On se propose dans cet article d’étudier l’algèbre de Burnside double via des évaluations de foncteurs à bi-ensembles. Afin d’éviter le problème notoirement difficile de la disparition des foncteurs simples, on s’intéresse aux groupes finis pour lesquels il n’y a pas de disparitions non triviales qu’on appelle groupes sans disparitions. Cette famille de groupes contient les groupes abéliens, mais aussi une infinité d’autres. On démontre que la catégorie de modules sur l’algèbre de Burnside double d’un tel groupe est équivalente à une catégorie de foncteurs à bi-ensembles. On en déduit des résultats sur la structure de plus haut poids ainsi que sur l’auto-injectivité de l’algèbre de Burnside double. Finalement, on revisite un théorème de Barker sur la semi-simplicité de la catégorie des foncteurs à bi-ensembles.
Our purpose here, is to study double Burnside algebras via evaluations of biset functors. In order to avoid the difficult problem of vanishing of simple functors, we look at finite groups for which there is no non-trivial vanishing and we call them non-vanishing groups. This family contains all the abelian groups, but also infinitely many others. We show that for a non-vanishing group, there is an equivalence between the category of modules over the double Burnside algebra and a specific category of biset functors. Then, we deduce results about the highest-weight structure, and the self-injective property of the double Burnside algebra. We also revisit Barker’s Theorem on the semi-simplicity of the category of biset functors.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3259
Keywords: Biset, Burnside ring, biset functor, quasi-hereditary algebra
Mot clés : Bi-ensemble, Anneau de Burnside, foncteur à bi-ensemble, algèbre quasi-héréditaire
Rognerud, Baptiste 1
@article{AIF_2019__69_2_805_0, author = {Rognerud, Baptiste}, title = {Around evaluations of biset functors}, journal = {Annales de l'Institut Fourier}, pages = {805--843}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3259}, zbl = {07067420}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3259/} }
TY - JOUR AU - Rognerud, Baptiste TI - Around evaluations of biset functors JO - Annales de l'Institut Fourier PY - 2019 SP - 805 EP - 843 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3259/ DO - 10.5802/aif.3259 LA - en ID - AIF_2019__69_2_805_0 ER -
%0 Journal Article %A Rognerud, Baptiste %T Around evaluations of biset functors %J Annales de l'Institut Fourier %D 2019 %P 805-843 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3259/ %R 10.5802/aif.3259 %G en %F AIF_2019__69_2_805_0
Rognerud, Baptiste. Around evaluations of biset functors. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 805-843. doi : 10.5802/aif.3259. https://aif.centre-mersenne.org/articles/10.5802/aif.3259/
[1] Finite self dual groups, J. Algebra, Volume 341 (2011) no. 1, pp. 35-44 | DOI | MR | Zbl
[2] Rhetorical biset functors, rational p-biset functors and their semisimplicity in characteristic zero, J. Algebra, Volume 319 (2008) no. 9, pp. 3810-3853 | DOI | MR | Zbl
[3] A ghost ring for the left-free double Burnside ring and an application to fusion systems, Adv. Math., Volume 229 (2012) no. 3, pp. 1688-1733 | DOI | MR | Zbl
[4] Central idempotents of the bifree and left-free double Burnside ring, Isr. J. Math., Volume 202 (2014) no. 1, pp. 161-193 | DOI | MR | Zbl
[5] Some simple bisets functors (in preparation) | Zbl
[6] Biset functors for finite groups, Lecture Notes in Mathematics, 1990, Springer, 2010, ix+399 pages | MR | Zbl
[7] Simple biset functors and double Burnside ring, J. Pure Appl. Algebra, Volume 217 (2013) no. 3, pp. 546-566 | DOI | MR | Zbl
[8] Vanishing evaluations of simple functors, J. Pure Appl. Algebra, Volume 218 (2014) no. 2, pp. 218-227 | DOI | MR | Zbl
[9] The monoid algebra of all relations on a finite set (2015) (https://arxiv.org/abs/1511.01741) | Zbl
[10] The representation theory of finite sets and correspondences (2015) (https://arxiv.org/abs/1510.03034) | Zbl
[11] Sur quelques foncteurs de bi-ensembles, Ph. D. Thesis, École Polytechnique Fédérale de Lausanne (Switzerland) (2015)
[12] Comparison of abelian categories recollements, Doc. Math., Volume 9 (2004), pp. 41-56 | MR | Zbl
[13] Representations of Semisimple Lie Algebras in the BGG Category O, Graduate Studies in Mathematics, 94, American Mathematical Society, 2008, xvi+289 pages | MR | Zbl
[14] Quasi-hereditary algebras, exact Borel subalgebras, -categories and boxes, Adv. Math., Volume 262 (2014), pp. 546-592 | DOI | MR | Zbl
[15] Exact borel subalgebras of quasi-hereditary algebras, I, Math. Z., Volume 220 (195) no. 1, pp. 399-426 | MR | Zbl
[16] A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 2001, xx+385 pages | DOI | MR | Zbl
[17] A remark on Mackey-functors, Manuscr. Math., Volume 18 (1976) no. 3, pp. 273-278 | MR | Zbl
[18] Picard Groups, Grothendieck Rings, and Burnside Rings of Categories, Adv. Math., Volume 163 (2001) no. 1, pp. 1-16 | DOI | MR | Zbl
[19] Equivalences between blocks of cohomological Mackey algebras, Math. Z., Volume 280 (2015) no. 1-2, pp. 421-449 | DOI | MR | Zbl
[20] Equivalences between blocks of -local Mackey algebras, J. Algebra, Volume 428 (2015), pp. 205-229 | DOI | MR | Zbl
[21] Quasi-hereditary property of double Burnside algebras, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 689-693 | DOI | MR | Zbl
[22] Trace maps for Mackey algebras, J. Algebra, Volume 426 (2015), pp. 288-312 | DOI | MR | Zbl
[23] The structure of Mackey functors, Trans. Am. Math. Soc., Volume 347 (1995) no. 6, pp. 1865-1961 | DOI | MR | Zbl
[24] Stratifications and Mackey Functors II: Globally Defined Mackey Functors, J. -Theory, Volume 6 (2010) no. 1, pp. 99-170 | DOI | MR | Zbl
[25] Representation Theory: A Homological Algebra Point of View, Algebra and Applications, 19, Springer, 2014, xx+707 pages | MR | Zbl
Cité par Sources :