10.5802/aif.3260 %G en %F AIF_2019__69_2_845_0
Nakamura, Akane. Autonomous limit of the 4-dimensional Painlevé-type equations and degeneration of curves of genus two. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 845-894. doi : 10.5802/aif.3260. https://aif.centre-mersenne.org/articles/10.5802/aif.3260/
[1] Dual moment maps into loop algebras, Lett. Math. Phys., Volume 20 (1990) no. 4, pp. 299-308 | DOI | MR | Zbl
[2] Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras, Commun. Math. Phys., Volume 117 (1988) no. 3, pp. 451-500 | MR | Zbl
[3] The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math., Volume 97 (1989) no. 1, pp. 3-51 | DOI | MR | Zbl
[4] Algebraic integrability, Painlevé geometry and Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 47, Springer, 2004, xii+483 pages | DOI | MR | Zbl
[5] Spinning tops. A course on integrable systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge University Press, 1996, viii+139 pages | MR | Zbl
[6] Integrable Hamiltonian systems. Geometry, topology, classification, Chapman & Hall/CRC, 2004, xvi+730 pages (Translated from the 1999 Russian original) | DOI | MR | Zbl
[7] Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math., Volume 34 (1911) no. 1, pp. 317-385 | DOI | MR | Zbl
[8] Higher-order Painlevé equations in the polynomial class. I. Bureau symbol , Stud. Appl. Math., Volume 104 (2000) no. 1, pp. 1-65 | DOI | MR | Zbl
[9] Higher-order Painlevé equations in the polynomial class. II. Bureau symbol , Stud. Appl. Math., Volume 116 (2006) no. 4, pp. 321-413 | DOI | MR | Zbl
[10] Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra, Volume 318 (2007) no. 1, pp. 1-24 | DOI | MR | Zbl
[11] Sur quelques équations différentielles linéaires du second ordre., C. R. Math. Acad. Sci. Paris, Volume 141 (1906), pp. 555-558 | Zbl
[12] Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc., Volume 76 (2007) no. 2, pp. 438-450 | DOI | MR | Zbl
[13] Dual isomonodromic deformations and moment maps to loop algebras, Commun. Math. Phys., Volume 166 (1994) no. 2, pp. 337-365 | MR | Zbl
[14] A classification of roots of symmetric Kac-Moody root systems and its application, Symmetries, integrable systems and representations (Springer Proceedings in Mathematics & Statistics), Volume 40, Springer, 2013, pp. 195-241 | DOI | MR | Zbl
[15] Stable bundles and integrable systems, Duke Math. J., Volume 54 (1987) no. 1, pp. 91-114 | DOI | MR | Zbl
[16] Sur les points singuliers des équations différentielles linéaires. II., J. Fac. Sci., Hokkaido Univ., Ser. I, Volume 5 (1937), pp. 123-166 | Zbl
[17] On the degenerates of a normally polarized abelian varieties of dimension 2 and algebraic curves of genus 2 (in Japanese), 1967 University of Tokyo (Japan)
[18] Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 4, pp. 987-1089 | DOI | MR | Zbl
[19] Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and -function, Physica D, Volume 2 (1981) no. 2, pp. 306-352 | DOI | MR | Zbl
[20] Rigid local systems, Annals of Mathematics Studies, 139, Princeton University Press, 1996, viii+223 pages | MR | Zbl
[21] Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems (2016) (https://arxiv.org/abs/1608.03927, to appear in Funkcial, Ekvac) | Zbl
[22] Four-dimensional Painlevé-type equations associated with ramified linear equations III: Garnier systems and Fuji-Suzuki systems, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), 096, 50 pages | Zbl
[23] Four-dimensional Painlevé-type equations associated with ramified linear equations II: Sasano systems, J. Integrable Sys., Volume 3 (2018) no. 1, xyy013, 36 pages | Zbl
[24] Toward a classification of four-dimensional Painlevé-type equations, Algebraic and geometric aspects of integrable systems and random matrices (Contemporary Mathematics), Volume 593, American Mathematical Society, 2013, pp. 143-161 | DOI | MR | Zbl
[25] Degeneration scheme of 4-dimensional Painlevé-type equations, 4-dimensional Painlevé-type equations (MSJ Memoirs), Volume 37, Mathematical Society of Japan, 2018 | DOI | Zbl
[26] On the Garnier system of half-integer type in two variables, Funkc. Ekvacioj, Volume 52 (2009) no. 2, pp. 181-201 | DOI | MR | Zbl
[27] The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl., Volume 155 (1989), pp. 25-74 | DOI | MR | Zbl
[28] Uniform foliation associated with the Hamiltonian system , Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1993) no. 1, pp. 1-60 | MR | Zbl
[29] Initial value spaces of degenerate Garnier systems, RIMS Kokyuroku, Volume 1133 (2000), pp. 18-27 | MR | Zbl
[30] On compact analytic surfaces. II, Ann. Math., Volume 77 (1963), pp. 563-626 | DOI | MR | Zbl
[31] On compact analytic surfaces. III, Ann. Math., Volume 78 (1963), pp. 1-40 | MR | Zbl
[32] The Deligne-Simpson problem for zero index of rigidity, Perspectives of complex analysis, differential geometry and mathematical physics (St. Konstantin, 2000), World Scientific, 2001, pp. 1-35 | MR | Zbl
[33] Jordan decomposition for a class of singular differential operators., Ark. Mat., Volume 13 (1975), pp. 1-27 | DOI | MR | Zbl
[34] Painlevé VI, rigid tops and reflection equation, Commun. Math. Phys., Volume 268 (2006) no. 1, pp. 67-103 | DOI | MR | Zbl
[35] Courbes stables de genre et leur schéma de modules, Math. Ann., Volume 295 (1993) no. 2, pp. 201-222 | DOI | MR | Zbl
[36] Modèles minimaux des courbes de genre deux, J. Reine Angew. Math., Volume 453 (1994), pp. 137-164 | DOI | MR | Zbl
[37] Sur les équations différentielles du second ordre dont l’intégrale générales a ses points critiques fixes, Arkiv. Mat. Astr. Fys., Volume 17 (1922-23), pp. 1-89 | Zbl
[38] On the Bäcklund transformations of the matrix Painlevé equations (in Japanese), 2011 University of Tokyo (Japan)
[39] The degeneration of the Painlevé divisors associated with the autonomous Garnier system of type 9/2, Josai Math. Mono. (2017)
[40] The complete classification of fibres in pencils of curves of genus two, Manuscr. Math., Volume 9 (1973), pp. 143-186 | DOI | MR | Zbl
[41] On pencils of curves of genus two, Topology, Volume 5 (1966), pp. 355-362 | MR | Zbl
[42] Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Jpn. J. Math., New Ser., Volume 5 (1979) no. 1, pp. 1-79 | MR | Zbl
[43] Noncommutative geometry and Painlevé equations, Algebra Number Theory, Volume 9 (2015) no. 6, pp. 1363-1400 | DOI | MR | Zbl
[44] Fractional calculus of Weyl algebra and Fuchsian differential equations, MSJ Memoirs, 28, Mathematical Society of Japan, 2012 | MR | Zbl
[45] Numdam
(private communication) |[46] Generalized Hitchin systems on rational surfaces (2013) (https://arxiv.org/abs/1307.4033)
[47] The (noncommutative) geometry of differential and difference equations, 2016 (Presented at NSF/CBMS Regional Research Conference on Discrete Painlevé Equations, University of Texas Rio Grande Valley)
[48] The noncommutative geometry of elliptic difference equations (2016) (https://arxiv.org/abs/1607.08876)
[49] Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR | Zbl
[50] Ordinary differential equations on rational elliptic surfaces, Symmetries, integrable systems and representations (Springer Proceedings in Mathematics & Statistics), Volume 40, Springer, 2013, pp. 515-541 | DOI | MR | Zbl
[51] Isomonodromic deformation and 4-dimensional Painlevé type equations, 4-dimensional Painlevé-type equations (MSJ Memoirs), Volume 37, Mathematical Society of Japan, 2018 | DOI | MR | Zbl
[52] The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 217-281 | DOI | MR | Zbl
[53] Spaces of initial conditions of Garnier system and its degenerate systems in two variables, J. Math. Soc. Japan, Volume 58 (2006) no. 4, pp. 1079-1117 | MR | Zbl
[54] An augmentation of the phase space of the system of type , Kyushu J. Math., Volume 58 (2004) no. 2, pp. 393-425 | DOI | MR | Zbl
[55] Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 476, Springer, 1975, pp. 33-52 | DOI | MR | Zbl
[56] Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math., Volume 93 (1955), pp. 27-66 | DOI | MR | Zbl
[57] Fourier-Laplace transform and isomonodromic deformations, Funkc. Ekvacioj, Volume 59 (2016) no. 3, pp. 315-349 | DOI | MR | Zbl
Cited by Sources: