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AUTONOMOUS LIMIT OF THE 4-DIMENSIONAL
PAINLEVï¿½-TYPE EQUATIONS AND

DEGENERATION OF CURVES OF GENUS TWO

by Akane NAKAMURA (*)

Abstract. — In recent studies, 4-dimensional analogs of the Painlevï¿½ equa-
tions were listed and there are 40 types. The aim of the present paper is to geo-
metrically characterize these 40 Painlevï¿½-type equations. For this purpose, we
study the autonomous limit of these equations and degeneration of their spectral
curves. The spectral curves are 2-parameter families of genus two curves and their
generic degeneration are one of the types classified by Namikawa and Ueno. Liu’s
algorithm enables us to find the degeneration types of the spectral curves for our
40 types of integrable systems. This result is analogous to the following fact; the
families of the spectral curves of the autonomous 2-dimensional Painlevï¿½ equa-
tions PI, PII, PIV, PD8

III , PD7
III , PD6

III , PV and PVI define elliptic surfaces with the
singular fiber at H = ∞ of the Dynkin types E(1)

8 , E(1)
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Résumé. — Dans des ï¿½tudes rï¿½centes, des analogues en 4 dimensions
des ï¿½quations de Painlevï¿½ ont ï¿½tï¿½ rï¿½pertoriï¿½s et il existe 40 types.
Le but du prï¿½sent article est de caractï¿½riser gï¿½omï¿½triquement ces 40
ï¿½quations de type Painlevï¿½. A cet effet, nous ï¿½tudions la limite auto-
nome de ces ï¿½quations et la dï¿½gï¿½nï¿½rescence de leurs courbes spectrales.
Les courbes spectrales sont des familles ï¿½ 2 paramï¿½tres de courbes de genre
deux et leur dï¿½gï¿½nï¿½rescences gï¿½nï¿½riques sont d’un des types classï¿½s
par Namikawa et Ueno. L’algorithme de Liu nous permet de trouver le types de
dï¿½gï¿½nï¿½rescence de courbes spectrales pour nos 40 types de systï¿½mes
intï¿½grables. Ce rï¿½sultat est analogue au fait suivant; les familles des courbes
spectrales des ï¿½quations de Painlevï¿½ autonomes bidimensionnelles PI, PII,
PIV, PD8

III , PD7
III , PD6

III , PV et PVI dï¿½finissent des surfaces elliptiques avec une
fibre singuliï¿½re ï¿½ H =∞ des types Dynkin E(1)

8 , E(1)
7 , E(1)

6 , D(1)
8 , D(1)

7 , D(1)
6 ,

D
(1)
5 et D(1)

4 , respectivement.

1. Introduction

The Painlevï¿½ equations are 8 types of nonlinear second-order ordi-
nary differential equations with the Painlevï¿½ property(1) which are not
solvable by elementary functions. The Painlevï¿½ equations have various
interesting features; they can be derived from isomonodromic deformation
of certain linear equations, they are linked by degeneration process, they
have affine Weyl group symmetries, they can be derived from reductions of
soliton equations, and they are equivalent to nonautonomous Hamiltonian
systems. Furthermore, their autonomous limits are integrable systems solv-
able by elliptic functions. We call such systems the autonomous Painlevï¿½
equations.
Various generalization of the Painlevï¿½ equations have been proposed

by focusing on one of the features of the Painlevï¿½ equations. The main
two directions of generalizations are higher-dimensional analogs and differ-
ence analogs. We treat the 4-dimensional analogs in this paper. The eight
types of the Painlevï¿½ equations are called the 2-dimensional Painlevï¿½
equations in this context, and the higher-dimensional analogs are 2n-dimensional
Painlevï¿½-type equations (n = 1, 2, . . . ).
Recently, classification theory of linear equations up to Katz’s opera-

tions have been developed. Since these operations of linear equations leave
isomonodromic deformation equations invariant [12], we can make use of
classification theory of linear equations to classify the Painlevï¿½-type

(1)A differential equation is said to have the Painlevï¿½ property if its general solution
has no critical singularities that depend on the initial values.
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THE 4-DIMENSIONAL PAINLEVÏ¿½-TYPE EQUATIONS 847

equations(2) . As for the 4-dimensional case, classification and derivation
of the Painlevï¿½-type equations from isomonodromic deformation have
been completed [21, 23, 22, 25, 51]. According to their result, there are 40
types of 4-dimensional Painlevï¿½-type equations. Among these 40 types
of equations, some of the equations coincide with equations already known
from different contexts. Such well-known equations along with new equa-
tions are all organized in a unified way: isomonodromic deformation and
degeneration.
There are problems to their classification. They say that there are “at

most” 40 types of 4-dimensional Painlevï¿½-type equations. There is no
guarantee that these 40 equations are actually distinct. Some Hamiltonians
of these equations look very similar to each other. Since the appearance of
Hamiltonians or equations may change significantly by changes of variables,
we can not classify equations by their appearances. Intrinsic or geometrical
studies of these equations may be necessary to distinguish the Painlevï¿½-
type equations. The aim of this paper is to initiate geometrical studies
of 4-dimensional Painlevï¿½-type equations starting from these concrete
equations.
Let us first review how the 2-dimensional Painlevï¿½ equations are ge-

ometrically classified. Okamoto initiated the studies of the space of initial
conditions of the Painlevï¿½ equations [42]. He constructed the rational
surfaces, whose points correspond to the germs of the meromorphic so-
lutions of the Painlevï¿½ equations by resolving the singularities of the
differential equations. Sakai extracted the key features of the spaces of
initial conditions and classified what he calls the “generalized Halphen
surfaces” with such features [49]. The classification of the 2-dimensional
difference Painlevï¿½ equations correspond to the classification of gener-
alized Halphen surfaces, and 8 types of such surfaces give the Painlevï¿½
differential equations. Such surfaces are distinguished by their anticanoni-
cal divisors. For the autonomous 2-dimensional Painlevï¿½ equations, the
spaces of initial conditions are elliptic surfaces and their anticanonical di-
visors are one of the Kodaira types [50]. We can say that the 2-dimensional
autonomous Painlevï¿½ equations are characterized or distinguished by the
corresponding Kodaira types.

(2) In this paper we use the term the Painlevï¿½-type equations synonymously with
isomonodromic deformation equations, despite the fact that Painlevï¿½ has never inves-
tigated isomonodromy. We prefer to use the term the Painlevï¿½-type equations rather
than the Schlesinger-type equations in order to express that our aim is to understand
various higher-dimensional analogs of the Painlevï¿½ equations.
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848 Akane NAKAMURA

It is expected to carry out a similar study for the 4-dimensional Painlevï¿½-
type equations. However, a straightforward generalization of the
2-dimensional cases seems to contain many difficulties. One of the reason is
that the classification of 4-folds is much more difficult than that of surfaces.
We want to avoid facing such difficulties by considering the spectral curves
of the autonomous limit of these Painlevï¿½-type equations. While the ge-
ometry is made simple considerably in the autonomous limit, important
characteristics of the original non-autonomous equations are retained.
Integrable systems are Hamiltonian systems on symplectic manifolds

(M2n, ω,H) with n functions f1 = H, . . . , fn in involution {fi, fj} = 0. The
regular level sets of the momentum map F = (f1, . . . , fn) : M → Cn are the
Liouville tori. The image under F of critical points are called the bifurcation
diagram, and it is studied for characterizing integrable systems [6]. How-
ever, studying the bifurcation diagrams may become complicated for higher
dimensional cases. When an integrable system is expressed in a Lax form,
it is not difficult to determine the discriminant locus of spectral curves. We
can often find correspondence between the bifurcation diagrams and the
discriminant locus of spectral curves [5]. Therefore, we mainly study the
degeneration of spectral curves in this paper.
Let {Hi}i=1,...,g be a set of functionally independent invariants of an

integrable system (M,ω,H).
In the 2-dimensional case, the following holds.
Theorem (cf. Theorem 4.1). — Each autonomous 2-dimensional Pain-

levï¿½ equation defines an elliptic surface, whose general fibers are spectral
curves of the system. The Kodaira types of the singular fibers at HJ =∞
are listed as follows.

Hamiltonian HVI HV HIII(D6) HIII(D7) HIII(D8) HIV HII HI

Kodaira type I∗
0 I∗

1 I∗
2 I∗

3 I∗
4 IV∗ III∗ II∗

Dynkin type D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8 E

(1)
6 E

(1)
7 E

(1)
8

Table 1.1. The singular fiber at HJ = ∞ of spectral curve fibrations
of the autonomous 2-dimensional Painlevï¿½ equations.

It is well-known that the Dynkin’s types in the above diagram appear
in the configurations of vertical leaves of the Okamoto’s spaces of initial
conditions [42].

For the autonomous 4-dimensional Painlevï¿½-type equations, general
invariant sets

⋂
i=1,2 H

−1
i (hi) are the 2-dimensional Liouville tori. Such Li-

ouville tori are the Jacobian varieties of the corresponding spectral curves.
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Instead of studying the degenerations of 2-dimensional Liouville tori, we
study the degenerations of the spectral curves of genus 2. As an analogy
of the above theorem for the 2-dimensional Painlevï¿½ equations, we find
the following:

Main theorem (cf. Theorem 4.5). — The spectral curves of the au-
tonomous 4-dimensional Painlevï¿½-type equations have the following types
of generic degenerations as in Table 4.6 in Section 4.

The table shows, for example, that generic degeneration of the spec-
tral curves of the autonomous matrix Painlevï¿½ equations HMat

VI , HMat
V ,

HMat
III(D6),HMat

III(D7) andHMat
III(D8) are I0 − I∗0 − 1, I0 − I∗1 − 1, I0 − I∗2 − 1, I0 − I∗3 − 1

and I0 − I∗4 − 1 in Namikawa–Ueno’s notation. Those of HMat
IV , HMat

II and
HMat

I are I0 − IV∗ − 1, I0 − III∗ − 1 and I0 − II∗ − 1. Therefore, generic de-
generation of the spectral curves of the autonomous 4-dimensional matrix
Painlevï¿½ equations have one additional elliptic curve to those counter-
part of the 2-dimensional systems.

There are various ways to have integrable systems in general. To iden-
tify equations from different origins is often not easy; equations may change
their appearance by transformations. It is hoped that such intrinsic geomet-
rical studies will be helpful for such identification problems. One possible
approach using the degeneration of the Painlevï¿½ divisors(3) is proposed
in [39]. This direction will be investigated further in a forthcoming paper.
In recent years, Rains and his collaborators [43, 46, 48] brought about

crucial developments in the Painlevï¿½-type (difference) equations using
noncommutative geometry. In their theory, the anticanonical divisors of
rational surfaces, determining the Poisson structures, are one of the key
ingredients. The relation between the anticanonical divisors in their work
and the generic degeneration of spectral curves will be explained in future
work.

Contents

The organization of this paper is as follows. In Section 2, after sum-
marizing preliminaries, we review the classification of the 4-dimensional
Painlevï¿½-type equations. In Section 3, we consider the autonomous limit
of these 40 equations. In Section 4, we study the generic degeneration of

(3)The Painlevï¿½ divisors introduced by Adler–Moerbeke[3, 4] compactify affine Liou-
ville tori.

TOME 69 (2019), FASCICULE 2
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the spectral curves to characterize these integrable systems. In Appen-
dix A.1, we list integrals of the autonomous 4-dimensional Painlevï¿½-type
equations. In Appendix A.3, we list the dual graph of the singular fibers
appeared in our table.

2. Classification of 4-dimensional Painlevï¿½-type
equations

In this section, we review some of the recent progresses in classification
of the 4-dimensional Painlevï¿½-type equations, and introduce notation we
use in this paper. The contents of this section is a summary of the other
papers [21, 23, 22, 25, 51] and references therein.
The Painlevï¿½ equations were found by Painlevï¿½ through his classifi-

cation of the second order algebraic differential equations with the “Painlevï¿½
property”. However, a straightforward application of Painlevï¿½’s classi-
fication method to higher-dimensional cases seems to face difficulties(4) .
Therefore other properties which characterize the Painlevï¿½ equations be-
come important for further generalization. The Painlevï¿½ equations can
be expressed as Hamilton systems [37, 42].

dq
dt = ∂HJ

∂p
,

dp
dt = −∂HJ

∂q
.

(4)Works of Chazy [7] and Cosgrove [8, 9] are famous in this direction.
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We list the Hamiltonian functions for all the 2-dimensional Painlevï¿½
equations for later use.

t(t− 1)HVI

(
α, β

γ, ε
; t; q, p

)
= q(q − 1)(q − t)p2

+ {εq(q − 1)− (2α+ β + γ + ε)q(q − t)
+γ(q − 1)(q − t)} p+ α(α+ β)(q − t),

tHV

(
α, β

γ
; t; q, p

)
= p(p+ t)q(q − 1) + βpq + γp− (α+ γ)tq,

HIV (α, β; t; q, p) = pq(p− q − t) + βp+ αq,

tHIII(D6) (α, β; t; q, p) = p2q2 − (q2 − βq − t)p− αq,

tHIII(D7) (α; t; q, p) = p2q2 + αqp+ tp+ q,

tHIII(D8) (t; q, p) = p2q2 + qp− q − t

q
,

HII (α; t; q, p) = p2 − (q2 + t)p− αq,

HI (t; q, p) = p2 − q3 − tq.

The Painlevï¿½ equations have another important aspect initiated by
R. Fuchs [11]. Namely, they can be derived from (generalized) isomon-
odromic deformation of linear equations [19].
Furthermore, these eight types of the Painlevï¿½ equations are linked

by processes called degenerations. In fact, HI, · · · , HV can be derived from
HVI through degenerations.

HVI
�� HV

��

��

HIII(D6)

HIV

��

����

HIII(D7)

HII
���� HI

�� HIII(D8)

2.1. The classification of Fuchsian equations and isomonodromic
deformation

If we fix the number of accessory parameters and identify the linear
equations that transform into one another by Katz’s operations (addition
and middle convolutions) [10, 20], we have only finite types of linear equa-
tions. We explain the notion of spectral type used in this paper. We follow
the notion used in Oshima [44] for Fuchsian linear equations, Kawakami–
Nakamura–Sakai [25] for unramified linear equations and Kawakami [21]
for ramified equations. For the classification of linear equations, we need

TOME 69 (2019), FASCICULE 2



852 Akane NAKAMURA

to discern the types of linear equations. We review the local normal forms
of linear equations, and introduce symbols to express such data. We study
linear systems of first-order equations

(2.1) dY
dx = A(x)Y.

We first consider the Fuchsian case where

A(x) =
n∑

i=1

Ai

x− ti
.

We assume that each matrix Ai is diagonalizable. The equation can be
transformed into

dŶ (x)
dx = T (i)

x− ti
Ŷ (x), T (i) : diangonal

by a local transformation Y = P (x)Ŷ . We express the multiplicity of the
eigenvalues by a non-increasing sequence of numbers.

Example 2.1. — When T (i) = diag(a, a, a, b, b, c), we write the multiplic-
ity as 321.

Collecting such multiplicity data for all the singular points, the spectral
type of the linear equation is defined as the n+ 1-tuples of partitions of m,

m1
1m

1
2 . . .m

1
l1︸ ︷︷ ︸,m2

1 . . .m
2
l2︸ ︷︷ ︸, . . . ,mn

1 . . .m
n
ln︸ ︷︷ ︸,m∞1 . . .m∞l∞︸ ︷︷ ︸, li∑

j=1
mi

j = m for 1 6 i 6 n or i =∞

 ,

where m is the size of matrices.

Theorem 2.2 (Kostov [32]). — Irreducible Fuchsian equations with two
accessory parameters result in one of the four types by successive additions
and middle convolutions:

• 11, 11, 11, 11
• 111, 111, 111 22, 1111, 1111 33, 222, 111111.

Remark 2.3. — Note that only the equation of the type 11, 11, 11, 11 has
four singular points and the other three types have three singular points.
The three of the singular points can be fixed at 0, 1,∞ by a Möbius trans-
formation. Thus the three equations with only three singularities do not
admit the continuous deformation of position of singularities. Among these
4 types, only linear equation of type 11, 11, 11, 11 admit isomonodromic
deformation, and it gives the sixth Painlevï¿½ equation HVI.

ANNALES DE L’INSTITUT FOURIER
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The Katz’s operations are important for studying Painlevï¿½-type equa-
tions, because the following theorem holds.

Theorem 2.4 (Haraoka–Filipuk [12]). — Isomonodromic deformation
equations are invariant under Katz’s operations.

Remark 2.5. — Katz’s operations that do not change the type of the lin-
ear equation induce the corresponding Bï¿½cklund transformations on the
isomonodromic deformation equation. In fact, all of the D(1)

4 -type affine
Weyl group symmetry that PVI possesses can be derived from Katz’s op-
erations and the Schlesinger transformations on the linear equations [38].

2.2. The classification of Fuchsian linear equations and
isomonodromic deformation

The starting point of the classification of the 4-dimensional Painlevï¿½-
type equation is the following result.

Theorem 2.6 (Oshima [44]). — Irreducible Fuchsian equations with
four accessory parameters result in one of the following 13 types by succes-
sive additions and middle convolutions(5) :

• 11, 11, 11, 11, 11
• 21, 21, 111, 111 31, 22, 22, 1111 22, 22, 22, 211
• 211, 1111, 1111 221, 221, 11111 32, 11111, 11111

222, 222, 2211 33, 2211, 111111 44, 2222, 22211
44, 332, 11111111 55, 3331, 22222 66, 444, 2222211.

Remark 2.7. — Note that the equation of type 11, 11, 11, 11, 11 has five
singular points, and the next three types have four singular points, and
the rest nine types have three singular points. The equation of type
11, 11, 11, 11, 11 has two singularities to deform after fixing three of the
singularities to 0, 1,∞. The next three types of equations with four singu-
larities have one singularity to deform after fixing three of the singularities
to 0, 1,∞. The nine equations with only three singularities do not admit
continuous isomonodromic deformation.

The invariance of the isomonodromic deformation equation by Katz’
operations is guaranteed by Haraoka–Filipuk [12]. Sakai derived explicit
Hamiltonians of the above four equations with four accessory parameters.

(5)These operations are called the Katz’ operations [10, 20]

TOME 69 (2019), FASCICULE 2
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Theorem 2.8 (Sakai [51]). — There are four 4-dimensional Painlevï¿½-
type equations governed by Fuchsian equations.

• The Garnier system in two variables (11,11,11,11,11).
• The Fuji–Suzuki system (21,21,111, 111).
• The Sasano system (31,22,22,1111).
• The Sixth Matrix Painlevï¿½ equation of size 2 (22,22,22,211).

In this paper, we call these 4 equations derived from Fuchsian equation
the “source equations”.

2.3. Degeneration scheme of 4-dimensional Painlevï¿½-type
equations

Other 4-dimensional Painlevï¿½-type equations we consider are derived
from these source equations by degeneration process. The degenerations
corresponding to unramified linear equations are treated in Kawakami–
Nakamura–Sakai [25]. The degenerations corresponding to ramified linear
equations are treated in Kawakami [21, 23, 22]. There are 40 types of the
4-dimensional Painlevï¿½-type equations with 16 partial differential equa-
tions corresponding to the differential Garnier equations and 24 ordinary
differential equations. Among 24 ordinary differential equations, 8 types
are the matrix Painlevï¿½ equations. According to [45], the 7 types with
the source equation HD6

Ss correspond to the symmetric q-difference Garnier
equations, and the 9 types with the source equation HA5

FS correspond to the
nonsymmetric q-difference Garnier equations in Rains [46].
As shown in Diagram 2.2 [22], there are 4 series of degeneration diagram

corresponding to 4 “source equations”. Explicit forms of the Hamiltonians
and the Lax pairs can be found in [21, 23, 22, 25].

Remark 2.9. — The names of these Hamiltonians are temporal. As
Sakai [49] labeled the 2-dimensional systems by the types of the anticanon-
ical divisors of the compactified spaces of initial conditions, it may be nat-
ural to label the 4-dimensional systems from geometrical characterization.

Remark 2.10. — While Kawakami–Nakamura–Sakai [25] studied the de-
generation from Fuchsian types, the theory of unramified non-Fuchsian
linear equations has developed. Hiroe and Oshima classified all the un-
ramified linear equations with 4 accessory parameters up to some trans-
formations [14, Theorem 3.29]. Yamakawa proved that analogous theorem
of Haraoka–Filpuk [12] holds for unramified non-Fuchsian equations [57].

ANNALES DE L’INSTITUT FOURIER
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Fuchsian Non-Fuchsian #

PDE H1+1+1+1+1
Gar H2+1+1+1

Gar H3+1+1
Gar H2+2+1

Gar

H
2+ 3

2 +1
Gar H

3
2 + 3

2 +1
Gar H

5
2 +2

Gar

H4+1
Gar H3+2

Gar H5
Gar H

7
2 +1

Gar H
3
2 +3

Gar 16

Garnier H
3
2 +1+1+1

Gar H
5
2 +1+1

Gar H
5
2 + 3

2
Gar H

9
2

Gar

ODE HA5
FS HA4

FS HA3
FS HA5

NY HA4
NY 9

H
2+ 3

2
Suz H

2+ 4
3

KFs H
3
2 + 4

3
KFs H

4
3 + 4

3
KFs

HD6
Ss HD5

Ss HD4
Ss H

2+ 3
2

KSs 7

H
2+ 4

3
KSs H

2+ 5
4

KSs H
3
2 + 5

4
KSs

Matrix ODE HMat
VI HMat

V HMat
III(D6) HMat

III(D7) H
Mat
III(D8) 8

HMat
IV HMat

II HMat
I

Table 2.1. The list of the 4-dimensional Painlevï¿½-type equations

H1+1+1+1+1
Gar

HA5
FS

HD6
Ss

//

//

JJ

��

//

AA

H2+1+1+1
Gar

HA4
FS

HA5
NY

HD5
Ss

AA

//

��

LL

��

//

//

KK

//

CC

H3+1+1
Gar

H2+2+1
Gar

H
3
2

+1+1+1

Gar

HA3
FS

HA4
NY

HD4
Ss

77

))

��

CC

77

��

55

''

JJ

II

//

JJ

//

KK

H4+1
Gar

H3+2
Gar

H
5
2

+1+1

Gar

H
2+ 3

2
+1

Gar

H
2+ 3

2
Suz

H
2+ 3

2
KSs

66

((

CC

((

��

CC

((

CC

66

((

//

KK

//

H5
Gar

H
7
2

+1

Gar

H
3+ 3

2
Gar

H
5
2

+2

Gar

H
3
2

+ 3
2

+1

Gar

H
2+ 4

3
KFS

H
3
2

+ 3
2

KSs

��//??

��

GG

//??

//

//

H
9
2
Gar

H
5
2

+ 3
2

Gar

H
3
2

+ 4
3

KFS

H
2+ 5

4
KSs

//

//

H
4
3

+ 4
3

KFS

H
3
2

+ 5
4

KSs

HVI
Mat

// HV
Mat

77

''

H
III(D6)
Mat

H IV
Mat

//

��//

H
III(D7)
Mat

H II
Mat

//

��//

H
III(D8)
Mat

H I
Mat

Diagram 2.2.

By comparing the results, all the unramified equations with 4 accessory
parameters come from the 4 Fuchsian source equations by degenerations,
and the list of 4-dimensional Painlevï¿½-type equations corresponding to
the unramified linear equations is complete. To the author’s knowledge, it
is still an open question whether linear equations of ramified type with 4
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accessory parameters can be reduce to this list of 40 types. Rains’ work [47]
might be conclusive in this direction.

Remark 2.11. — According to the classification of the Lax pairs by
Rains [47], there are 40 types of 4-dimensional families which admit contin-
uous deformations, comprising of 16 differential Garnier equations, 7 sym-
metric q-difference Garnier equations, 9 nonsymmetric q-Garnier equations
and 8 matrix Painlevï¿½ equations. The numbers match with Kawakami’s
list [22].

Remark 2.12. — Some of these 40 equations look similar to each other.
For instance, H. Chiba pointed out that H4+1

Gar,t1
and H̃Mat

II look almost the
same after a symplectic transformations.(6)

H4+1
Gar,t1

= p2
1 −

(
q2

1 + t1
)
p1 + κ1q1 + p1p2 + p2q2 (q1 − q2 + t2) + θ0q2,

H̃Mat
II = p2

1 −
(
q2

1
4 + t

)
p1 −

(
θ0 + κ2

2

)
q1 + p1p2 + p2q2 (q1 − q2) + θ0q2.

One of the key motivations of the present paper is to geometrically dis-
tinguish such cases. We will show in Section 4 that the types of generic
degeneration of spectral curves are different(7) .

Remark 2.13. — Some of the equations in the list, such as the Noumi–
Yamada systems, had been known from different context. See [25] for the
references for other derivations.

3. Autonomous limit of Painlevï¿½ type equations

In the previous section, we saw that there are 40 types of 4-dimensional
Painlevï¿½-type equations. In this section, we consider the autonomous
limit of these 40 equations by taking the isospectral limit of the isomon-
odromic deformation equations. Using the Lax pair, we obtain two func-
tionally independent invariants for each system. Therefore, the autonomous
limit of 4-dimensional Painlevï¿½-type equations are integrable in Liou-
ville’s sense.

(6)The following transformation to the HMat
II in [25] yields H̃Mat

II : p1 → 2p1, q1 →
q1
2 , p2 → −q2, q2 → p2, κ1 → −θ0 − κ2.

(7) It is hoped to prove a theorem stating “If the types of generic degeneration of the
spectral curves are different, the corresponding space of initial conditions are not iso-
morphic, or, do not admit biregular map from one another.”
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3.1. Integrable system and Lax pair representation

Let us recall the definition of integrability in Liouville’s sense. A Hamil-
tonian system is a triple (M,ω,H), where (M,ω) is a symplectic manifold
and H is a Hamiltonian function on M ; ιXH

ω = dH. A function f Pois-
son commutes with the Hamiltonian H, that is {f,H} = 0, if and only if
f is constant along integrable curve of the Hamiltonian vector field XH .
Such a function f is called a conserved quantity or first integral. A Hamil-
tonian system is (completely) integrable in Liouville’s sense if it possesses
n := 1

2 dimM independent integrals of motion, f1 = H, f2, . . . , fn, which
are pairwise in involution with respect to the Poisson bracket; {fi, fj} = 0
for all i, j. This definition of integrability is motivated by Liouville’s theo-
rem. Let (M,ω,H) be a real integrable system of dimension 2n with integral
of motion f1, . . . , fn, and let c ∈ Rn be a regular value of f = (f1, . . . , fn).
Liouville’s theorem states that any compact component of the level set
f−1(c) is a torus. The complex Liouville theorem is also known [4].
Many integrable systems are known to have Lax pair expressions:

dA(x)
dt + [A(x), B(x)] = 0,(3.1)

where A(x) and B(x) are m by m matrices and x is a spectral parameter.
From this differential equation, tr

(
A(x)k

)
are conserved quantities of the

system:

d
dt tr

(
A(x)k

)
= tr

(
k [B(x), A(x)]A(x)k−1) = 0.

Therefore, the eigenvalues of A(x) are all conserved quantities since the co-
efficients of the characteristic polynomial are expressible in terms of these
traces. In fact, the Lax pair is equivalent to the following isospectral prob-
lem: 

A(x) = Y A0(x)Y −1,

dY
dt = B(x)Y,

where A0(x) is a matrix satisfying dA0(x)
dt = 0. The curve defined by the

characteristic polynomial is called the spectral curve:

det (yIm −A(x)) = 0.
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3.2. Isomonodromic deformation to isospectral deformation

The isomonodromic problems have the following forms:
∂Y

∂x
= A(x, t)Y,

∂Y

∂t
= B(x, t)Y,

and the deformation equation is expressed as
∂A(x, t)
∂t

− ∂B(x, t)
∂x

+ [A(x, t), B(x, t)] = 0.(3.2)

We find the similarities in isospectral and isomonodromic problems; the
only difference is the existence of the term ∂B

∂x in isomonodromic deforma-
tion equation. In fact, we can consider isospectral problems as the special
limit of isomonodromic problem with a parameter δ. We restate the isomon-
odromic problem as follows(8) :

δ
∂Y

dx = A(x, t̃)Y,

∂Y

∂t
= B(x, t̃)Y,

where t̃ is a variable which satisfies dt̃
dt = δ. The integrability condition

∂2Y
∂x∂t = ∂2Y

∂t∂x is equivalent to the following:

∂A(x, t̃)
∂t

− δ ∂B(x, t̃)
∂x

+ [A(x, t̃), B(x, t̃)] = 0.(3.3)

The case when δ = 1 is the usual one(9) . When δ = 0, the term δ ∂B
∂x drops

off from the deformation equation and we have a Lax pair in a narrow
sense(10) . The deformation equation 3.2 with δ is solved by a Hamiltonian
H(δ). When δ = 1, the Hamiltonian H(1) is equal to the original Hamilton-
ian of the isomonodromic problem. Therefore, H(δ) is a slight modification
of the Hamiltonian. When δ = 0, H(0) is a conserved quantity of the sys-
tem.

(8)Here δ plays the role of λ in Deligne’s lambda connections [52]. In some literature
such as Levin–Olshanetsky–Zotov [34], it is customary to use κ instead of δ.
(9)Adams–Harnad–Hurtubise [2] and Adams–Harnad–Previato [1] studied finite dimen-
sional integrable systems by embedding them into rational coadjoint orbits of loop al-
gebras. Harnad [13] further generalized their theory as applicable to the isomonodromic
systems. Such nonautonomous isomonodromic systems are obtained by identifying the
time flows of the integrable system with parameters determining the moment map.
(10) In other words, we mean a Lax pair in the sense of integrable systems. The isomon-
odromic problems are often called as Lax pairs, but they do not give first integrals.
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Remark 3.1. — Isomonodromic equations are flows on moduli space of
connections [18]. Isospectral limit correspond to λ→ 0 limit of moduli of λ-
connections [52] to moduli of Higgs bundles. The Painlevï¿½-type equations
become the Hitchin systems [15] at the limit.

Taking the isospectral limit of 8 types of 2-dimensional Painlevï¿½ equa-
tions, we can state the following classically-known result.

Proposition 3.2. — As the autonomous limits of 2-dimensional
Painlevï¿½ equations, we obtain 8 types of integrable systems with a first
integral for each system(11) .

Proof. — We take the second Painlevï¿½ equation as an example to
demonstrate a proof. Proofs of the other equations are similar.

δ
∂Y

∂x
= A(x, t̃)Y, A(x, t̃) =

(
A(−3)
∞ (t̃)x2 +A(−2)

∞ (t̃)x+A(−1)
∞ (t̃)

)
,

∂Y

∂t
= B(x, t̃)Y, B(x, t̃) =

(
A(−3)
∞ (t̃)x+B1(t̃)

)
,

where

Â(−3)
∞ (t̃) =

(
0 0
0 1

)
, Â(−2)

∞ (t̃) =
(

0 1
−p+ q2 + t̃ 0

)
,

Â(−1)
∞ (t̃) =

(
−p+ q2 + t̃ q

(p− q2 − t̃)q − κ2 p− q2

)
, B̂1(t̃) =

(
q 1

p− q2 − t̃ 0

)
,

A(−i)
∞ = U−1Â(−i)

∞ U for i = 1, 2, 3, B1 = U−1B̂1U, U =
(
u 0
0 1

)
.

The deformation equation (3.3) is equivalent to the following differential
equations.

dq
dt = 2p− q2 − t̃, dp

dt = 2pq + δ − κ1,
du
dt = 0.

The first two equations are equivalent to the Hamiltonian system
dq
dt = ∂HII(δ)

∂p
,

dp
dt = −∂HII(δ)

∂q
,

with the Hamiltonian HII(δ) := p2 − (q2 + t̃)p+ (κ1 − δ)q. When δ = 1, it
is the usual Hamiltonian of HII. Moreover, when δ 6= 0, we can normalize
to the δ = 1 case. Taking the limit δ → 0, we obtain an autonomous
system with a Hamiltonian HII(0) = p2 − (q2 + t̃)p + κ1q. Since it is an
autonomous system, the Hamiltonian is a first integral. The dimension of

(11)These first integrals are the autonomous Hamiltonians. They are rational in the
phase variables q, p.
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the phase space is two, the number of first integrals is half of the dimension.
Therefore, the autonomous second Painlevï¿½ equation is integrable in
Liouville’s sense. The Lax pair(12) and the spectral curve of the autonomous
second Painlevï¿½ equation are

dA(x)
dt + [A(x), B(x)] = 0,

det(yI −A(x)) = y2 − (x2 + t̃)y − κ1x−HII(0) = 0. �

Remark 3.3. — For the 2-dimensional cases, parameters of the Painlevï¿½
equations can be thought as roots of affine root systems, and δ corresponds
to the null root [49, 50].

3.3. The autonomous limit of the 4-dimensional
Painlevï¿½-type equations

We can also consider such autonomous limit for higher dimensional
Painlevï¿½-type equations. From the coefficients of the spectral curves,
we obtain first integrals.

Theorem 3.4. — As the autonomous limits of 4-dimensional Painlevï¿½-
type equations, we obtain 40 types of integrable systems with two function-
ally independent first integrals for each system(13) .

Proof. — One of the simplest 4-dimensional Painlevï¿½-type equation is
the first matrix Painlevï¿½ equation [21]. The linear equation is given by

dA(x)
dt + [A(x), B(x)] = 0,

A(x) =
(
A0x

2 +A1x+A2
)
, B(x) = A0x+B1.

where

A0 =
(
O2 I2
O2 O2

)
, A1 =

(
O2 Q

I2 O2

)
, A2 =

(
−P Q2 + t̃I2
−Q P

)
,

B1 =
(
O2 2Q
I2 O2

)
, O2 =

(
0 0
0 0

)
, I2 =

(
1 0
0 1

)
,

Q =
(

q1 u

−q2/u q1

)
, P =

(
p1/2 −p2u

(p2q2 − κ2)/u p1/2

)
.

(12)We rewrite A(x) = A(x, t̃) and B(x) = B(x, t̃).
(13)These invariants are rational in the phase variables q1, p1, q2, p2.
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The spectral curve is defined by the characteristic polynomial of the matrix
A(x);

det (yI4 −A(x)) = y4 −
(
2x3 + 2t̃x+ h

)
y2 + x6

+ 2t̃x4 + hx3 + t̃2x2 +
(
t̃h− κ2

2
)
x+ g.

The explicit forms of h and g are

h := HMat
I = tr

(
P 2 −Q3 − t̃Q

)
= −2p2 (p2q2 − κ2) + p2

1
2 − 2q1t̃− 2q1

(
q2

1 − q2
)

+ 4q1q2,

g := GMat
I

= q2
(
p1p2 + 3q2

1 − q2 + t̃
) 2 − κ2p1

(
p1p2 + 3q2

1 − q2 + t̃
)
− 2κ2

2q1.

Since h and g are coefficient of the spectral curve, they are invariants of
the autonomous system. We can also check that h and g are conserved by
direct computation:

ḣ = Xhh = {h, h} = 0, ġ = Xhg = {g, h} = 0,

where Xh is the Hamiltonian vector field associated to the Hamiltonian h.
The Poisson bracket in the above equations is defined by

{F,G} :=
2∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
.

Since

rank


∂h

∂q1

∂h

∂p1

∂h

∂q2

∂h

∂p2
∂g

∂q1

∂g

∂p1

∂g

∂q2

∂g

∂p2

 = 2

for the general value of (q1, p1, q2, p2), we have two functionally independent
invariants of the system. Thus the autonomous Hamiltonian system with
the Hamiltonian HMat

I is integrable in Liouville’s sense.
From similar direct computations, we obtain the desired results for all

the rest of 4-dimensional Painlevï¿½-type equations. We list functions in
involution for the ramified types in Appendix A.1. These spectral curves
and conserved quantities can be calculated from the data in the papers [21,
23, 22, 25, 51]. The only troublesome part is to find appropriate modi-
fications of the Hamiltonians in the presence of δ. The other parts are
straightforward. �
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Remark 3.5. — It is an interesting problem to study the invariant sur-
faces defined by H−1(c1)∩G−1(c2) ⊂ C4 for c1, c2 ∈ C, where H and G are
functionally independent invariants of the system. As in the case of other
integrable systems [4], these Liouville tori can be completed into Abelian
surfaces by adjoining the Painlevï¿½ divisors [39].

4. Degeneration of spectral curves

This section is the main part of this paper.
We study generic degeneration of spectral curves of the autonomous 4-

dimensional Painlevï¿½-type equations, aiming to characterize these sys-
tems.

4.1. Genus 1 fibration and Tate’s algorithm

Before discussing the genus 2 cases, corresponding to the autonomous
limit of 4-dimensional Painlevï¿½-type equations, we discuss the genus 1
cases, corresponding to the autonomous 2-dimensional Painlevï¿½ equa-
tions.
Let us recall some of the basics we need. We can construct the Kodaira–

Nï¿½ron model of an elliptic curve E over A1 = Spec(C[h]). The possible
types of singular fibers of elliptic surfaces were classified by Kodaira [30, 31].
Tate’s algorithm provides a way to determine the Kodaira type of singular
fibers without actually resolving the singularities [55].
We consider an elliptic curve E over A1 with a section in the Weierstrass

form:

(4.1) y2 = x3 + a(h)x+ b(h), a(h), b(h) ∈ C[h].

We may assume that for a(h) and b(h), the polynomials l(h) such that
l(h)4|a(h), l(h)6|b(h) are only constants. Otherwise, we may divide both
sides of the equations by l(h)6 and replace x, y by x/l(h)2, y/l(h)3 if nec-
essary. Let X1 be the affine surface defined by the equation (4.1):

X1 =
{

(x, y, h) ∈ A2 × A1 ∣∣ y2 = x3 + a(h)x+ b(h)
}
.

A general fiber of the projection ϕ1 : X1 → A1 is an affine part of an elliptic
curve. Let n be the minimal positive integer satisfying deg a(h) 6 4n and
deg b(h) 6 6n. Dividing equation (4.1) by h6n and replacing x̃ = x/h2n,
ỹ = y/h3n, H̃ = 1/h, we obtain the “∞-model”:

(4.2) ỹ2 = x̃3 + ā(H̃)x̃+ b̄(H̃), ā(H̃), b̄(H̃) ∈ C[H̃]

ANNALES DE L’INSTITUT FOURIER



THE 4-DIMENSIONAL PAINLEVÏ¿½-TYPE EQUATIONS 863

where ā(H̃) = a(h)/h4n, b̄(H̃) = b(h)/h6n are polynomials in h. Let X2
be the affine surface defined by equation (4.2). Let X1 and X2 be the
projectivized surfaces in P2×A1; Xi ⊂ P2×A1, ϕi : Xi → A1. We glue X1
and X2 by identifying (x, y, h) and (x̃, ỹ, H̃) by the equations above. Let
us denote the surface obtained this way by W . We call W the Weierstrass
model of the elliptic curve (4.1). The surface W has a morphism φ : W →
P1 = A1 ∪ A1. After the minimal resolution of the singular points of W ,
we obtain a nonsingular surface X. This nonsingular projective surface
X together with the fibration φ : X → P1 is called the Kodaira–Nï¿½ron
model of the elliptic curve E over A1.
The singular fibers of an elliptic surface are classified by Kodaira. The

Kodaira type of the elliptic surface X can be computed from the equa-
tion (4.1) using Tate’s algorithm. From the Weierstrass form equation (4.1),
we can associate two quantities: ∆ := 4a3 + 27b2, j := 4a3/∆. Here, ∆ is
the discriminant of the cubic x3 + a(h)x + b(h) and j is the j-invariant.
The Kodaira types of the singular fibers are determined as in Table 4.1 by
the order of ∆ and j which we denote ordv(∆), ordv(j).

Kodaira Dynkin ord(∆) ord(j) Kodaira Dynkin ord(∆) ord(j)
I0 - 0 >0 I∗

0 D
(1)
4 6 >0

Im A
(1)
m−1 m −m I∗

m D
(1)
4+m 6 + m −m

II - 2 >0 IV∗ E
(1)
6 8 >0

III A
(1)
1 3 >0 III∗ E

(1)
7 9 >0

IV A
(1)
2 4 >0 II∗ E

(1)
8 10 >0

Table 4.1. Tate’s algorithm and Kodaira types

4.1.1. Elliptic surface associated with the spectral curves

We introduce the main subject of this article, fibration of spectral curves
associated with integrable Lax equations. Let us consider a 2n-dimensional
integrable system with a Lax pair. The spectral curve is parametrized by
n functionally independent first integrals H1, . . . ,Hn.

Theorem 4.1. — Each elliptic surface whose general fiber is a spec-
tral curve of the autonomous 2-dimensional Painlevï¿½ equation has the
following singular fiber at H =∞.

Proof. — First, let us consider the first Painlevï¿½ equation
d2q

dt2 = 6q2 + t.
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Hamiltonian HVI HV HIII(D6) HIII(D7) HIII(D8) HIV HII HI

Kodaira I∗
0 I∗

1 I∗
2 I∗

3 I∗
4 IV∗ III∗ II∗

Dynkin D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8 E

(1)
6 E

(1)
7 E

(1)
8

Table 4.2. The singular fiber at H =∞ of spectral curve fibrations of
the autonomous 2-dimensional Painlevï¿½ equations.

The first Painlevï¿½ equation has a Lax form

∂A

∂t
− δ ∂B

∂x
+ [A,B] = 0,

A(x) =
(
−p x2 + qx+ q2 + t̃

x− q p

)
, B(x) =

(
0 x+ 2q
1 0

)
.

The spectral curve associated with its autonomous equation is defined by
det (yI2 −A(x)) = 0. This is equivalent to the following elliptic curve

y2 = x3 + t̃x+HI, HI = p2 − q3 + t̃q.

Let us write HI as h for short. We consider this curve as an elliptic curve
E over an affine line A1.
By changing variables as H̃ = h−1, x̃ = h−2x, ỹ = h−3y, obtain the

“∞-model”;

(4.3) ỹ2 = x̃3 + t̃H̃4x̃+ H̃5.

Thus we get the Weierstrass model ϕ : W → P1. The Kodaira–Nï¿½ron
model φ : X → P1 of elliptic curve E is obtained from W by the minimal
desingularization. The Kodaira-type of singular fiber at h = ∞ can be
computed using the equation (4.3). The discriminant of the cubic x̃3 +
t̃H̃4x̃+ H̃5 and the j-invariant are

∆ = 4
(
t̃H̃4

)3
+ 27

(
H̃5
)2

= H̃10
(

27 + 4t̃3H̃2
)
,

j = 4
∆

(
t̃H̃4

)3
= 4t̃3H̃12

H̃10(27 + 2t̃3H̃2)
= H̃2 4t̃3

27 + 4t̃3H̃2
.

Therefore, the order of zero of ∆ and j at H̃ = 0 is ord∞(∆) = 10,
ord∞(j) = 2. Using Tate’s algorithm, we find that the elliptic surface X →
P1 has the singular fiber of type II∗. In Dynkin’s notation, this fiber is of
type E(1)

8 . Let us express the other two zeros of the discriminant ∆ by h+
and h−. Since h+ and h− are both simple zeros of ∆, the Kodaira type of
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the fibers at h+ and h− are I1, from Tate’s algorithm.

2 4 6

3

5 4 3 2 1

The dual graph of the singular fiber of the Kodaira type II∗ (Dynkin type
E

(1)
8 ). The numbers in circles denote the multiplicities of components in

the reducible fibers.

Figure 4.1. The elliptic surface associated to the spectral curves of the
autonomous PI.

The spectral curves associated to other autonomous 2-dimensional
Painlevï¿½ equations are also curves of genus one for the general values
of the Hamiltonians. It is well known that curves with genus one can al-
ways be transformed into the Weierstrass normal form. With the aid of
computer programs, we can transform the spectral curves of autonomous
2-dimensional Painlevï¿½ equations into the Weierstrass normal form(14) .
Once the spectral curves are in the Weierstrass form, we can construct the
Weierstrass model. After the minimal desingularizations, we obtain the el-
liptic surfaces. We apply Tate’s algorithm to find the Kodaira types of the
singular fibers of these elliptic surfaces. �

Remark 4.2. — For the special values of the parameters and the constant
t̃ of the equations, the order of zeros or poles of ∆ and j changes so that
the Kodaira type changes. This corresponds to the situations when the
equations have the special solutions. In this paper, we concentrate on the
situations when the parameters are generic.

(14)Magma, Sage and Maple serve this purpose. Magma even calculates Kodaira types
from the equations.
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4.1.2. The Liouville tori and elliptic surface

For the autonomous 2-dimensional Painlevï¿½-type equations, the Liou-
ville tori are elliptic curves. Therefore, elliptic surfaces are naturally asso-
ciated to these integrable systems as Hamiltonian fibrations. We think of
the time variable t̃ as a constant.

Theorem 4.3. — Each elliptic surface associated to the autonomous
2-dimensional Painlevï¿½ equation as the Hamiltonian fibration has the
following singular fiber at h =∞.

Hamiltonian HVI HV HIII(D6) HIII(D7) HIII(D8) HIV HII HI

Kodaira type I∗
0 I∗

1 I∗
2 I∗

3 I∗
4 IV∗ III∗ II∗

Dynkin type D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8 E

(1)
6 E

(1)
7 E

(1)
8

Proof. — Let us first consider the easiest case: the first Painlevï¿½ equa-
tion. We write h = HI for short. The Hamiltonian of the first Painlevï¿½
equation is h = p2 − (q3 + t̃q). We view it as an elliptic curve over A1:{

(q, p, h) ∈ A2
(q,p) × A1

h

∣∣∣ p2 = q3 + t̃q + h
}
→ A1

h.

As in the case of the spectral curve fibration, we can construct the Kodaira–
Nï¿½ron model of the elliptic surface from the equation. Replacing q̃ =
q/h2, p̃ = p/h3, H̃ = 1/h, we obtain the ∞-model:

p̃2 = q̃3 + t̃H̃4q̃ + H̃5.

After compactification and the minimal desingularization, we obtain a reg-
ular elliptic surface whose general fiber at h is the elliptic curve defined by
p2 = q3 + t̃q + h. The discriminant and the j-invariant are:

∆ = 4
(
t̃H̃4

)3
+ 27

(
H̃5
)2

= H̃10(27 + 4t̃3H̃2),

j = 4(t̃H̃4)3

4H̃10(27 + 4t̃3H̃2)
= H̃2 t̃3

27 + 4t̃3H̃2
.

Thus the order of zero of ∆ and j at H̃ = 0 are ord∞(∆) = 10, ord∞(j) = 2.
It follows from Tate’s algorithm that the singular fiber at h = ∞ of the
autonomous PI-Hamiltonian fibration is of type II∗, or E(1)

8 in the Dynkin’s
notation.
We use computer programs to transform the other Hamiltonians into

the Weierstrass normal form. The rest of the proof is similar to the case
of HI. �
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The agreement of the singular fibers at h = ∞ of the spectral curve
fibrations and the Liouville torus fibrations is not a coincidence. Liouville
tori are related to the Jacobian varieties of the spectral curves, and tak-
ing the Jacobians are isomorphism in genus 1 cases by Abel’s theorem.
It might be natural to study the fibration of the Liouville tori, but we
have to deal with families of 2-dimensional Abelian varieties to study the
autonomous 4-dimensional Painlevï¿½-type equations. Therefore studying
the degeneration of the Liouville tori become harder compared to the cases
of the 2-dimensional Painlevï¿½ equations. On the other hand, we only
need to deal with genus 2 curves to study spectral curve fibrations of the
4-dimensional autonomous Painlevï¿½ type equations. Thus, studying the
degeneration of spectral curves is the main object of this paper.
Using blowing-up process, Okamoto resolved the singularities of

2-dimensional Painlevï¿½ differential equations and constructed the “spaces
of initial conditions” [42]. While he deals with singularities of the systems of
differential equations, we deal with spectral curves or Hamiltonians them-
selves for autonomous cases.
A space of initial conditions can be characterized by a pair (X,D) of a

rational surface X and the anti-canonical divisor D of X. Each irreducible
component of D is a rational curve and, in the case of the Painlevï¿½
equations, is called as a vertical leaf [49]. The intersection diagram of D is
given by that of the certain root lattice listed above.

Remark 4.4. — The spaces of initial conditions are also considered for
several cases of 4-dimensional Garnier systems and Noumi–Yamada sys-
tems [28, 29, 53, 54].

If we restrict our attention to the autonomous cases, the geometrical
studies are much simpler. The autonomous 2-dimensional Painlevï¿½ equa-
tions constructed from the spaces of initial conditions were studied by
Sakai [50].

4.2. Degeneration of genus 2 curves and Liu’s algorithm

We apply a similar method as in the previous subsection to the 40 types
of the autonomous 4-dimensional Painlevï¿½-type equations. While genus
of spectral curves of the autonomous 2-dimensional Painlevï¿½ equations is
1, genus of the autonomous 4-dimensional Painlevï¿½-type equations is 2.
As we use Tate’s algorithm to determine the fibers of the Nï¿½ron models
for the genus 1 curves, we use Liu’s algorithm for the genus 2 curves. While
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the spectral curves of the autonomous 2-dimensional Painlevï¿½ equations
are 1-parameter families parameterized by the Hamiltonian, those of the 4-
dimensional Painlevï¿½-type equations are 2-parameters families parame-
trized by two first integrals.
The spectral curve is now 2-parameter family of genus two curves

F (w, x, y, h1, h2) = 0,

where h1 and h2 are the functionally independent conserved quantities
of the system and F (w, x, y, h1, h2) ∈ C[w, x, y, h1, h2]. Let us consider a
generic line in Spec(C[h1, h2])

ah1 + bh2 = c,

where a, b, c ∈ C are generic. Upon replacing ã = −a/b, b̃ = c/b,

h2 = ãh1 + b̃

we obtain a one-parameter family of spectral curves

F̃ (w, x, y, h1) := F (w, x, y, h1, ãh1 + b̃) = 0.

We study degeneration of this one-parameter family of spectral curves as-
suming ã and b̃ are generic.

4.2.1. Liu’s algorithm

We summarize studies on the degeneration of genus two curves. The nu-
merical classification of the fibers in pencils of genus 2 curves are given
by Ogg [41] and Iitaka [17]. Namikawa and Ueno [40] completed the geo-
metrical classification of such fibers (and added a few missing types in [41]
and [17]). There are 120 types in Namikawa–Ueno’s classification, while
there are only 10 types in Kodaira’s classification of the fibers in pencils
of genus 1 curves(15) . Liu gave an algorithm similar to Tate’s algorithm
for genus 2 curves [35, 36]. Using Liu’s algorithm, we can determine the
Namikawa–Ueno type of singular fibers from explicit equations of pencils
of genus 2 hyperelliptic curves in the Weierstrass form.

genus of types of singular algorithm
spectral curve fibers in pencils

2-dim. Painlevï¿½ 1 Kodaira Tate’s algorithm
4-dim. Painlevï¿½ 2 Namikawa–Ueno Liu’s algorithm

(15)Kodaira type In (n > 1) and I∗
n (n > 1) are counted as 1 type, respectively.
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4.3. Generic degeneration of the spectral curves of the
autonomous 4-dimensional Painlevï¿½-type equations

Let us state the main theorem of this paper.

Theorem 4.5. — The spectral curves of the autonomous 4-dimensional
Painlevï¿½-type equations have the following types of generic degenerations
as in Table 4.6.

Remark 4.6. — Let us explain the notations used in Table 4.6. The
Hamiltonians are the Hamiltonians of the 4-dimensional Painlevï¿½-type
equations. The explicit forms of the non-autonomous counterparts can be
found in [21, 23, 22, 24, 26, 27, 51]. The spectral types indicate the type
of corresponding linear equations. Such notations are explained in Sec-
tion 2.1 and Appendix A.2. “Namikawa–Ueno type” means the types of
degeneration of genus 2 curves in Namikawa–Ueno [40]. When the fiber
contains components expressible by the Kodaira-type, we also write its
Dynkin’s name in the column noted “Dynkin”. The column named “stable”
tells us the type of the stable model [35]. The “Φ” indicates the group of
connected components of the Nï¿½ron model of the Jacobian J(C). The
symbol (n) means the cyclic group with n elements(16) . We also write Ogg’s
type written in “On pencils of curves of genus two” [41]. Ogg uses the no-
tation “Kod” to express Kodaira-type and do not distinguish them, while
Namikawa and Ueno does. Ogg’s type might be helpful to see the rough
classification. For example, all 8 types of matrix Painlevï¿½ equations have
the same Ogg’s type 14. The column “monodromy” means 5 monodromy
types in Namikawa–Ueno [40]. Elliptic types are those with finite degrees
of monodromy, while parabolic types have infinite degrees. Elliptic[1] are
those with stable model “I” in Liu’s notation. We abbreviate as “ell[1]”. We
summarize such correspondences in Table 4.3. The column named “page”
indicate the page number of Namikawa–Ueno’s paper where some data of
the corresponding type can be found.

Proof of Theorem 4.5. — Let us take Gar 9
2 , the most degenerated Gar-

nier system, to demonstrate our computation. The Lax pair is given by

dA(x)
dti

+ [A(x), Bi(x)] = 0, i = 1, 2

(16)When n = 0, (n) is the trivial group.
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Type Order of monodromy stable type (Liu’s notation [35])

elliptic[1] finite I

elliptic[2] finite V

parabolic[3] infinite II, VI

parabolic[4] infinite III,VII

parabolic[5] infinite IV

Table 4.3. Namikawa–Ueno’s elliptic and parabolic types and Liu’s
stable model types.

Hamiltonian the Hamiltonian of the Painlevï¿½-type equa-
tion [21, 23, 22, 25, 51]

spectral type the spectral type of the corresponding linear
equation [21, 25, 44], Appendix A.2

monodromy 5 types of monodromy (elliptic[1],[2], Para-
bolic[3],[4],[5]) as in Namikawa–Ueno [40]

Namikawa–Ueno the type of fiber in the minimal model following
the notation in Namikawa–Ueno [36, 40]

Dynkin Dynkin type (when the fiber contains Kodaira-
type component)

stable the type of stable model of the fiber [35]
Φ the group of connected components of the

Nï¿½ron model of the Jacobian J(C) [36]
Ogg the type of fiber in the minimal model following

the notation in Ogg [41]
page the page number of the fiber in Namikawa–Ueno’s

paper [40]

Table 4.4.

where

A(x) = A0x
3 +A1x

2 +A2x+A3,

B1(x) = A0x
2 +A1x+B10 = A(x)

x
+ C1 −

A3

x
,

B2(x) = −A0x+B20,
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for

A0 =
(

0 1
0 0

)
, A1 =

(
0 p1
1 0

)
, A2 =

(
q2 p2

1 + p2 + 2t̃1
−p1 −q2

)
,

A3 =
(
q1 − p1q2 p3

1 + 2p1p2 − q2
2 + t̃1p1 − t̃2

−p2 + t̃1 −q1 + p1q2

)
,

B10 =
(
q2 p2

1 + 2p2 + t̃1
−p1 −q2

)
, B20 =

(
0 −2p2
−1 0

)
, C1 =

(
0 p2 − t̃1
0 0

)
.

The characteristic polynomial

det(yI2 −A(x)) = 0

is expressed as

y2 = x5 + 3t̃2x3 − t̃1x2 + (2t̃22 − h1)x+ h2 − t̃1t̃2,

where h1 = H
9/2
Gar,t̃1

, h2 = H
9/2
Gar,t̃2

. Note that it is already in the Weierstrass
form. We consider the degeneration along a line h2 = ah1 + b, where a and
b are generic constants.

y2 = x5 + 3t̃2x3 − t̃1x2 + (2t̃22 − h1)x+ ah1 + b− t̃1t̃2,

In order to see the degeneration at h1 = ∞, we introduce x̃ = x/h1, ỹ =
y/h3

1, H̃ = 1/h1.

ỹ2 = H̃x5 + 3t̃2H̃3x3 − t̃1H̃4x2 − H̃4x+ 2t̃22H̃5x+ H̃5(a+ bH̃ − t̃1t̃2H̃).

The Igusa invariants of the quintic can be calculated as follows.

J2 = −5H̃5 + 67
4 t̃

2
2H̃

6, J4 = 15
8 H̃

10 +O(H̃11), J6 = 5
16H̃

15 +O(H̃16),

J8 = −325
256H̃

20 +O(H̃21), J10 = − 1
16H̃

25 +O(H̃26).

Since 5 · ord∞ J2i− i · ord∞ J10 = 0 for i 6 5, the stable model has smooth
fiber (type(I) in Liu’s notation of stable curves) at H̃ = 0. With fur-
ther computation, we find that generic degeneration is of type VII∗ in
Namikawa–Ueno’s notation. This type is type 22 in Ogg’s notation [41].

VII∗ : H
9
2

Gar,t̃1

1 2B 5 8

4

7 6 5 4 3 2 1

The numbers in circles denote the multiplicities of components in the re-
ducible fibers. All curves are (-2)-curves except the one expressed as “B”,
which is a (-3)-curve.
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We can transform the spectral curves of the other autonomous
4-dimensional Painlevï¿½ equations into the Weierstrass normal form(17) .
We restrict the 2-parameter families of genus 2 curves to a generic line on
the base and apply Liu’s algorithm to find the generic degeneration. �

Remark 4.7. — In this paper, we proposed a possible clue to characterize
the integrable systems studying the degeneration of spectral curves. The
Namikawa–Ueno types and the monodromy matrices of the generic singular
fibers are given. Our plan in the future work is to understand the phase
spaces as the relative compactified Jacobian of the spectral curve fibration
by studying the discriminant locus of the base space and combine with the
results on monodromies of the singular fibers.

Hamiltonian monodromy Namikawa–Ueno Φ Ogg page
spectral type stable Dynkin
HMat

VI ell[2] I0 − I∗0 − 1 (2)2 14 p. 159
22,22,22,211 V I0 −D4 − 1
HMat

V par[3] I0 − I∗1 − 1 (4) 14 p. 170
(2)(11),22,22 VI I0 −D5 − 1
HMat

III(D6) par[3] I0 − I∗2 − 1 (2)2 14 p. 170
(2)(2),(2)(11) VI I0 −D6 − 1
HMat

III(D7) par[3] I0 − I∗3 − 1 (4) 14 p. 170
(2)(2), (11)2 VI I0 −D7 − 1
HMat

III(D8) par[3] I0 − I∗4 − 1 (2)2 14 p. 170
(2)2, (11)2 VI I0 −D8 − 1
HMat

IV ell[2] I0 − IV∗ − 1 (3) 14 p. 160
((2))((11)),22 V I0 − E6 − 1
HMat

II ell[2] I0 − III∗ − 1 (2) 14 p. 162
(((2)))(((11))) V I0 − E7 − 1
HMat

I ell[2] I0 − II∗ − 1 0 14 p. 160
(((((11)))))2 V I0 − E8 − 1

Table 4.5. The generic degeneration of the spectral curves of the au-
tonomous 4-dimensional matrix Painlevï¿½-type equations

(17)We used Maple’s command “Weierstrassform” implemented by van Hoeij.
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Hamiltonian monodromy Namikawa–Ueno Φ Ogg page
spectral type stable Dynkin
H1+1+1+1+1

Gar ell[1] I∗0−0−0 (2)4 33 p. 155
11,11,11,11,11 II -
H2+1+1+1

Gar par[3] I∗1−0−0 (4)× (2)2 33 p. 171
(1)(1),11,11,11 II -
H

3/2+1+1+1
Gar par[3] I∗2−0−0 (2)4 33 p. 171

(2)(1),(1)(1)(1) II -
H2+2+1

Gar par[4] I∗1−1−0 (4)2 33 p. 180
(1)(1),(1)(1),11 III -
H

3/2+2+1
Gar par[4] I∗1−2−0 (4)× (2)2 33 p. 180

(1)2, (1)(1), 11 III -
H

3/2+3/2+1
Gar par[4] I∗2−2−0 (2)4 33 p. 180

(1)2, (1)2, 11 III -
H3+1+1

Gar ell[2] I∗0 − IV∗ − (−1) (6)× (2) 29a p. 161
((1))((1)),11,11 V D4 − E6 − (−1)
H

5/2+1+1
Gar ell[2] I∗0 − III∗ − (−1) (2)3 29a p. 162

(((1)(1)))(((1))) V D4 − E7 − (−1)
H4+1

Gar par[3] III∗ − II∗0 (8) 23 p. 178
(((1)))(((1))),11 II E7 − II∗0
H

7/2+1
Gar par[3] II∗ − II∗0 (4) 25 p. 176

(((((1)))))2, 11 II E8 − II∗0
H3+2

Gar par[3] IV∗ − I∗1 − (−1) (12) 29a p. 175
((1))((1)),(1)(1) VI E6 −D5 − (−1)
H

5/2+2
Gar par[3] III∗ − I∗1 − (−1) (4)× (2) 29a p. 177

(((1)))2, (1)(1) VI E7 −D5 − (−1)
H

3/2+3
Gar par[3] IV∗ − I∗2 − (−1) (6)× (2) 29a p. 175

(1)2, ((1))((1)) VI E6 −D6 − (−1)
H

5/2+3/2
Gar para[3] III∗ − I∗2 − (−1) (2)3 29a p. 177

(((1)))2, (1)2 VI E7 −D6 − (−1)
H5

Gar ell[1] IX− 3 (5) 21 p. 157
((((1))))((((1)))) I -
H

9/2
Gar ell[1] VII∗ (2) 22 p. 156

(((((((1)))))))2 I -

Table 4.6. The generic degeneration of the spectral curves of the au-
tonomous 4-dimensional Garnier equations
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Hamiltonian monodromy Namikawa–Ueno Φ Ogg page
spectral type stable Dynkin
HA5

FS par[3] II3−0 (12) 41 p. 171
21,21,111,111 II -
HA4

FS par[5] II3−1 (13) 41 p.183
(11)(1),21,111 VI -
HA3

FS par[5] II3−2 (14) 41 p.183
(1)2, 21, 111 IV -
H

3
2 +2

Suz par[5] II3−3 (15) 41 p. 183
(11)(1), (1)21 IV -
H

3
2 + 3

2
KFS par[5] II3−4 (16) 41 p. 183

(1)3, (11)(1) IV -
H

4
3 + 3

2
KFS par[5] II3−5 (17) 41 p. 183

(1)3, (1)21 IV -
H

4
3 + 4

3
KFS par[5] II3−6 (18) 41 p. 183

(1)3, (1)3 IV -
HA5

NY par[4] II3−1 (6)× (2) 41a p. 182
(2)(1),111,111 III 0
HA4

NY par[3] IV∗ − II3 (10) 41b p. 175
((11))((1)),111 II E6 − II3
HD6

Ss par[3] I2 − I∗0 − 0 (2)3 2 p. 171
31,22,22,1111 VI A1 −D4 − 0
HD5

Ss par[4] I2 − I∗1 − 0 (4)× (2) 2 p. 180
(111)(1),22,22 VII A1 −D5 − 0
HD4

Ss par[4] I2 − I∗2 − 0 (2)4 2 p. 180
(2)(2),(111)(1) VII A1 −D6 − 0
H

3
2 +2

KSs par[4] I2 − I∗3 − 0 (4)× (2) 2 p. 180
(1)211, (2)(2) VII A1 −D7 − 0
H

4
3 +2

KSs par[4] I2 − I∗4 − 0 (2)3 2 p. 180
(1)31, (2)(2) VII A1 −D8 − 0
H

5
4 +2

KSs par[4] I2 − I∗5 − 0 (4)× (2) 2 p. 180
(1)4, (2)(2) VII A1 −D9 − 0
H

3
2 + 5

4
KSs par[4] I2 − I∗6 − 0 (2)3 2 p. 180

(1)4, (2)2 VII A1 −D10 − 0

Table 4.7. The generic degeneration of the spectral curves of the au-
tonomous 4-dimensional Fuji–Suzuki and Sasano equations
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Appendix

A.1. Conserved quantities

The autonomous 4-dimensional Painlevï¿½-type equations have two func-
tionally independent first integrals. In this subsection, we list these first
integrals for the ramified equations(18) . One of the reason is that the other
first integrals than the Hamiltonians have long expressions. Writing them
for “less-degenerated” systems take huge spaces. But they are easily com-
putable from data in the previous paper [25]. We only give first integrals
for autonomous version of equations in Kawakami [21, 23, 22]. We list
Hamiltonians H’s with δ,(19) and the other invariants G’s.

There are 5 ramified cases from the degeneration of A5 Fuji–Suzuki sys-
tem(20) .

HA3
FS = HIII(D6)(−θ∞2 , δ + θ0

1 + θ1; t̃; q1, p1)

+HIII(D6)(θ0
2 − θ0

1, θ
0
2 − θ0

1 − θ1; t̃; q2, p2)− 1
t̃
p1p2(q1q2 + t̃) ,

GA3
FS = θ0

2 t̃
(
HIII(D6)(−θ∞2 , θ1 + θ0

1; t̃; q1, p1)− p1p2
)

+
(
q1q2 − t̃

) (
θ∞2 p2 −

(
θ0

1 − θ0
2
)
p1

+ p1p2
(
θ1 + θ0

1 − θ0
2 + (p1 − 1) q1 − (p2 − 1) q2

))
,

H
3
2 +2

KFS = HIII(D7)(−θ0
1; t̃; q1, p1) +HIII(D7)(θ0

2 − θ0
1; t̃; q2, p2)

+ 1
t̃

(p2q1(p1(q1 + q2) + θ∞2 )− q1) ,

G
3
2 +2
KFS = (q2 − q1)

((
θ0

2 − θ0
1
)
p1p2q1 − θ∞2 p2

2q1 + p1p
2
2q1q2 + p2

1p2q
2
1 + p1q1

+ p1p2t̃
)

+ θ0
2
(
t̃HIII(D7)(−θ0

1; t̃; q1, p1)− q1 + p1p2q
2
1
)

− θ∞2 t̃HIII(D7)(−θ0
1; t̃; q1, p2 + p1p2q

2
1(θ0

2 − θ∞2 ),

H
4
3 + 3

2
KFS = HIII(D7)(θ∞1 ; t̃; q1, p1) +HIII(D7)(δ − θ∞1 ; t̃; q2, p2)

− 1
t̃
p1q1p2q2 −

(
p2

q1
+ p1 + p2

)
,

G
4
3 + 3

2
KFS = 1

q1

(
p2 (θ∞1 + p1q1 − p2q2)

(
t̃− p1q

2
1q2
)

+ (p1 − p2) q2q
2
1 − t̃

)
,

(18)We do not write first integrals of the Garnier equations here, since the first inte-
grals are just autonomous limit of two Hamiltonians. Such Hamiltonians are listed by
Kimura [27], Kawamuko [26] and Kawakami [22].
(19)Hamiltonians for the case δ = 0 is the first integral.
(20)Although we obtain the Garnier equations of ramified types from certain degenera-
tions of A5-type Fuji–Suzuki system, we exclude the Garnier systems.
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H
3
2 + 3

2
KFS = HIII(D7)(θ∞1 − θ∞2 ; t̃; q1, p1) +HIII(D7)(δ − θ∞1 ; t̃; q2, p2)

− 1
t̃
p1q1p2q2 − (p1p2 + p1 + p2),

G
3
2 + 3

2
KFS =

(
p1p2q1 − p2

2q2 + θ∞1 p2 − 1
) (
−p1

(
q1q2 − t̃

)
+ θ∞2 q2

)
− p2

(
q1q2 − t̃

)
,

H
4
3 + 4

3
KFS = 1

t̃

(
p2

1q
2
1 + δq1p1 − q1 −

t̃

q1

)
+HIII(D8)(t̃; q2, p2)

+ 1
t̃

(
−p1q1p2q2 + q1q2

t̃
+ q1 + q2

)
,

G
4
3 + 4

3
KFS = 1

t̃q1q2

(
(p1q1 − p2q2)

(
p1p2q

2
2q

2
1 t̃+ p1q2q

2
1 t̃+ q2

2q
2
1
)

+ t̃2
(
p1q

2
1 − p2q

2
2 − q2

))
.

There are also 4 systems that are ramified derived from D6-Sasano system.

H
3
2 +2

KSs = HIII(D7)(θ0 + 2θ∞2 ; t̃; q1, p1) +HIII(D7)(−θ0; t̃; q2, p2)

+ 1
t̃
(2p2q1(p1q1 − θ0 − θ∞1 )− q1),

G
3
2 +2
KSs = p2

1p
2
2q

4
1 − p2

1q
3
1 − 2p2

1p
2
2q2q

3
1 − 2p1p

2
2θ0q

3
1 + p2

1p2θ0q
3
1 − 2p1p

2
2θ
∞
1 q3

1

+ t̃p1p
2
2q

2
1 + p2

1p
2
2q

2
2q

2
1 + p2

2θ
2
0q

2
1 − p1p2θ

2
0q

2
1 + p2

2(θ∞1 )2q2
1 + p2

1q2q
2
1

+ p1θ0q
2
1 + p1p

2
2q2θ0q

2
1 − p2

1p2q2θ0q
2
1 + p1θ

∞
1 q2

1 + 2p1p
2
2q2θ

∞
1 q2

1

+ 2p2
2θ0θ

∞
1 q2

1 − p1p2θ0θ
∞
1 q2

1 − p1θ
∞
2 q2

1 − 2p1p
2
2q2θ

∞
2 q2

1

+ p1p2θ0θ
∞
2 q2

1 + p2
2q2θ

2
0q1 − p1p2q2θ

2
0q1 − t̃p1q1 − 2t̃p1p

2
2q2q1

− t̃p2
2θ0q1 + p1p

2
2q

2
2θ0q1 + t̃p1p2θ0q1 + p1q2θ0q1 − t̃p2

2θ
∞
1 q1

+ p2
2q2θ0θ

∞
1 q1 + 2p1p

2
2q

2
2θ
∞
2 q1 − p2θ

2
0θ
∞
2 q1 + 2p1q2θ

∞
2 q1

+ 2p2
2q2θ0θ

∞
2 q1 − 2p1p2q2θ0θ

∞
2 q1 + θ0θ

∞
2 q1 + 2p2

2q2θ
∞
1 θ∞2 q1

− p2θ0θ
∞
1 θ∞2 q1 + θ∞1 θ∞2 q1 + t̃p1p

2
2q

2
2 + p2

2q
2
2(θ∞2 )2 + t̃p2(θ∞2 )2

+ q2(θ∞2 )2 − p2q2θ0(θ∞2 )2 + t̃p1q2 + t̃p2
2q2θ0 − t̃p1p2q2θ0

+ t̃p2
2q2θ

∞
1 − p2q2θ

2
0θ
∞
2 + p2

2q
2
2θ0θ

∞
2 + 2t̃p2θ0θ

∞
2 + q2θ0θ

∞
2

+ t̃p2θ
∞
1 θ∞2 ,

H
4
3 +2

KSs = HIII(D7)(θ0 + 2θ∞2 ; t̃; q1, p1) +HIII(D7)(−θ0; t̃; q2, p2)

− 1
t̃

(
2p2q1 + q1 + t̃p2

)
,
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G
4
3 +2
KSs = −3θ2

0θ
∞
1 p2q2 − θ0(θ∞1 )2p2q2 + 3θ0θ

∞
1 p2

2q
2
2 + θ0θ

∞
1 p2q1

+ 2θ0θ
∞
1 p1p2q1q2 − 2θ3

0p2q2 + 2θ2
0p

2
2q

2
2 + 2θ2

0p2q1

+ 3θ2
0p1p2q1q2 − θ0p1p2q

2
1 − 3θ0p1p

2
2q1q

2
2 − θ0p

2
1p2q

2
1q2

− 3θ0p
2
2q1q2 − 3θ0p1q1q2 + (θ∞1 )2p2

2q
2
2 − 2θ∞1 p1p

2
2q1q

2
2

− 2θ∞1 p2
2q1q2 − 2θ∞1 p1q1q2 − θ0p1p2q2t̃+ p1p

2
2q

2
2 t̃+ p2

2q2t̃

+ p1q2t̃+ p2
2q

2
1 + p1q

2
1 + p2

1p
2
2q

2
1q

2
2 + p2

1q
2
1q2

+ 2p1p
2
2q

2
1q2 − 2θ0p2t̃− θ∞1 p2t̃+ 3θ0θ

∞
1 q2 + 2θ2

0q2 − 2θ0q1

+ (θ∞1 )2q2 − θ∞1 q1,

H
5
4 +2

KSs = HIII(D8)(t̃; q1, p1) +HIII(D7)(−θ0, t̃; q2, p2) + 2p2

q1

− (θ0 + 1− δ)p1q1

t̃
+ 1
q1
− p2,

G
5
4 +2
KSs = 1

q2
1

(
p2

2
(
p1q2q

2
1
(
2t̃− θ0q1q2

)
+ p2

1q
2
2q

4
1 − θ0q2q1t̃− q2

2q
3
1 + t̃2

)
− p2q

2
1
(
θ0p

2
1q2q

2
1 + θ0p1

(
t̃− θ0q1q2

)
− θ0q2q1 + t̃

)
+ q3

1q2(p2
1q1 − 1) + q2

1p1
(
t̃− θ0q1q2

))
,

H
3
2 + 5

4
KSs = 1

t̃

(
p2

1q
2
1 + δq1p1 − q1 − t̃/q1

)
+HIII(D8)(t̃; q2, p2)− 2q1q2

t̃2

+ q1 + q2

t̃
,

G
3
2 + 5

4
KSs = q2

1q
2
2

t̃2
− p2

1q
2
1 t̃

q2
+ q1 + q2 + t̃2

q1q2

− 1
4q1t̃

(2p2q2 + 1)
(
t̃ (2p2q2 + 1)

(
t̃− p2

1q
3
1
)

+ 4p1q2q
3
1
)
.

We have three ramified systems of matrix Painlevï¿½ equations. GMat
III(D7)

and GMat
III(D8) are too long and HMat

I is already written in the main part
of this paper. So we skip writing first integrals of autonomous matrix
Painlevï¿½ equations.

A.2. Local data of linear equations

For the classification of linear equations, we need to discern the types of
linear equations. In this subsection, we explain the notation to express spec-
tral types for ramified equations, which is introduced by Kawakami [21].
The Fuchsian case is explained in 2.1.
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Now we explain the way to obtain the formal canonical form around each
non-Fuchsian singular point. We also explain that these canonical forms can
be expressed by the refining sequences of partition. Let us assume that the
coefficient matrix A(x) of the equation has a singularity at the origin, and
that A(x) is expanded in the Laurent series as follows:

(A.4) dY
dx =

(
A0

xr+1 + A1

xr
+ · · ·

)
Y.

Here, Aj (j = 0, 1, . . .) are m ×m matrices. We assume that A0 is diago-
nalizable.
With an appropriate choice of the gauge matrix, we can assume that A0

is diagonal and that its eigenvalues are t01, . . . , t0m. When r = 0, then the
origin is a regular singular point. Let us assume that r > 0. If t0i 6= t0j
(1 6 i 6 l, l+ 1 6 j 6 m), then a gauge transformation by a formal power
series Y = P (x)Z (P (x) = I + P1x + P2x

2 + · · · ) leads to the following
form:

dZ
dx =

(
B0

xr+1 + B1

xr
+ · · ·

)
Z.

Here, we can transform Bi into the following form:

Bi =
(
Bi

11 O

O Bi
22

)
, Bi

11 ∈Ml(C), Bi
22 ∈Mm−l(C).

With successive application of this process, the equation (A.4) is formally
decomposed to direct sum of equations whose leading terms have only one
eigenvalues respectively. When the leading term of the block is diagonaliz-
able, that is when it is scalar matrix, then this part can be canceled by a
gauge transformation by a scalar function, so that the equation is reduced
to a equation with smaller r.

Remark A.8. — When A0 is not diagonalizable, in order to decompose
the system into equations of smaller sizes, we need to take an appropriate
covering x = ξk. In that case, the transformation matrix P (x) is a Puiseux
series in x. The equations with this property are called ramified. When we
do not need to take coverings, that is when k = 1, we say that the equations
are unramified.

A.2.1. Unramified non-Fuchsian case

When the equation (A.4) is unramified, it can be transformed into the
following form:

dY
dx =

(
T0

xr+1 + T1

xr
+ · · ·+ Tr

x
+ · · ·

)
Y.
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We can assume that Tj ’s are diagonal matrices and that T0 = A0. Fur-
thermore, we can eliminate the regular terms by an appropriate diagonal
matrix with formal power series components. Thus, the equation (A.4) can
be transformed into the following form by gauge transformation of a formal
power series:

(A.5) dY
dx =

(
T0

xr+1 + T1

xr
+ · · ·+ Tr

x

)
Y.

If we write the diagonal components of Ti as tij (j = 1, . . . ,m), then a
canonical form around the origin can be described by the following data:

x = 0︷ ︸︸ ︷
t01 t11 . . . tr1
...

...
...

t0m t1m . . . trm .

We write down such formal canonical forms for each singular point, and
put them together. This kind of table is called the Riemann scheme of the
linear equation. As we can see from the procedure to obtain the canonical
form, the leftmost column splits into several groups as equivalence class of
values. In the second column from the left, these groups splits further, and
so on, we get a nested columns.
We describe such nesting structure by refining sequences of partitions

of m and call it the spectral type of the singular point. We line up such
spectral types of each singular point, and separate them by commas. We
call it the spectral type of the equation. In such a case,

exp
(
− T0

rxr
+ · · · − Tr−1

x

)
xTr

is the fundamental solution matrix for the formal canonical form (A.5).
The degree r of the polynomial is called the Poincarï¿½ rank of the singu-
lar point. When the singular point is of regular type, the Poincarï¿½ rank
is 0. When the equation is ramified, this part is a polynomial in x−1/k,
and the Poincarï¿½ rank is non-integer rational number. If the thing we
want to express is just the Poincarï¿½ ranks at each singularity, we attach
Poincarï¿½ rank plus 1 to each singularity, and line them up, and sepa-
rate them by + signs. When the equation is unramified, Poincarï¿½ rank
plus 1 is as same as numbers of columns appeared in refining sequences of
partitions at each singularities.
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Example A.9. — For instance, let us consider the following normal form:

d̂Y (x)
dx =


1
x3


a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b

+ 1
x2


c 0 0 0
0 c 0 0
0 0 d 0
0 0 0 e

+ 1
x


f 0 0 0
0 g 0 0
0 0 h 0
0 0 0 i


Ŷ.

We align the diagonal entries as
{

a a b b
c c d e
f g h i

. We express the degeneracy of
the eigenvalues by

{
22

211
1111

}
. Each row expresses a partition of the matrix

size m. The partitions in the lower rows are a refinement of a partition in
the upper rows.

In order to express the degeneracy of the eigenvalues briefly, we use
parentheses. Firstly, write the finest partition of m in the lowest row, which
expresses the degeneracy of the eigenvalue of T (i). Secondly, put the num-
bers that are grouped together in the second lowest partition in parentheses.
We continue this process until the highest row.

Example A.10. — The local data of the example above can be expressed
concisely using the parentheses.

x = 0︷ ︸︸ ︷
a c f

a c g

b d h

b e i

=


a a b b

c c d e

f g h i

−→


22
211
1111

 −→ ((11))((1)(1)),

level 2 ((11))((1)(1))
level 1 (11)(1)(1)
level 0 1111

The way to restore the degeneracy of eigenvalues from the symbol
((11))((1)(1)) is as follows.

• Add the numbers in the outermost parenthesis → 22
• Add the numbers in the inner parenthesis →211
• Write the numbers in the innermost parentheses →1111

We express the types of linear equations by aligning such data for each
singular point.

A.2.2. Ramified case

We have the following formal normal form at each singularities
(Hukuhara [16], Levelt [33] and Turrittin [56]). Let us assume that x = 0 is
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an irregular singular point. Then, there exist a positive integer q, rational
numbers with the common denominator q such that r0 < r1 < · · · < rn−1 <

rn = −1, diagonal matrices T0, . . . , Tn, a transformation z = F (x1/q) in
the class of formal series in x1/q, such that the transformed system have
the following form;

dz
dx = (T0x

r0 + · · ·+ Tn−1x
rn−1 + Tnx

−1)z.(A.6)

Let us assume that the diagonal matrix Tk has tki for i = 1, . . . ,m as
diagonal components. We express the local data by the following table:

x = 0
(

n
q

)
︷ ︸︸ ︷
t01 t11 . . . tn1
...

...
...

t0m t1m . . . tnm.
Let us introduce a way to express such local data compactly with exam-
ples.(21) Let us assume the following normal form;

dz
dx =

{
c0Ωx− 8

3 +c1Ω2x−
7
3 +c2I3x

−2 +c3Ωx− 5
3 +c4Ω2x−

4
3 +c5I3x

−1
}
z,

where Ω = diag(1, ω, ω2) and ω is a primitive third root of unity. This
normal form can be expressed as

x = 0
( 5

3
)︷ ︸︸ ︷

c0 c1 c2 c3 c4 c5
c0ω c1ω c2 c3ω c4ω

2 c5
c0ω

2 c1ω c2 c3ω
2 c4ω c5

.

Two systems in the lower rows dz2
dx = (c0ωx

− 8
3 + . . . )z2 and dz3

dx =
(c0ωx

− 8
3 + . . . )z3 can be obtained by the first row dz1

dx = (c0x
− 8

3 + . . . )z1

upon replacement x 1
3 7→ ωx

1
3 7→ ω2x

1
3 . Since we have 3 copies of the first

equation, we express the local data as (((((1)))))3.

Example A.11. — We show some other examples.
x = 0

( 1
2
)︷ ︸︸ ︷

α β

−α β

0 γ

0 ε

→ (1)211,

x = 0
( 1

2
)︷ ︸︸ ︷

α β

αω β

αω2 β

0 γ

→ (1)31,

(21)Kawakami [21] devised such notation.
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x = 0
( 1

2
)︷ ︸︸ ︷

α β

α β

−α β

−α β

→ (2)2,

x = 0
( 1

2
)︷ ︸︸ ︷

α β

α γ

−α β

−α γ

→ (11)2.

A.3. The dual graphs of the singular fibers

We list the dual graphs of singular fibers appeared in the table. The
numbers in circles indicate multiplicities of the components. We adopt,
as in Ogg [41], the following symbol for component Γ of singular fibers
(Table A.8). KX is the canonical divisor of surface X. The matrices next
to or below the dual graphs are the monodromy [40].

Symbol Genus Γ2 Γ ·KX

A 1 -1 1
B 0 -3 1
C 1 -2 2
D 0 -4 2

none 0 -2 0

Table A.8. Components of singular fibers

I∗0−0−0 : H1+1+1+1+1
Gar

1
1

2B
1

1 1
1


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



I∗1−0−0 : H2+1+1+1
Gar

11

1

2B 2

1 1

1


−1 0 0 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1


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I∗2−0−0 : H
3
2 +1+1+1

Gar

11

1

2B 2 2

1 1

1


−1 0 0 0
0 −1 0 −2
0 0 −1 0
0 0 0 −1


I∗1−1−0 : H2+2+1

Gar

1

1

2

1

2B 2

1

1

1


−1 0 −1 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1



I∗1−2−0 : H
3
2 +2+1

Gar

1

1

2

1

2B 2 2

1

1

1


−1 0 −2 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1



I∗2−2−0 : H
3
2 + 3

2 +1
Gar

1

1

2

1

2 2B 2 2

1

1

1


−1 0 −2 0
0 −1 0 −2
0 0 −1 0
0 0 0 −1



I∗0 − IV∗ − (−1) : H3+1+1
Gar

1

1

1

2B 3 2

2

1

1


−1 0 −1 0
0 −1 0 0
1 0 0 0
0 0 0 −1


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I∗0 − III∗ − (−1) : H
5
2 +1+1

Gar

1

1

1

2B 3 4

2

3 2 1


0 0 −1 0
0 −1 0 0
1 0 0 0
0 0 0 −1



III∗ − II∗0 − (−1) : H4+1
Gar

1 2 3 4

2B

1 1

3 2 1


0 0 −1 0
0 −1 −1 −1
1 0 0 1
0 0 0 −1



II∗ − II∗0 − (−1) : H
7
2 +1

Gar

1

1

2B 4 6 5 4

3

3 2 1


0 0 −1 0
0 −1 1 0
1 0 1 −1
0 0 0 −1


IV∗ − I∗1 − (−1) : H3+2

Gar

1

1
2

1

2B 3 2

2

1

1


−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 0 0 −1


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IV∗ − I∗2 − (−1) : H3+ 3
2

Gar

1

1
2

1

2 2B 3 2

2

1

1


−1 0 −1 0
0 −1 0 −2
1 0 0 0
0 0 0 −1


III∗ − I∗1 − (−1) : H

5
2 +2

Gar

1

1
2 2B 3 4

2

3 2 1


0 0 −1 0
0 −1 0 −1
1 0 0 0
0 0 0 −1


III∗ − I∗2 − (−1) : H

5
2 + 3

2
Gar

1

1
2 2 2B 3 4

2

3 2 1


0 0 −1 0
0 −1 0 −2
1 0 0 0
0 0 0 −1


II∗ − II∗0 : H

7
2 +1

Gar

1

1
2B 4 6

3

5 4 3 2 1


0 0 −1 0
0 −1 1 0
1 0 1 −1
0 0 0 −1


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IX− 3: H5
Gar

1 2 3 4 5 4 3

2B

1

2 1
0 −1 −1 0
−1 0 0 −1
1 −1 −1 0
0 1 0 0


VII∗ : H

9
2

Gar

1 2B 5 8

4

7 6 5 4 3 2 1


0 −1 −1 0
−1 1 0 −1
1 −1 −1 0
0 1 0 0


para[3], II3−0 : HA5

FS

2

B B

1

1 1 
−1 0 0 0
−1 1 0 3
0 0 0 1
0 0 0 1


para[5], II3−1 : HA4

FS

B B

1

22

1 1 
−1 0 −1 0
1 1 1 3
0 0 −1 1
0 0 0 1


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para[5], II3−2 : HA3
FS

2

B B

1

22
1 1 

−1 0 −2 0
1 1 2 3
0 0 −1 1
0 0 0 1


para[5], II3−3 : H

3
2 +2

Suz

2 2

B B

1

22
1 1 

−1 0 −3 0
1 1 3 3
0 0 −1 1
0 0 0 1


para[5], II3−4 : H

3
2 + 3

2
KFS

2
2

2

B B
1

221 1


−1 0 −4 0
1 1 4 3
0 0 −1 1
0 0 0 1


para[5], II3−5 : H

4
3 + 3

2
KFS

2
2 2

2

B B
1

221 1


−1 0 −5 0
1 1 5 3
0 0 −1 1
0 0 0 1


para[5], II3−6 : H

4
3 + 4

3
KFS

2
2 2 2

2

B B1

221 1


−1 0 −6 0
1 1 6 3
0 0 −1 1
0 0 0 1


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para[4], II3−1 : HA5
NY

2

2

B B

1

1 1


−1 0 −1 −1
0 1 1 3
0 0 −1 0
0 0 0 1


IV∗ − II3 : HA4

NY

3

2

B B

1

1 1

1


−1 0 −1 −1
−1 1 0 3
1 0 0 0
0 0 0 1


I2 − I∗0 − 0: HD6

Ss

1 D 2

1

1

1


−1 0 0 0
0 1 0 2
0 0 −1 0
0 0 0 1


I2 − I∗1 − 0: HD5

Ss

1 D 2

1

2
1

1


−1 0 −1 0
0 1 0 2
0 0 −1 0
0 0 0 1


I2 − I∗2 − 0: HD4

Ss

1 D 2

1

2 2
1

1


−1 0 −2 0
0 1 0 2
0 0 −1 0
0 0 0 1


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I2 − I∗3 − 0: H
3
2 +2

KSs

1 D 2

1

2 2 2
1

1


−1 0 −3 0
0 1 0 2
0 0 −1 0
0 0 0 1


I2 − I∗4 − 0: H

4
3 +2

KSs

1 D 2

1

2 2 2 2
1

1


−1 0 −4 0
0 1 0 2
0 0 −1 0
0 0 0 1


I2 − I∗5 − 0: H

5
4 +2

KSs

1 D 2

1

2 2 2 2 2
1

1
−1 0 −5 0
0 1 0 2
0 0 −1 0
0 0 0 1


I2 − I∗6 − 0: H

3
2 + 5

4
KSs

1 D 2

1

2 2 2 2 2 2
1

1


−1 0 −6 0
0 1 0 2
0 0 −1 0
0 0 0 1


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I0 − I∗0 − 1: HMat
VI

A B 2

1

1

1


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



I0 − I∗1 − 1: HMat
V

A B 2

1

2

1

1


1 0 0 0
0 −1 0 −1
0 0 1 0
0 0 0 −1


I0 − I∗2 − 1: HMat

III(D6)

A B 2

1

2 2

1

1


1 0 0 0
0 −1 0 −2
0 0 1 0
0 0 0 −1


I0 − I∗3 − 1: HMat

III(D7)

A B 2

1

2 2 2

1

1


1 0 0 0
0 −1 0 −3
0 0 1 0
0 0 0 −1


I0 − I∗4 − 1: HMat

III(D8)

A B 2

1

2 2 2 2

1

1


1 0 0 0
0 −1 0 −4
0 0 1 0
0 0 0 −1


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I0 − IV∗ − 1: HMat
IV

A B 2 3

2

1

2 1


−1 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1


I0 − III∗ − 1: HMat

II

A B 2 3 4

2

3 2 1
0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1


I0 − II∗ − 1: HMat

I

A B 2 3 4 5 6

3

4 2
0 0 −1 0
0 1 0 0
1 0 1 0
0 0 0 1


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