Around evaluations of biset functors
[Évaluations de foncteurs à bi-ensembles]
Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 805-843.

On se propose dans cet article d’étudier l’algèbre de Burnside double via des évaluations de foncteurs à bi-ensembles. Afin d’éviter le problème notoirement difficile de la disparition des foncteurs simples, on s’intéresse aux groupes finis pour lesquels il n’y a pas de disparitions non triviales qu’on appelle groupes sans disparitions. Cette famille de groupes contient les groupes abéliens, mais aussi une infinité d’autres. On démontre que la catégorie de modules sur l’algèbre de Burnside double d’un tel groupe est équivalente à une catégorie de foncteurs à bi-ensembles. On en déduit des résultats sur la structure de plus haut poids ainsi que sur l’auto-injectivité de l’algèbre de Burnside double. Finalement, on revisite un théorème de Barker sur la semi-simplicité de la catégorie des foncteurs à bi-ensembles.

Our purpose here, is to study double Burnside algebras via evaluations of biset functors. In order to avoid the difficult problem of vanishing of simple functors, we look at finite groups for which there is no non-trivial vanishing and we call them non-vanishing groups. This family contains all the abelian groups, but also infinitely many others. We show that for a non-vanishing group, there is an equivalence between the category of modules over the double Burnside algebra and a specific category of biset functors. Then, we deduce results about the highest-weight structure, and the self-injective property of the double Burnside algebra. We also revisit Barker’s Theorem on the semi-simplicity of the category of biset functors.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3259
Classification : 19A22, 20C99, 16G10, 18E10
Keywords: Biset, Burnside ring, biset functor, quasi-hereditary algebra
Mot clés : Bi-ensemble, Anneau de Burnside, foncteur à bi-ensemble, algèbre quasi-héréditaire

Rognerud, Baptiste 1

1 Faculty of Mathematics Bielefeld University PO Box 100 131 D-33501 Bielefeld
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_2_805_0,
     author = {Rognerud, Baptiste},
     title = {Around evaluations of biset functors},
     journal = {Annales de l'Institut Fourier},
     pages = {805--843},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3259},
     zbl = {07067420},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3259/}
}
TY  - JOUR
AU  - Rognerud, Baptiste
TI  - Around evaluations of biset functors
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 805
EP  - 843
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3259/
DO  - 10.5802/aif.3259
LA  - en
ID  - AIF_2019__69_2_805_0
ER  - 
%0 Journal Article
%A Rognerud, Baptiste
%T Around evaluations of biset functors
%J Annales de l'Institut Fourier
%D 2019
%P 805-843
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3259/
%R 10.5802/aif.3259
%G en
%F AIF_2019__69_2_805_0
Rognerud, Baptiste. Around evaluations of biset functors. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 805-843. doi : 10.5802/aif.3259. https://aif.centre-mersenne.org/articles/10.5802/aif.3259/

[1] An, Lijian; Ding, Jianfang; Zhang, Qinhai Finite self dual groups, J. Algebra, Volume 341 (2011) no. 1, pp. 35-44 | DOI | MR | Zbl

[2] Barker, Laurence Rhetorical biset functors, rational p-biset functors and their semisimplicity in characteristic zero, J. Algebra, Volume 319 (2008) no. 9, pp. 3810-3853 | DOI | MR | Zbl

[3] Boltje, Robert; Danz, Susanne A ghost ring for the left-free double Burnside ring and an application to fusion systems, Adv. Math., Volume 229 (2012) no. 3, pp. 1688-1733 | DOI | MR | Zbl

[4] Boltje, Robert; Külshammer, Burkhard Central idempotents of the bifree and left-free double Burnside ring, Isr. J. Math., Volume 202 (2014) no. 1, pp. 161-193 | DOI | MR | Zbl

[5] Bouc, Serge Some simple bisets functors (in preparation) | Zbl

[6] Bouc, Serge Biset functors for finite groups, Lecture Notes in Mathematics, 1990, Springer, 2010, ix+399 pages | MR | Zbl

[7] Bouc, Serge; Stancu, Radu; Thévenaz, Jacques Simple biset functors and double Burnside ring, J. Pure Appl. Algebra, Volume 217 (2013) no. 3, pp. 546-566 | DOI | MR | Zbl

[8] Bouc, Serge; Stancu, Radu; Thévenaz, Jacques Vanishing evaluations of simple functors, J. Pure Appl. Algebra, Volume 218 (2014) no. 2, pp. 218-227 | DOI | MR | Zbl

[9] Bouc, Serge; Thévenaz, Jacques The monoid algebra of all relations on a finite set (2015) (https://arxiv.org/abs/1511.01741) | Zbl

[10] Bouc, Serge; Thévenaz, Jacques The representation theory of finite sets and correspondences (2015) (https://arxiv.org/abs/1510.03034) | Zbl

[11] Chevalley, Rosalie Sur quelques foncteurs de bi-ensembles, Ph. D. Thesis, École Polytechnique Fédérale de Lausanne (Switzerland) (2015)

[12] Franjou, Vincent; Pirashvili, Teimuraz Comparison of abelian categories recollements, Doc. Math., Volume 9 (2004), pp. 41-56 | MR | Zbl

[13] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O, Graduate Studies in Mathematics, 94, American Mathematical Society, 2008, xvi+289 pages | MR | Zbl

[14] Koenig, Steffen; Külshammer, Julian; Ovsienko, Sergiy Quasi-hereditary algebras, exact Borel subalgebras, -categories and boxes, Adv. Math., Volume 262 (2014), pp. 546-592 | DOI | MR | Zbl

[15] König, Steffen Exact borel subalgebras of quasi-hereditary algebras, I, Math. Z., Volume 220 (195) no. 1, pp. 399-426 | MR | Zbl

[16] Lam, Tsit-Yuen A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 2001, xx+385 pages | DOI | MR | Zbl

[17] Lindner, Harald A remark on Mackey-functors, Manuscr. Math., Volume 18 (1976) no. 3, pp. 273-278 | MR | Zbl

[18] May, John P. Picard Groups, Grothendieck Rings, and Burnside Rings of Categories, Adv. Math., Volume 163 (2001) no. 1, pp. 1-16 | DOI | MR | Zbl

[19] Rognerud, Baptiste Equivalences between blocks of cohomological Mackey algebras, Math. Z., Volume 280 (2015) no. 1-2, pp. 421-449 | DOI | MR | Zbl

[20] Rognerud, Baptiste Equivalences between blocks of p-local Mackey algebras, J. Algebra, Volume 428 (2015), pp. 205-229 | DOI | MR | Zbl

[21] Rognerud, Baptiste Quasi-hereditary property of double Burnside algebras, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 689-693 | DOI | MR | Zbl

[22] Rognerud, Baptiste Trace maps for Mackey algebras, J. Algebra, Volume 426 (2015), pp. 288-312 | DOI | MR | Zbl

[23] Thévenaz, Jacques; Webb, Peter The structure of Mackey functors, Trans. Am. Math. Soc., Volume 347 (1995) no. 6, pp. 1865-1961 | DOI | MR | Zbl

[24] Webb, Peter Stratifications and Mackey Functors II: Globally Defined Mackey Functors, J. K-Theory, Volume 6 (2010) no. 1, pp. 99-170 | DOI | MR | Zbl

[25] Zimmermann, Alexander Representation Theory: A Homological Algebra Point of View, Algebra and Applications, 19, Springer, 2014, xx+707 pages | MR | Zbl

Cité par Sources :