Existence of bubbling solutions without mass concentration
[Existence de solutions bouillonnantes sans concentration de masse]
Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 895-940.

Le travail séminal de Brezis et Merle a été pionnier dans l’étude des phénomènes de bulles de l’équation du champ moyen avec des sources singulières. Lorsque les points de vortex ne s’affaissent pas, l’équation du champ moyen possède la propriété de ce que l’on appelle « le bouillonnement implique une concentration de masse » . Récemment, Lin et Tarantello ont remarqué que les phénomènes de « bouillonnement implique une concentration de masse » pourraient ne pas s’appliquer en général s’il y a effondrement des singularités se produit. Dans cet article, nous construisons le premier exemple concret de solution bulleuse non concentrée de l’équation du champ moyen avec des singularités d’effondrement.

The seminal work by Brezis and Merle has been pioneering in studying the bubbling phenomena of the mean field equation with singular sources. When the vortex points are not collapsing, the mean field equation possesses the property of the so-called “bubbling implies mass concentration”. Recently, Lin and Tarantello pointed out that the “bubbling implies mass concentration” phenomena might not hold in general if the collapse of singularities occurs. In this paper, we shall construct the first concrete example of non-concentrated bubbling solution of the mean field equation with collapsing singularities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3261
Classification : 53A30, 35B44, 35J15, 82D55
Keywords: bubbling phenomena, mean field equation
Mot clés : phénomènes de bulles, équation de champ moyen

Lee, Youngae 1 ; Lin, Chang-Shou 2 ; Yang, Wen 3

1 Department of Mathematics Education Teachers College Kyungpook National University Daegu (South Korea)
2 Taida Institute for Mathematical Sciences Center for Advanced Study in Theoretical Sciences National Taiwan University Taipei 106 (Taiwan)
3 Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences P.O. Box 71010 Wuhan 430071 (P. R. China)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_2_895_0,
     author = {Lee, Youngae and Lin, Chang-Shou and Yang, Wen},
     title = {Existence of bubbling solutions without mass concentration},
     journal = {Annales de l'Institut Fourier},
     pages = {895--940},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3261},
     zbl = {07067422},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3261/}
}
TY  - JOUR
AU  - Lee, Youngae
AU  - Lin, Chang-Shou
AU  - Yang, Wen
TI  - Existence of bubbling solutions without mass concentration
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 895
EP  - 940
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3261/
DO  - 10.5802/aif.3261
LA  - en
ID  - AIF_2019__69_2_895_0
ER  - 
%0 Journal Article
%A Lee, Youngae
%A Lin, Chang-Shou
%A Yang, Wen
%T Existence of bubbling solutions without mass concentration
%J Annales de l'Institut Fourier
%D 2019
%P 895-940
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3261/
%R 10.5802/aif.3261
%G en
%F AIF_2019__69_2_895_0
Lee, Youngae; Lin, Chang-Shou; Yang, Wen. Existence of bubbling solutions without mass concentration. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 895-940. doi : 10.5802/aif.3261. https://aif.centre-mersenne.org/articles/10.5802/aif.3261/

[1] Baraket, Sami; Pacard, Frank Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differ. Equ., Volume 6 (1997) no. 1, pp. 1-38 | MR | Zbl

[2] Bartolucci, Daniele; Chen, Chiun-Chuan; Lin, Chang-Shou; Tarantello, Gabriella Profile of blow-up solutions to mean field equations with singular data, Commun. Partial Differ. Equations, Volume 29 (2004) no. 7-8, pp. 1241-1265 | DOI | MR | Zbl

[3] Bartolucci, Daniele; De Marchis, Francesca On the Ambjorn-Olesen electroweak condensates, J. Math. Phys., Volume 53 (2012) no. 7, 073704, 15 pages | DOI | MR | Zbl

[4] Bartolucci, Daniele; Tarantello, Gabriella Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys., Volume 229 (2002) no. 1, pp. 3-47 | DOI | MR | Zbl

[5] Battaglia, Luca; Malchiodi, Andrea Existence and non-existence results for the SU (3) singular Toda system on compact surfaces, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3750-3807 | DOI | MR | Zbl

[6] Brezis, Haïm; Merle, Frank Uniform estimates and blow-up behavior for solutions of -Δu=V(x)e u in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1223-1253 | DOI | MR | Zbl

[7] Chai, Ching-Li; Lin, Chang-Shou; Wang, Chin-Lung Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Volume 3 (2015) no. 1-2, pp. 127-274 | DOI | MR | Zbl

[8] Chan, Hsungrow; Fu, Chun-Chieh; Lin, Chang-Shou Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 189-221 | DOI | MR | Zbl

[9] Chang, Sun-Yung Alice; Yang, Paul C. Prescribing Gaussian curvature on S 2 , Acta Math., Volume 159 (1987) no. 3-4, pp. 215-259 | DOI | MR | Zbl

[10] Chen, Chiun-Chuan; Lin, Chang-Shou Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., Volume 55 (2002) no. 6, pp. 728-771 | DOI | MR | Zbl

[11] Chen, Chiun-Chuan; Lin, Chang-Shou Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1667-1727 | DOI | MR | Zbl

[12] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1237-1272 | DOI | MR | Zbl

[13] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., Volume 68 (2015) no. 6, pp. 887-947 | DOI | MR | Zbl

[14] Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Wang, Chin-Lung Green function, Painlevé VI equation, and Eisenstein series of weight one, J. Differ. Geom., Volume 108 (2018) no. 2, pp. 185-241 | DOI | MR | Zbl

[15] Choe, Kwangseok; Kim, Namkwon Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 2, pp. 313-338 | DOI | MR | Zbl

[16] Choe, Kwangseok; Kim, Namkwon; Lee, Youngae; Lin, Chang-Shou Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in 2 , J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1734-1761 | DOI | MR | Zbl

[17] Choe, Kwangseok; Kim, Namkwon; Lin, Chang-Shou Existence of mixed type solutions in the SU(3) Chern-Simons theory in 2 , Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 17, 30 pages | DOI | MR | Zbl

[18] D’Aprile, Teresa; Pistoia, Angela; Ruiz, David Asymmetric blow-up for the SU(3) Toda system, J. Funct. Anal., Volume 271 (2016) no. 3, pp. 495-531 | DOI | MR | Zbl

[19] Esposito, Pierpaolo; Grossi, Massimo; Pistoia, Angela On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 227-257 | DOI | MR | Zbl

[20] Esposito, Pierpaolo; Musso, Monica; Pistoia, Angela Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differ. Equations, Volume 227 (2006) no. 1, pp. 29-68 | DOI | MR | Zbl

[21] Figueroa, Pablo Singular limits for Liouville-type equations on the flat two-torus, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 613-647 | DOI | MR | Zbl

[22] Lee, Youngae; Lin, Chang-Shou; Tarantello, Gabriella; Yang, Wen Sharp estimates for solutions of mean field equations with collapsing singularity, Commun. Partial Differ. Equations, Volume 42 (2017) no. 10, pp. 1549-1597 | DOI | MR | Zbl

[23] Lee, Youngae; Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equations, Volume 264 (2018) no. 7, pp. 4343-4401 | DOI | MR | Zbl

[24] Lee, Youngae; Lin, Chang-Shou; Yang, Wen; Zhang, Lei Degree counting for Toda system with simple singularity: one point blow up (2017) (https://arxiv.org/abs/1707.07156)

[25] Lee, Youngae; Lin, Chang-Shou; Zhong, Xuexiu Existence of non-topological solutions in the SU(3) Chern–Simons model in 2 , part I (preprint)

[26] Li, Yan Yan Harnack type inequality: the method of moving planes, Commun. Math. Phys., Volume 200 (1999) no. 2, pp. 421-444 | MR | Zbl

[27] Li, Yan Yan; Shafrir, Itai Blow-up analysis for solutions of- Δu=Ve u in dimension two, Indiana Univ. Math. J., Volume 43 (1994) no. 4, pp. 1255-1270 | MR | Zbl

[28] Lin, Chang-Shou An expository survey on the recent development of mean field equations, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 2, pp. 387-410 | MR | Zbl

[29] Lin, Chang-Shou; Tarantello, Gabriella When “blow-up” does not imply “concentration”: A detour from Br�zis–Merle’s result, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 5, pp. 493-498 | DOI | Zbl

[30] Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen; Zhang, Lei On rank-2 Toda systems with arbitrary singularities: local mass and new estimates, Anal. PDE, Volume 11 (2018) no. 4, pp. 873-898 | DOI | MR | Zbl

[31] Lin, Chang-Shou; Yan, Shusen Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 2, pp. 353-392 | MR | Zbl

[32] Malchiodi, Andrea Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equ., Volume 13 (2008) no. 11-12, pp. 1109-1129 | MR | Zbl

[33] Malchiodi, Andrea; Ndiaye, Cheikh Birahim Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Volume 18 (2007) no. 4, pp. 391-412 | DOI | MR | Zbl

[34] Malchiodi, Andrea; Ruiz, David A variational analysis of the Toda system on compact surfaces, Commun. Pure Appl. Math., Volume 66 (2013) no. 3, pp. 332-371 | MR | Zbl

[35] Malchiodi, Andrea; Ruiz, David On the Leray-Schauder degree of the Toda system on compact surfaces, Proc. Am. Math. Soc., Volume 143 (2015) no. 7, pp. 2985-2990 | DOI | MR | Zbl

[36] Nolasco, Margherita; Tarantello, Gabriella On a Sharp Sobolev-Type Inequality on Two-Dimensional Compact Manifolds, Arch. Ration. Mech. Anal., Volume 145 (1998) no. 2, pp. 161-195 | DOI | MR | Zbl

[37] Nolasco, Margherita; Tarantello, Gabriella Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999) no. 1, pp. 31-94 | MR | Zbl

[38] del Pino, Manuel; Kowalczyk, Michal; Musso, Monica Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Volume 24 (2005) no. 1, pp. 47-81 | DOI | MR | Zbl

[39] Prajapat, Jyotshana; Tarantello, Gabriella On a class of elliptic problems in 2 : symmetry and uniqueness results, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 4, pp. 967-985 | MR | Zbl

[40] Troyanov, Marc Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry (Lecture Notes in Mathematics), Volume 1410, Springer, 1989, pp. 296-306 | DOI | MR | Zbl

[41] Yang, Yisong The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., Volume 186 (1997) no. 1, pp. 199-218 | MR | Zbl

[42] Yang, Yisong Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer, 2001, xxiv+553 pages | Zbl

Cité par Sources :