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AROUND EVALUATIONS OF BISET FUNCTORS

by Baptiste ROGNERUD

Abstract. — Our purpose here, is to study double Burnside algebras via
evaluations of biset functors. In order to avoid the difficult problem of vanishing of
simple functors, we look at finite groups for which there is no non-trivial vanishing
and we call them non-vanishing groups. This family contains all the abelian groups,
but also infinitely many others. We show that for a non-vanishing group, there is an
equivalence between the category of modules over the double Burnside algebra and
a specific category of biset functors. Then, we deduce results about the highest-
weight structure, and the self-injective property of the double Burnside algebra.
We also revisit Barker’s Theorem on the semi-simplicity of the category of biset
functors.
Résumé. — On se propose dans cet article d’étudier l’algèbre de Burnside

double via des évaluations de foncteurs à bi-ensembles. Afin d’éviter le problème no-
toirement difficile de la disparition des foncteurs simples, on s’intéresse aux groupes
finis pour lesquels il n’y a pas de disparitions non triviales qu’on appelle groupes
sans disparitions. Cette famille de groupes contient les groupes abéliens, mais aussi
une infinité d’autres. On démontre que la catégorie de modules sur l’algèbre de
Burnside double d’un tel groupe est équivalente à une catégorie de foncteurs à
bi-ensembles. On en déduit des résultats sur la structure de plus haut poids ainsi
que sur l’auto-injectivité de l’algèbre de Burnside double. Finalement, on revisite
un théorème de Barker sur la semi-simplicité de la catégorie des foncteurs à bi-
ensembles.

1. Introduction

Let k be a field and G be a finite group. The double Burnside ring
B(G,G) is the Grothendieck ring of the category of all finite G-G-bisets.
Extending scalars to k, we have an algebra kB(G,G) which is called the
double Burnside algebra of G. The elements of this algebra are the formal
linear combinations of G-G-bisets and the product behave like a tensor
product.

Keywords: Biset, Burnside ring, biset functor, quasi-hereditary algebra.
2010 Mathematics Subject Classification: 19A22, 20C99, 16G10, 18E10.



806 Baptiste ROGNERUD

This algebra, and some of its subalgebras are crucial objects in some
recent developments in the modular representation theory of finite groups,
fusion systems and homotopy theory. We refer to the introduction of [7], for
explicit motivations. In the last fifteen years, it has been studied by several
mathematicians under several points of view. In [3], Robert Boltje and
Susanne Danz were particularly interested by the subalgebras consisting
of left-free bisets or bi-free bisets in characteristic zero. In [4], Boltje and
Burkhard Külshammer found the central primitive idempotents of these
two algebras. However, the question is still open for the double Burnside
algebra, even in characteristic zero.

More generally, it is particularly difficult to generalize the results of the
left-free double Burnside algebra to the whole double Burnside algebra.
According to Jacques Thévenaz, there is a “quantic gap” between them.

Using a completely different approach, it was recently shown by Serge
Bouc, Radu Stancu and Jacques Thévenaz in [7], that one can deduce a lot
of information about the double Burnside algebra via evaluating biset func-
tors. More surprisingly, they showed that the converse is also true: one can
deduce a lot about biset functors by looking at double Burnside algebras
using adjoints of the evaluation functor, but also more sophisticated tools.
The goal of this article is to continue to develop and use this philosophy in
order to have a better understanding of the double Burnside algebra.

With this approach, we are immediately stuck with the problem of eval-
uating simple biset functors: it is almost obvious that the evaluation at G
of a simple biset functor S is either 0 or a simple module over the endomor-
phism algebra of G. Unfortunately, it is a notoriously difficult combinatorial
problem to understand when there is a vanishing. With our approach, we
observe that this problem is not only annoying, it is also crucial when one
wants to understand the double Burnside algebra of a finite group G (See
for example Corollary 3.5). We also remark that some problems of Section 9
of [7] are nothing but problems of vanishing of some simple functors.
The simple functors are indexed by a minimal group H and a simple

kOut(H)-module. If H is not isomorphic to a subquotient of G, then it is
clear that the corresponding simple functor vanishes at G. This is what we
call a trivial vanishing. However, when H is a subquotient of G it is still
possible that the simple functor vanishes at G (see Corollary 5.9). In this
case we speak about a non-trivial vanishing.
In order to avoid this difficulty, we consider finite groups such that there

are no non-trivial vanishing of simple functors. We show that it is possible
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to reformulate this condition, involving the simple functors in an elemen-
tary condition, involving a composition of bisets. We call it the generating
relation. We give various equivalent interpretations of this relation. One in
terms of vanishing of biset functors, another in terms of a composition of
bisets and finally one in terms of representable functors in the biset cate-
gory. As the main result, we show that the non-vanishing condition implies
the existence of an equivalence of categories between the category of mod-
ules over the double Burnside algebra of a finite group G and the category
of biset functors over G.

This gives us the desire to understand the generating relation and, more
generally, the family of non-vanishing groups. We show that the abelian
groups and the so-called self-dual groups are non-vanishing. Unfortunately,
we did not succeed to classify all the non-vanishing groups. Understand-
ing this family is in theory much easier than understanding the vanishing
problem for the simple biset functors: it is enough to understand the gener-
ating relation. At first it seems easy, but we think that it is still a difficult
problem. At the end of Section 5, we give an illuminating example of a non-
vanishing group in characteristic 0. It can be seen that the non-vanishing
property of this group is related to some non-trivial facts about the ordi-
nary representations of the group GL(3, 2). This example is so pathological
that it seems very unlikely to end up with a classification.
In the rest of the article, we use the evaluation functor and the generating

relation in order to deduce new information about the ring structure of the
double Burnside algebra.

In Section 6, we assume the field to be of characteristic zero. We show
that the double Burnside algebra of a non-vanishing group is quasi-
hereditary. This result is nothing but an application of the equivalence
discussed above and the famous Theorem of Peter Webb about the highest-
weight structure of the category of biset functors. Quasi-hereditary alge-
bras, and highest-weight categories come historically from the theory of
representations of the complex semi-simple Lie algebras. A lot of impor-
tant notions for Lie algebras admit a generalization, or an axiomatization,
to quasi-hereditary algebras. In particular, there is a notion of exact Borel
subalgebra of a given quasi-hereditary algebra. These subalgebras seem to
be of first importance in the recent development of the representation the-
ory of algebras. They are particularly important for the so-called theory of
bocses. It is known, and highly non-trivial, that for any quasi-hereditary A,
there is a Morita equivalent algebra A′ which admits an exact Borel subal-
gebra. For biset functors, it turns out that this notion of Borel subalgebras
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808 Baptiste ROGNERUD

is connected with the so-called deflation functors. That is, biset functors
without inflation. We show that the category of deflation functors is an
exact Borel subcategory of the category of biset functors. In order to prove
this result, we observe that the induction functor between the category of
deflation functors and the full category of biset functors is exact without
any assumption on the field or on the ring of coefficients.
For the double Burnside algebra, the situation is as usual more com-

plicated. This algebra may be an example of a quasi-hereditary algebra
which does not admit an exact Borel subalgebra. First, we show that over
a field of characteristic zero, the left-free double Burnside algebra is a quasi-
hereditary algebra. This result may be of independent interest. Neverthe-
less, the left-free double Burnside algebra is not in general a Borel subal-
gebra of the double Burnside algebra. The main reason is that there are
less simple modules over the left-free algebra than over the whole double
Burnside algebra.

In the Section 7, we use the generating relation to revisit Barker’s The-
orem about the semi-simple property of the category of biset functors. We
show, that understanding the semi-simplicity of the double Burnside alge-
bra is equivalent to understanding the semi-simplicity of the category of
biset functors.
For the alternating group A5, one can see that the double Burnside al-

gebra has infinite global dimension. More precisely, one can show that it
has a quasi-hereditary block and a self-injective block. For that reason,
we feel natural to study the self-injective property of the double Burnside
algebra. Using the characterization of the semi-simplicity by the trivial ob-
ject, we show that the double Burnside algebra of a finite group is never a
self-injective algebra except when it is semi-simple.

2. Review on bisets and biset functors

In this short section, we fix our notation and for the convenience of the
reader, we recall some well known facts about biset functors that are crucial
for the present article. We refer to the first chapters of [6] for more details.

Let G be a finite group. We denote by sG the set of the subgroups of G
and by [sG] a set of representatives of the conjugacy classes of the subgroups
of G. As always, if g ∈ G and H is a subgroup of G, then we denote by gH

the conjugate of H by g.
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Let G and H be two finite groups. Let L be a subgroup of G×H. There
are four important subgroups associated to L:

p1(L) = {g ∈ G ; ∃ h ∈ H, (g, h) ∈ L},
p2(L) = {h ∈ H ; ∃ g ∈ G, (g, h) ∈ L},
k1(L) = {g ∈ G ; (g, 1) ∈ L},
k2(L) = {h ∈ H ; (1, h) ∈ L}.

It is clear that ki(L) E pi(L) for i = 1, 2 and that
(
k1(L) × k2(L)

)
E L.

Moreover, there are canonical isomorphisms

p1(L)/k1(L) ∼= L/
(
k1(L)× k2(L)

) ∼= p2(L)/k2(L).

The quotient L/
(
k1(L)× k2(L)

)
will be denoted by q(L).

Let G, H and K be three finite groups. Let L be a subgroup of G ×H
and M be a subgroup of H × K. Then L ? M is the subgroup of G × K
defined by:

L ?M := {(g, k) ∈ G×K ; ∃ h ∈ H, (g, h) ∈ L and (h, k) ∈M}.

Let G and H be two finite groups. A G-H-biset is a set endowed with a
left action of G and a right action of H which commute. In other terms, A
G-H-biset is nothing but a G×Hop-set. If L is a subgroup of G×H, the
quotient (G×H)/L is naturally a G-H-biset for the action given by

a · (g, h)L · b = (ag, b−1h)L,∀ a, g ∈ G,∀ b, h ∈ H.

The double Burnside group B(G,H) is the Grothendieck group of the cat-
egory of finite G-H-bisets. The set of [(G × H)/L] where L ∈ [sG×H ] is
called the canonical basis of B(G,H). Here, [X] denotes the isomorphism
class of the G-H-biset X.
Let G,H andK be three finite groups. Let U be a G-H-biset and V be an

H-K-biset. Then, we denote by U×H V the set of H-orbits of U×V where
H acts diagonally on the cartesian product. That is h · (u, v) = (uh−1, hv)
for h ∈ H and (u, v) ∈ U × V . Extending this by bilinearity, we have
a bilinear map from B(G,H) × B(H,K) to B(G,K). This product will
be understood as a composition, so we will sometimes use the notation ◦
instead of ×H .
There is a Mackey formula for the composition of the transitive bisets.

Let G, H and K be three finite groups. Let L be a subgroup of G×H and
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810 Baptiste ROGNERUD

M be a subgroup of H ×K. Then, by Lemma 2.3.24 of [6], we have

(2.1)
(
(G×H)/L

)
×H

(
(H ×K)/M

)
∼=

⊔
h∈[p2(L)\H/p1(M)]

(G×K)/
(
L ? (h,1)M

)
Let R be a commutative ring with 1. For G and H two finite groups, we

denote by RB(G,H) the R-module R⊗Z B(G,H). We still denote by ×H

its R-bilinear extension.

Definition 2.1. — The biset category RC over R is the category where:
• The objects are the finite groups.
• If G and H are two finite groups, then HomRC(G,H) =RB(H,G).
• If G, H and K are finite groups, the composition is the product

−×H − : RB(G,H)×RB(H,K)→ RB(G,K).

• If G is a finite group, then the identity morphism is [(G×G)/∆(G)]
where ∆(G) is the diagonal subgroup of G.

A biset functor over R is an R-linear functor from RC to R-Mod.

Here, we choose to apply an “op”-functor on the set of morphisms. This
is just for convenience and this will allow us to work with covariant functors
instead of contravariant functors.

The category of bisets has a very important property. Every morphism
can be written as sum of transitive morphisms. Moreover every transitive
morphism can be factorised and written as a composition of 5 particular
morphisms which are called elementary by Bouc. This is Lemma 2.3.26
of [6]. IfH is a subgroup ofG, then we set IndG

H := GGH and ResG
H = HGG,

where the action of G and H is given by the multiplication. If N is a
normal subgroup of G, then we set InfG

G/N = G(G/N)G/N and DefG
G/N =

G/N (G/N)G where G/N acts via multiplication and G via the canonical
projection onto G/N . If α : H → H ′ is a group isomorphism, then we set
Iso(α) = H′H

′
H where H acts via the morphism f . Then, we have Bouc’s

Butterfly Lemma ([6, Lemma 2.3.26]). Let G and H be two finite groups.
Let L be a subgroup of G×H. Then,

(2.2)
(
G×H

)
/L

∼= IndG
p1(L) ◦ Infp1(L)

p1(L)/k1(L) ◦ Iso(α) ◦Defp2(L)
p2(L)/k2(L) ◦ResH

p2(L),

where α is the canonical isomorphism between p2(L)/k2(L) and
p1(L)/k1(L).
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We are particularly interested by subcategories of the biset category in
which the morphisms will still have similar decompositions. These cate-
gories are called admissible by Bouc.

Definition 2.2 ([6, Definition 4.1.3]). — A subcategory D of RC is
called admissible if it contains group isomorphisms and if it satisfies the
following conditions:

• If G and H are objects of D, then there is a subset S(H,G) of the
set of subgroups of H × G, invariant under (H × G)-conjugation,
such that HomD(G,H) is the submodule of RB(H,G) generated
by the elements [(H ×G)/L], for L ∈ S(H,G).

• If G and H are groups of D, and if L ∈ S(H,G), then q(L) is also
an object of D. Moreover, Defp2(L)

p2(L)/k2(L) ◦ResG
p2(L) and IndH

p1(L) ◦
Infp1(L)

p1L/k1(L) are morphisms in D.

If D is an admissible biset category andH,K ∈ D, we denote by D(K,H)
the set HomD(H,K).
In this article we are mostly interested by two types of admissible biset

categories: replete biset categories and their subcategories consisting of the
left-free bisets. More precisely: let G be a finite group. A section of G is
a pair (B,A) such that A E B 6 G. The quotient B/A is then called a
subquotient of G. If H is isomorphic to a subquotient of G, then we use
the notation H v G. If it is isomorphic to a strict subquotient, we use
the notation H @ G. We denote by Σ(G) the set of all subquotients of
G. Moreover if D is a class of finite groups, we say that D is closed under
taking subquotients if whenever H is a group isomorphic to B/A where
(B,A) is a section of a group G in D, then H is also in D.

Definition 2.3. — Let R be a commutative ring. A subcategory of RC
is called replete if it is a full subcategory of RC whose class of objects is
closed under taking subquotients.

In this article, we will manly work with replete biset categories and their
subcategories consisting of left-free bisets. If G is a finite group, then we
abusively denote by Σ(G) the full subcategory of RC consisting of all the
groups isomorphic to subquotients ofG. It is clearly a replete biset category.

If D is an admissible biset category, then we denote by FD,R the category
of R-linear functors from D to R-Mod, and we call it the category of R-biset
functors over D.

TOME 69 (2019), FASCICULE 2



812 Baptiste ROGNERUD

Definition 2.4. — Let R be a commutative ring and G be a finite
group. The category FΣ(G),R is called the category of R-biset functors over
G and simply denoted by FG,R.

Definition 2.5. — Let R be a commutative ring with 1 and G be
a finite group. The double Burnside algebra of G is the endomorphism
algebra of G in RC. In other words, the double Burnside algebra of G is the
module RB(G,G) endowed with the product induced by the composition
of G-G-bisets.

Let D be an admissible biset category. As the category R-Mod is abelian,
it is well known that the category of biset functors over D is an abelian
category. The abelian structure is point-wise. In other words, it is defined
on the evaluations of the functors.
By Yoneda’s Lemma, if G is an object of D, the representable functor

(also called the Yoneda functor) YG := HomD(G, · ) = D( · , G) is a pro-
jective object of FD,R. Moreover, every object of FD,R is a quotient of a
direct sum of Yoneda functors. So, the category FD,R has enough projec-
tive objects. Using a duality argument one can show that this category has
enough injective objects. See Corollary 3.2.13 of [6] for more details. We
are also particularly interested by the family of simple functors which can
be described (see the next section) using the so-called evaluation functor.
Let G ∈ D. If F is a biset functor over D, then its value F (G) has a

natural structure of module over the endomorphism algebra D(G,G) of
G. More precisely, we have a functor evG : FD,R → D(G,G)-Mod. Since
the abelian structure of FD,R is defined on the evaluations, this functor is
clearly exact. By usual arguments, it has a left and a right adjoint. A left
adjoint denoted by LG,− can be defined as follows. Let H ∈ D. Then, the
right-multiplication by the elements of D(G,G) induces a structure of right
D(G,G)-module on D(H,G). Let V be a D(G,G)-module. Then, we set
LG,V (H) := D(H,G) ⊗D(G,G) V . It is now straightforward to check that
LG,V := D( · , G)⊗D(G,G) V is a biset functor over D and that V 7→ LG,V

is a functor from D(G,G)-Mod to FD,R (for more details and proofs see
Section 3.3 of [6]).
If V is a simple D(G,G)-module, then LG,V has a unique simple quo-

tient. Moreover it is easy to see that any simple functor appears as such
quotient. However, this construction is not completely satisfying as one sim-
ple functor may be realized by many different pairs (G,V ). One can avoid
this problem by considering minimal groups and simple modules over a
quotient of the double Burnside algebra.
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By Proposition 4.3.2 of [6], the quotient of the algebra D(G,G) by the
ideal ID(G,G) consisting of all the morphisms factorizing through groups
strictly smaller than G is isomorphic to the algebra of outer automorphisms
of the group H, denoted by ROut(H).
Theorem 2.6. — Let k be a field. Let D be an admissible biset category.

The set of isomorphism classes of simple objects of FD,k is in bijection with
the set of isomorphism classes of pairs (H,V ) where H runs through the
objects of D and V through the simple kOut(H)-modules.
Proof. — See [6, Theorem 4.3.10]. �

If (H,V ) is a pair consisting of a finite group and a simple kOut(H)-
module, then since kOut(H) is a quotient of D(H,H), one can see V as a
simple D(H,H)-module by inflation. Then SH,V is nothing but the quotient
LH,V /JH,V , where JH,V is the unique maximal subfunctor of LH,V . If K ∈
D, then by Remark 4.2.6 of [6], we have

(2.3) JH,V (K)

=
{

n∑
i=1

φi ⊗ vi ∈ LH,V (K) ; ∀ ψ ∈ D(H,K),
n∑

i=1
(ψ ◦ φi) · vi = 0

}
.

Note that this subfunctor has the property of vanishing at the group H.
Let us recall that a biset functor is finitely generated if it is a quotient

of a finite direct sum of Yoneda functors. In particular, the simple functors
and the Yoneda functors are finitely generated. As in the case of modules
over a ring, the choice axiom implies the existence of maximal subfunctors
of a finitely generated functor. As always, we define the radical of a biset
functor F as the intersection of all maximal subfunctors, and we denote it
by Rad(F ). Over a field, the category of finitely generated biset functors
is a Krull–Schmidt category. In particular, every simple functor SH,V has
a projective cover in FD,k. We denote by PH,V a projective cover of SH,V .

In this article, we will also need the following family of biset functors.
Let H and K be two objects of D. Then∑

X∈D
X@H

D(K,X)D(X,H),

can be viewed as a submodule of D(K,H) via composition of morphisms.
We denote by ID(K,H) this submodule and by k

−→
D (K,H) the quotient

kD(K,H)/ID(K,H). This is a natural right kOut(H)-module. If V is a
kOut(H)-module, then we denote by ∆DH,V the functor

∆DH,V := K 7→
−→
D (K,H)⊗k Out(H) V.
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814 Baptiste ROGNERUD

When the context is clear enough, we will simply denote it by ∆H,V . These
functors were introduced first, in a different form, by Peter Webb in [24].
Webb proved that under suitable hypothesis they are the standard functors
in the highest-weight structure of the category of bisets functors. Since we
think that this is a fundamental result, we will keep this idea in mind by
calling them the standard biset functors. Note that the module V is not
supposed to be simple here.
Similarly, we let ←−D (H,K) be the quotient of D(H,K) by the R-sub-

module consisting of all morphisms factorizing through groups strictly
smaller than H. Let V be a kOut(H)-module. We denote by ∇DH,V the
functor

∇DH,V := K 7→ Homk Out(H)
(←−
D (H,K), V

)
.

These functors are called the co-standard biset functors. If H ∈ D, then
we have a functor from FD,k to kOut(H)-Mod defined by

F 7→ F (H) =
⋂

K@H
U∈D(K,H)

Ker
(
F (U)

)
.

Lemma 2.7. — Let D be an admissible biset category. Let H ∈ D. The
functor sending a kOut(H)-module V to ∆H,V is a left adjoint to the
functor sending a biset functor F to F (H).

Proof. — This is straightforward. �

3. Evaluations of biset functors

Let k be a field and D be an admissible biset category. Let G ∈ D. Then,
we have an evaluation functor from FD,k to D(G,G)-Mod. It is well known
that this evaluation functor carries a lot of informations of the category of
biset functors into the category of D(G,G)-modules. More recently, Bouc,
Stancu and Thévenaz showed in [7] and [8] that the converse is also true.
For example, we have:

Proposition 3.1. — Let D be an admissible biset category. Let S be
a simple biset functor over D. Let G be a finite group such that S(G) 6= 0.
Let F be a biset functor over D. Then, the following are equivalent.

(1) S is isomorphic to a subquotient of F .
(2) The simple D(G,G)-module S(G) is isomorphic to a subquotient of

F (G).
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AROUND EVALUATIONS OF BISET FUNCTORS 815

Proof. — It is Proposition 3.5 of [7] for the case of a replete biset cate-
gory. The proof is formal, it can be applied to any admissible biset cate-
gory. �

However, the evaluation at G is not always compatible with algebraic
operations. For example, it does not commute with taking the radical.
Indeed, as explained in Section 9 of [7], the evaluation at a group G of
the radical of a biset functor is not always the radical of the evaluation.
In [21], we observed that this phenomenon is connected with the vanishing
property of the simple biset functors.

Lemma 3.2. — Let D be an admissible biset category. Let F ∈ FD,k be
a finitely generated biset functor. Let G ∈ D.

(1) Rad(F (G)) ⊆ [Rad(F )](G).
(2) If the simple quotients of F do not vanish at G, then Rad(F (G)) =

[Rad(F )](G).

Let P be a projective indecomposable biset functor. If the simple quotient of
P does not vanish at G, then P (G) is a projective indecomposable D(G,G)-
module.

Proof. — Let M be a maximal subfunctor of F . Then, M(G) is a max-
imal submodule of F (G) if the simple quotient F/M does not vanish at
G and M(G) = F (G) otherwise. For the second part, if N is a maxi-
mal submodule of F (G), let N be the subfunctor of F generated by N .
There is a maximal subfunctor M of F such that N ⊆ M ⊂ F . We have
N(G) = N ⊆ M(G) ⊂ F (G). By maximality, M(G) = N . The result
follows.
If P is a projective indecomposable functor, it has a simple top S. By

hypothesis, the simple functor S does not vanish atG. By Yoneda’s Lemma,
there is a non-zero morphism between the representable functor YG and S.
Since S is simple, this morphism is surjective. Moreover, the functor P is
a projective cover of S, so P is isomorphic to a direct summand of YG.
This implies that P (G) is a direct summand of D(G,G). In particular, the
evaluation P (G) is a projective D(G,G)-module. Moreover, the module
P (G) has a unique simple quotient S(G), so it is indecomposable. �

Remark 3.3. — The results of Section 9 of [7] can by illuminated by this
Lemma.

As corollary, we also have the following useful result.
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816 Baptiste ROGNERUD

Corollary 3.4. — Let G be a finite group. Let k be a field. Then,
the Burnside module kB(G) is an indecomposable projective kB(G,G)-
module. It is a projective cover of the simple kB(G,G)-module S1,k(G).

Proof. — Since kB is a representable functor in FG,k, it is projective.
The functor kB is nothing but the functor L1,k. By the arguments detailed
below Definition 2.5, this functor has a simple top which is isomorphic to
S1,k. Since the trivial group 1 is a quotient of the group G, one can write
IdG/G = DefG

G/G ◦ InfG
G/G. By definition, S1,k(G/G) ∼= k and since the

identity of S1,k(G/G) factorizes through S1,k(G), the last cannot be zero.
So, the simple functor S1,k does not vanish at G. The result follows from
Lemma 3.2. �

Let k be a field. As explained above, the simple biset functors are para-
metrized by the pairs (H,V ) whereH runs through the isomorphism classes
of objects of D and V runs through the isomorphism classes of simple
kOut(H)-modules. Via evaluation at G, we have a classification of the
simple kD(G,G)-modules and their projective cover.

Corollary 3.5. — Let k be a field. Let D be an admissible biset cate-
gory. The set consisting of the SH,V (G) for (H,V ) ∈ Λ such that SH,V (G) 6=
0 is a complete set of representatives of simple D(G,G)-modules. Moreover,
PH,V (G) is a projective cover of SH,V (G).

Proof. — The first part is [7, Corollary 3.3] which has to be adapted to
the case of admissible biset categories, but one more time, this is straight-
forward. The second part is an obvious consequence of Lemma 3.2. �

Finally we have another family of indecomposable biset functors.

Corollary 3.6. — Let k be a field. Let D be an admissible biset cat-
egory and G be a finite group. The D(G,G)-modules ∆H,V (G) are inde-
composable for (H,V ) ∈ Λ such that SH,V (G) 6= 0.

Proof. — We know that ∆H,V is a quotient of PH,V . Since the evaluation
functor is exact, we have that ∆H,V (G) is a quotient of the indecomposable
projective module PH,V (G). The result follows. �

Obviously, this classification is not completely satisfying, as it is well
known that understanding which simple biset functors vanish at G is an
extremely hard combinatorial problem (see [8] for a recent survey).

ANNALES DE L’INSTITUT FOURIER



AROUND EVALUATIONS OF BISET FUNCTORS 817

4. The generating relation

Since it seems too difficult to understand when a simple functor vanishes
at a finite group G, we try to avoid the difficulty by considering finite
groups such that there is no non-trivial vanishing of simple functors.

Definition 4.1. — Let k be a field. Let G be a finite group. The group
G is a non vanishing group over k if none of the simple functors of FG,k

vanishes at G.

Remark 4.2. — This is clearly equivalent to the fact that SH,V (G) 6= 0,
for every simple functor SH,V of FkC,k such that H is isomorphic to a
subquotient of G.

We use the notation G is a NVk-group if it is non-vanishing over a field k.
Let H and G be two finite groups. The composition in the biset category:

kB(H,G)× kB(G,H)→ kB(H,H)(
HUG, GWH

)
7→ U ×G W.

induces a morphism of kB(H,H)-modules. We will abusively denote by
kB(H,G)B(G,H) the image of this composition in kB(H,H). It is the
submodule of kB(H,H) consisting of the linear combinations of elements
of the form W ×G U for W ∈ RB(H,G) and U ∈ RB(G,H). Using this
composition, we have an intrinsic understanding of the non-vanishing at G
of all the simple functors S such that S(H) 6= 0.

Proposition 4.3 (Stancu). — Let k be a field. Let G and H be two
finite groups of D. The following are equivalent.

(1) SH,V (G) 6= 0 for every kB(H,H)-simple module V .
(2) There is an isomorphism of kB(H,H)-modules between kB(H,G)×

B(G,H) and kB(H,H).
(3) There exists n ∈ N∗ and for 1 6 i 6 n there are Ui ∈ kB(H,G) and

Wi ∈ kB(G,H) such that

idH =
n∑

i=1
Ui ×G Wi.

Remark 4.4. — The equivalence between (1) and (2) was explained to
me by Radu Stancu and I am extremely grateful to him.
It is important to remark that the family of the simple functors in the

first point is not the family consisting of the simple functors with minimal
groupH. Indeed, here we consider all the simple functors indexed by (H,V )
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where V is a simple kB(H,H)-module and not only a simple kOut(H)-
module.

Proof. — It is clear that (2) and (3) are equivalent. We show that (1) is
equivalent to (2).

Let us assume (2). Since V ∼= SH,V (H) 6= 0, then the identity of SH,V (H)
is non zero. By hypothesis IdH ∈ kB(H,G)B(G,H). So, this morphism
factorizes through SH,V (G) which must be non zero.
Conversely, let V be a simple kB(H,H)-module. Since SH,V (G) 6= 0,

then LH,V (G) 6= JH,V (G). By the description of JH,V given in (2.3), this
means that there is an element∑

i

φi ⊗ vi ∈ kB(G,H)⊗kB(H,H) V

and an element ψ ∈ kB(H,G) such that
∑

i(ψφi) · vi 6= 0.
So the action of the element φ×G

(∑
i φi

)
is non zero on V . Since V is

a simple module, we have:

kB(H,G)B(G,H) · V = V.

It holds for every simple module V , so kB(H,G)B(G,H) is not contained
in any maximal submodule of kB(H,H). It must be equal to kB(H,H). �

Definition 4.5. — Let k be a field. Let G and H be two finite groups.
We say that H is k-generated by G, if we have kB(H,G)B(G,H) =
kB(H,H). In this case we use the notation H `k G. If the context is
clear enough, we will simply use the notation H ` G.

As immediate Corollary, we have an intrinsic definition of non-vanishing
groups.

Proposition 4.6. — Let G be a finite group and k be a field. Then,
the following are equivalent.

• The group G is NVk.
• Every subquotient H of G is k-generated by G.

Proof. — It is an easy consequence of Lemma 4.3. �

The generating relation also has an algebraic interpretation in the cate-
gory of biset functors.

Lemma 4.7. — Let k be a field. Let D be a full subcategory of the
biset category. Let G and H be two groups of D. Then the following are
equivalent.

(1) H `k G.
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(2) There exists n ∈ N∗ such that YH is a direct summand of (YG)m.

Proof. — It is an easy application of Yoneda’s Lemma. More precisely,
if H `k G, then there exists n ∈ N∗ and for 1 6 i 6 n there are Ui ∈
kB(H,G) and Wi ∈ kB(G,H) such that

idH =
n∑

i=1
Ui ×G Wi.

By Yoneda’s Lemma the biset Ui induces via right multiplication a mor-
phism φi between YH and YG and the biset Vi induces via right multipli-
cation a morphism ψi : YG → YH . Moreover, the morphism

∑n
i=1 ψi ◦ φi

corresponds to the identity of kB(H,H) via the isomorphism of Yoneda’s
Lemma, so it is the identity of YH .
Conversely, if there exists n ∈ N such that YH is a direct summand of

(YG)n, then for i ∈ {1, · · · , n} there are morphisms φi : YH → YG and
ψi : YG → YH such that:

idYH
=

n∑
i=1

ψi ◦ φi.

Using Yoneda’s Lemma one more time, we see that H `k G. �

Now, it is not difficult to prove that the non-vanishing groups are exactly
the finite groups G such that the evaluation at G induces an equivalence
of categories between FG,k and kB(G,G)-Mod.

Theorem 4.8. — Let G be a finite group. Let k be a field. Then the
following are equivalent.

(1) G is a NVk-group.
(2) evG : FG,k → kB(G,G)-Mod is an equivalence of categories.

Proof. — If the evaluation at G is an equivalence of categories, it cannot
kill a simple functor. So G is a non-vanishing group.
Conversely, Lemma 4.7 implies that the representable functor YG is a

pro-generator of FG,k. By Morita’s Theorem, the functor HomFG,k
(RBG, · )

is an equivalence of categories between FG,k and EndFG,k
(RBG). Finally,

Yoneda’s Lemma identifies this functor with the evaluation at G and
EndFG,k

(RBG) with kB(G,G).
Alternatively, we give a direct proof of the result without using Morita’s

Theorem. The functor LG,− is a left adjoint to the evaluation at G. Let V
be a kB(G,G)-module. The value at V of the co-unit of the adjunction is
the canonical isomorphism

V ∼= kB(G,G)⊗kB(G,G) V

TOME 69 (2019), FASCICULE 2



820 Baptiste ROGNERUD

Let F be a k-biset functor over G. The value at F of the unit is the following
morphism. Let X be a subquotient of G, then we have:

εF (X) : kB(X,G)⊗kB(G,G) F (G)→ F (X)
W ⊗ f 7→ F (W )(f).

If G is a NVk-group, then by Proposition 4.3 there is an integer n and some
morphisms U1, · · · , Un ∈ kB(X,G), and W1, · · ·Wn ∈ kB(G,X) such that

idX =
n∑

i=1
Ui ×G Wi.

We let δF (X) : F (X)→ kB(X,G)⊗kB(G,G)F (G) be the morphism defined
by δF (X)(x) :=

∑n
i=1 Ui⊗F (Wi)(x) for x ∈ F (X). It is easy to check that

δF (X) is an inverse isomorphism of εF (X). �

Remark 4.9. — The arguments developed here are much more general
than the case of a replete biset category.

(1) For example one can take for the category D a category of so-
called left-free, or bi-free, biset functors. At least, over a field of
characteristic zero it seems that there are a lot of non-vanishing
groups for the left-free case. However, since the category D contains
less morphisms, there are a lot of vanishing of simple functors when
the characteristic of the field is non zero, particularly for the bi-free
case.

(2) On the other hand, the opposite phenomenon can appear. In the
context of correspondence functors recently developed by Bouc and
Thévenaz (see [10] for lots of details) every object of their category
is generated by a larger object. So there is no non-trivial vanishing.
As consequence, in this context, if X is a finite set, let D be the
full subcategory of the category of correspondences consisting of
all the sets smaller than X. Then, the evaluation at X induces an
equivalence between the category of k-linear functors from D to
k-Mod and the category of modules over the algebra of all relations
on X. This, together with results on the simple correspondences
functors implies, and strengthens Theorem 4.1 of [9].

(3) Another example of such equivalence appears in the context of
Mackey functors. There are various possible definitions of Mackey
functors, for example they can be defined as modules over the
Mackey algebras as well as particular bivariant functors over the
category of G-sets. Unfortunately, the equivalence between the dif-
ferent definitions is rather technical. For a recent survey on theses
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equivalences see Section 2 of [20], or the first Sections of [23]. With
Lindner’s definition (see [17]) a Mackey functor is nothing but an
additive functor from a category of spans of G-sets to the category
of abelian groups. Every finite G-set X is generated by the G-set
ΩG :=

⊔
H6G G/H in the sense of Definition 4.5. So the evaluation

at ΩG induces an equivalence of categories between the category
of Mackey functors and the category of modules over B(Ω2

G) the
algebra of endomorphisms of ΩG. This last algebra is known as the
Mackey algebra introduced by Thévenaz andWebb in [23]. A similar
result holds for cohomological Mackey functors and cohomological
Mackey algebras (see Section 2 of [19] for more details about the
different definitions of cohomological Mackey functors.)

The following result is now obvious but still interesting.

Corollary 4.10. — Let k be a field and G be a NVk-group. Let F ∈
FG,k be a biset functor over G. Then F ∼= LG,F (G).

Proof. — Since G is a non-vanishing group, the evaluation at G is an
equivalence of categories from FG,k to kB(G,G)-Mod. Any quasi-inverse
equivalence is isomorphic to the left adjoint LG,− of the evaluation. �

Remark 4.11. — It is clear that this result fails if G is a vanishing group.
Indeed, let S be a simple functor such that S(G) = 0. The functor S is a
non-zero functor, so it cannot be isomorphic to LG,S(G) = 0. Still, we will
use a weak degeneration of this result for the proof of Theorem 7.3.

More generally, if G is a vanishing group, we have a situation of recolle-
ment:

Proposition 4.12. — Let k be a field. Let D be a replete biset category.
Let G ∈ D. We denote by K(G) the full subcategory of FD,k consisting of
the functors F such that F (G) = 0. Then, we have a situation of recolle-
ment:

K(G) ←→
←
FD,k

←→
←
kB(G,G)-Mod.

In particular, kB(G,G)-Mod ∼= FD,k/K(G).

Proof. — We give the different functors between these categories. The
result will follow from straightforward verifications of the Axioms of [12].
The functor between FD,k and kB(G,G)-Mod is the evaluation at G. It has
a left adjoint LG,− and a right adjoint Lo

G,− (see [6, 3.3.5]). The functor
between K(G) and FD,k is the embedding functor. It has a left adjoint
which sends a functor F to its largest quotient which belongs in K(G). The
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right adjoint is the functor sending F to its largest subfunctor belonging
in K(G). �

5. Some non-vanishing groups

In this section, we investigate basic properties of non-vanishing groups. In
the first part we give an infinite list of non-vanishing groups. The groups
of this list have the particularity of being non-vanishing over any field.
Moreover, they are nilpotent.
Unfortunately we do not succeed to classify the non-vanishing groups.

Our problem is in theory much easier than the problem of understand-
ing the vanishing of the simple functors. Indeed we ask that none of the
simple functors vanishes at G which is a lot stronger. In particular, this
can be rephrased as a condition only involving a composition of bisets (see
Proposition 4.6).
If this condition seems easier to handle, in the fact it is still difficult to

check it. At the end of this section we construct a non-trivial example of
non-vanishing group over a field of characteristic zero. We will see that the
non-vanishing property of this group comes from some non trivial results
about the representations of the group GL(3, 2). This example is so patho-
logic that it seems very unlikely to find a classification. This example also
shows that the family of non-vanishing groups contains some non-nilpotent
groups and is not closed under taking subgroups and subquotients and that
the non-vanishing condition depends of the ground field.
Let us start this investigation by looking at the relation `.

Lemma 5.1. — Let k be a field.
• The relation `k is reflexive, and transitive.
• If G and H are two groups such that H `k G then H is isomorphic

to a subquotient of G.

Proof. — Let G, H and K be three finite groups. It is clear that G `k G.
Now, let us assume that K `k H and H `k G. One can use the equivalent
assertions of Lemma 4.3 in order to show that K `k G. Alternatively, one
can use the equivalent characterisation of Lemma 4.7. That is K `k H if
and only if there is an integer n such that YK | (YH)n in the category of
biset functors.
For the second point, if H `k G, then kB(H,G)B(G,H) = kB(H,H).

Let us denote by I(H,H) the submodule of kB(H,H) consisting of all
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the H-H-bisets factorising strictly below H. Then

kOut(H) ∼= kB(H,G)B(G,H)/I(H,H).

In particular, the last quotient is non zero. Moreover, by Bouc’s butterfly
lemma (See (2.2)) any element in kB(H,G) is a k-linear combination of
transitive bisets which factors through subquotients of H and G. So if H is
not a subquotient of G, then every H-G-biset factorizes through a proper
subquotient of H, and hence is zero in the quotient. �

Lemma 5.2. — Let k be a field. If G is an abelian group, then G is a
NVk-group.

Proof. — This is Proposition 3.2 of [8]. Since the argument is both crucial
and easy we recall it. We have to prove that for every subquotient H of
G and for every simple kOut(H)-module, we have SH,V (G) 6= 0. Since
the group G is abelian, every subquotient is isomorphic to a quotient of
G. Now if H = G/N for a normal subgroup N of G, we have idH =
DefG

G/N InfG
G/N . �

More generally, this argument can be generalized to self-dual groups.

Corollary 5.3. — Let G be a finite group such that every subgroup
is isomorphic to a quotient of G. Then G is a NVk-group for every field k.

Proof. — By hypothesis, every subgroup of G is isomorphic to a quotient
of G, so it is generated by G. Let’s assume that for every H subgroup of
G we have H `k G. Let H = B/A be a subquotient of G. Then H is
generated by B, and by hypothesis B is generated by G. So by transitivity
of the relation `k, the group H is generated by G. �

Such a finite group is called a s-self dual group and these groups have
been completely classified in [1]. This classification involves two families
of finite p-groups. Let p be a prime number, then we denote by Xp3 an
extra-special p-group of exponent p. Let n be an integer, then we denote
by Mp(n, n) the finite group <a, b | apn = bpn = 1, bab−1 = a1+pn−1

>.
The following theorem summarizes the classification in [1].

Theorem 5.4. — Let G be a finite group.
(1) The group G is s-self dual if and only if G is nilpotent and all Sylow

subgroups of G are s-self dual.
(2) Let p be a prime number. Let P be a finite p-group. Then P is s-self

dual if and only if P is:
• P is abelian.
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• P ∼= Xp3×M whereM is an abelian p-group with exp(M) 6 p
when p is an odd prime number.

• P ∼= Mp(n, n) × M where M is an abelian p-group with
exp(M) < pn.

Proof. — Theorem 7.3 together with Theorem 7.1 of [1]. �

Before continuing our investigation let us recapitulate what we have done:
the list of non-vanishing groups includes all the abelian groups and this list
of self-dual groups.
The proof follows from some easy considerations about the generating

relations and the trivial fact that if H is isomorphic to a quotient of G,
then SH,V (G) 6= 0 for any simple kOut(H)-modules.

As it can be seen in Section 3 of [8] there are some less trivial non-
vanishing properties involving the geometry of the sections in a finite group.
So, we cannot hope to have constructed all the non-vanishing groups at this
stage!
There is a formula for the dimension of the evaluation at a finite group G

of the simple functor SH,V in Theorem 7.1 of [7]. This formula involves the
computation of a bilinear form which is constructed by using the character
of the simple kOut(H)-module V . In particular, the vanishing or the non-
vanishing at G of this simple functor should depend on the simple module
V and on the field k.
However, we are interested in the non vanishing at G of all the simple

functors havingH as minimal group. We have several results for this type of
global non-vanishing (See Section 3 of [8] for more details) and all of them
only depend on the finite group (not on the ground field nor on the simple
modules). In these cases, the generating relation is very simple because the
identity is the product of two transitive bisets.
So, it seems natural to ask the following two questions:
(1) Let k be a field. Let G be a NVk-group. Let H be a subquotient of

G. Is it always possible to find an element U ∈ kB(H,G) and an
element V ∈ kB(G,H) such that idH = U ×G V ? This question
is not hopeless since the corresponding question has a positive an-
swer for the category of finite sets with correspondences (see [10,
Lemma 4.1]).

(2) Let k be a field and G be a finite group. If G is non-vanishing over
the field k, is it non-vanishing over any field?

In the rest of this section, we are going to give a negative answer to these
two naive questions. More precisely, we give an example of a non-vanishing
group G over a field of characteristic zero with a subquotient H such that
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idH is not a product of two elements. Moreover, this example shows that
the structure of the simple modules for the group algebra of the outer
automorphism of the subquotients of G is also involved in the vanishing or
non-vanishing property of G. In particular, this group is not non-vanishing
over any field. We start by a useful general lemma about non-vanishing
groups.

Lemma 5.5. — Let G be a finite group. Let k ⊂ K be a field extension.
Then G is NVk if and only if G is NVK .

Proof. — By Lemma 4.3, the group G is NVk if and only if kB(H,G)×
B(G,H) = kB(H,H) for every H v G. That is, if and only if the
kB(H,H)-modules kB(H,G)B(G,H) and kB(H,H) are isomorphic for
every H v G. Since K ⊗k kB(H,H) = KB(H,H) and K ⊗k kB(H,G) ×
B(G,H) = KB(H,G)B(G,H), the result follows from Noether Deuring’s
Theorem (see [16, Theorem 19.25]). �

We will also use the following result in order to compute the dimension
of some evaluations of some simple functors.

Theorem 5.6 (Bouc). — Let k be a field of characteristic 0. Let p be a
prime number and P be a finite p-group which is not 1 or Cp × Cp. Let G
be a finite group. Then, dimk SP,k(G) is the number of conjugacy classes
of sections (T, S) of G such that T/S ∼= P and T is the direct product of a
p-group and a cyclic group.

Proof. — See the Main Theorem of [5]. �

Lemma 5.7. — Let k be a field of characteristic 0. Let G = A4 × C2
and H = C2 × C2 × C2. Then idH cannot be written as a product of an
element of kB(H,G) and an element of kB(G,H).

Proof. — Let us first remark that the fact that idH is the product of an
element of kB(H,G) and an element of kB(G,H) is equivalent to the fact
that YH is a direct summand of YG in the category of biset functors. More-
over, by standard arguments, if X is a finite group, then the decomposition
of the Yoneda functor YX as direct sum of indecomposable projective is
given by:

YX
∼=

⊕
(K,W )∈Λ

P
nK,W (X)
K,W ,

where PK,W is a projective cover of SK,W and

nK,W (X) = dimk SK,W (X)/dimk End(W ).
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So YH is a direct summand of YG if and only if for every simple functor
SK,W we have:

dimk SK,W (H) 6 dimk SK,W (G).
Now, we claim that we have dimk SC2,k(G) = 14 and dimk SC2,k(H) = 35
so YH is not a direct summand of YG. It remains to prove the claim. These
computations can be, in theory, done by using the arguments of Section 7
of [7]. However, the bilinear forms are so huge that it is not reasonable
to give a full proof here. Instead, we use Theorem 5.6. Since there are
35 sections C2 in C2 × C2 × C2, we have that dimk SC2,k(H) = 35. It is
not difficult to check that there are 15 conjugacy classes of sections C2 in
A4 × C2: 3 sections (C2, 1), 1 section (C6, C3), 7 sections (C2 × C2, C2), 3
sections

(
(C2)3, (C2)2) and 1 section (A4 × C2, A4). However, since A4 ×

C2 is not the direct product of a 2-group and a cyclic group, we have to
discount the conjugacy class of the section (A4 ×C2, A4). Finally, we have
dimk SC2,k(G) = 14. �

The next step is to check that A4 × C2 is a non-vanishing group over a
field of characteristic zero. Actually, we prove that it is non-vanishing over
any field of characteristic different from 3.

Lemma 5.8. — Let G = A4 ×C2 and let k be a field. The group G is a
NVk-group if and only if char(k) 6= 3.

Proof. — Using the fact that the relation ` := `k is transitive, it is
enough to check thatH ` G for every subgroupH ofG. Up to isomorphism,
the subgroups of G are: 1, C2, C3, C2×C2, C6, C2×C2×C2, A4 and A4×C2.
For our purpose it is enough to look at subgroups which are not isomorphic
to a quotient of G. It remains C2 ×C2 and H := C2 ×C2 ×C2. Moreover,
the group C2 × C2 is a quotient of H, so by transitivity of `, it is enough
to check that H ` G. So we want to check that

idH ∈ kB(H,G)kB(G,H),

but in this case the identity is not a product of bisets, and it is rather
technical to check this without the help of a computer. However, this is
equivalent to the checking that for every simple kOut(H)-module V we
have SH,V (G) 6= 0. Since ΣH(G) = {(H, 1)}, by Proposition 7.1 of [8], we
have:

SH,V (G) ∼= TrG/H
1 (V ),

where G/H acts on V via conjugation.
Since G/H is a cyclic group of order 3, when k is a field of characteristic

3, then SH,k(G) = 0 and G is a vanishing group. Now let us suppose that
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k is a field of characteristic p 6= 3. By Lemma 5.5, we can assume the field
to be algebraically closed. Let Γ be the subgroup of GL3(F2) consisting
of conjg for g ∈ G/H. Let V be a simple kGL3(F2)-module. Since Γ is a
group of order 3, the group algebra kΓ is semisimple. So ResGL3(F2)

Γ (V )
is a semisimple module. The space of fixed point of either of the two non
trivial simple modules is 0. In conclusion V Γ 6= {0} if and only if the trivial
kΓ-module is a direct summand of ResGL3(F2)

Γ V . Since the trace map is
surjective, SH,V (G) 6= 0 if and only if k | ResGL3(F2)

Γ V . We did not find a
structural reason for this fact, and as far as we known, it is maybe just a
coincidence for the group GL3(F2) and its subgroup of order 3.
There are basically three cases: p = 0, p = 2 and p = 7. This can be

done by looking at the ordinary character table for p = 0 and for p = 2
and p = 7, one can look at the Brauer character tables of GL3(F2). For our
purpose, we only need to have the values of the characters on the elements
of order 1 and 3. All the elements of order 3 are conjugate in G. We let
x to be an element of order 3. We have the following tables, where the
characters are written horizontally.

(1) 1 3 3 6 7 8
(x) 1 0 0 0 1 −1

For the prime p = 2 we have the following table:

(1) 1 3 3 8
(x) 1 0 0 −1

And finally, for p = 7, we have:

(1) 1 3 5 7
(x) 1 0 −1 1

In the three cases, it is easy to check that the trivial module appears at
least ones in ResGL(3,2)

C3
(V ) for every simple kGL(3, 2)-module V . �

As corollary, of this example, we have:

Corollary 5.9. — Let k be a field. The family of NVk-groups is not
closed under taking subgroups or taking quotients. Moreover, it contains
non nilpotent groups.

Proof. — A4 is a subgroup and a quotient of A4 × C2. We just have
to show that A4 is a vanishing group for every field. Let C2 × C2 be the
subgroup of order 4 of A4. It is easy to see that ΣC2×C2(A4) = {(C2 ×
C2, 1)}. So if V is a simple kOut(C2 × C2)-module, by Proposition 7.1
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of [8], we have:
SH,V (G) ∼= TrNG(T,S)

1 (V ).
Here Out(C2 × C2) ∼= S3 and NG(T, S) is the subgroup of S3 of order 3.

(1) If char(k) = 0 or 2. If V is the simple kS3-module of dimension 2,
then it is easy to check that TrC3

1 (V ) = 0.
(2) If char(k) = 3, then TrC3

1 (k) = 0.
So in every case, the group G is a vanishing group. �

Finally, we summaries the known results for the non-vanishing groups.

Theorem 5.10.
(1) The abelian groups and, more generally, the s-self dual groups are

non-vanishing over any field.
(2) There are other examples of non-vanishing groups over a field of

characteristic 0.
(3) The family of non-vanishing group over a field k is not closed under

taking subgroups or quotients.

Remark 5.11. — I don’t know whether there are other examples of groups
that are non-vanishing over any field. Even better, one can define the gen-
erating relation over the ring of integers. Then all the s-self-dual groups
are non-vanishing over the ring Z, and I am wondering about the existence
of others.

6. Around highest-weight structure

We recall the famous Theorem of Peter Webb about the Highest-weight
structure of the category of biset functors.

Theorem 6.1 (Webb). — Let D be an admissible category. Let k be a
field such that char(k) - |Out(H)| for every H ∈ D. If D has only finitely
many isomorphism classes of objects, then the category FD,k is a highest-
weight category.

Proof. — This is a reformulation of Theorem 7.2 of [24]. The standard
objects are given by the functors ∆H,V where SH,V is a simple functor
of D. Our context is slightly more general than the one of Webb. Indeed,
his theorem is stated in terms of globally defined Mackey functors. They
correspond to some particular admissible biset categories. Nevertheless, it is
straightforward to check that his result can be extended to our more general
situation. Moreover, one can avoid the counting arguments of Theorem 6.3
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of [24] by a systematic use of this functorial definition of the standard
objects. �

The representation theory of quasi-hereditary algebras is philosophically
close to the representation theory of semi-simple Lie algebras. One very im-
portant feature of semi-simple Lie algebra is the existence of so-called Borel
subalgebras. This notion has been generalized to arbitrary quasi-hereditary
algebras by König in [15] and seems to be very important in recent devel-
opment of the theory. The key result, which is highly non trivial, is that
for every quasi-hereditary algebra A, there is an algebra A′ that is Morita
equivalent to A such that A′ has an exact Borel subalgebra (see [14, Corol-
lary 1.3]). In the rest of the section, we describe the category of modules
over an exact Borel subalgebra of the biset functor category.

Definition 6.2 ([14, Definition 2.2]). — Let (A,6) be a quasi-here-
ditary algebra with n simple modules. Then, a subalgebra B ⊆ A is called
an exact Borel subalgebra if:

(1) The algebra B has also n simple modules denoted by LB(i) for
i ∈ {1, . . . , n}, and (B,6) is a quasi-hereditary algebra with simple
standard modules.

(2) The induction functor A⊗B − is exact.
(3) There is an isomorphism A⊗B LB(i) ∼= ∆A(i). Here ∆A(i) denotes

the standard module with weight i of A.

The reason to call such a subalgebra an exact Borel subalgebra comes
from an analogy due to König (see [15, Introduction]). Let g be a complex
semi-simple Lie algebra and b be a Borel subalgebra. Let U(g) and U(b) be
the corresponding enveloping algebras. The Poincaré–Birkhoff–Witt theo-
rem implies that U(g) is free as left or right U(b)-module (See [13, Sec-
tions 0.5 and 1.3]). In particular, the induction from U(b) to U(g) is an
exact functor. So the second point of the definition can be thought of as
an analogous of the PBW theorem.
The category of biset functors is equivalent to a category of modules

over an algebra A (without unit in general). But, in this paper we are more
interested by the category of biset functors and not very interested by the
choice of an underlying algebra. So, if there is a subcategory of FD,k which
is equivalent to the category of modules over an exact Borel subalgebra of
A, I will abusively say that this category is an exact Borel subcategory.
If D is a replete biset category, we denote by D0 the following admissible

biset category. The objects of D0 are the objects of D. Now, if H and K are
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two groups of D, then HomD0(H,K) is given by the left-free double Burn-
side algebra. That is, we have forgotten the inflation in the five elementary
bisets. The biset functors over D0 are sometimes called deflation functors.

Lemma 6.3. — Let D be a replete biset category and let D0 as above.
Let H ∈ D and F ∈ FD,k. We write ResDD0

the forgetful functor from FD,k

to FD0,k. Then, we have an isomorphism, natural in F , of kOut(H)-module

ResDD0
F (H) ∼= F (H).

Proof. — Let F ∈ FD,k. Then, by definition we have:

F (H) =
⋂

K@H
U∈kB(K,H)

Ker
(
F (U)

)
.

We claim that we have:

(6.1) F (H) =
⋂

(B,A)∈Σ(H)
B/A@H

Ker
(
F (DefB

B/A ◦ResH
B )
)
.

It is clear that F (H) is a subset of the right hand side term. Conversely,
let x be an element of the right hand side. Let K be a strict subquotient of
H and U ∈ kB(K,H). Then U is a linear combination of transitive bisets
(K ×H)/L. Moreover, by Bouc’s Butterfly decomposition we have:

(K ×H)/L ∼= IndK
D ◦ InfD

D/C ◦ Iso(α) ◦DefB
B/A ◦ResH

B ,

where (B,A) is a particular section of H and (D,C) is a particular section
ofK. It is clear that B/A is a strict subquotient ofH as it is isomorphic to a
subquotient of K. Now DefB

B/A ◦ResH
B kills x by assumption, so (K×H)/L

kills x. This proves that x ∈ Ker(F (U)), and the equality (6.1) holds. The
same result holds for ResDD0

(F ), as the butterfly decomposition still holds
in the category D0. The only difference is that there is no inflation in this
decomposition. �

Theorem 6.4. — Let D be a replete biset category with only finitely
many isomorphism classes of objects. Let k be a field such that char(k) -
|Out(H)| for H ∈ D. Then, the category FD0,k is an exact Borel subcate-
gory of FD,k.

Proof. — By Webb’s Theorem 6.1, under these hypothesis the category
FD0,k is a highest-weight category. Moreover, by Proposition 9.1 of [24], all
the standard functors ∆D0

H,V are simple. Let V be an arbitrary kOut(H)-
module. Let F be any functor in FD,k. Then, using successive adjunctions
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and the isomorphism of Lemma 6.3, we have:

HomFD,k

(
l IndDD0

(
∆D0

H,V

)
, F
)
∼= HomFD0,k

(
∆D0

H,V ,ResDD0
F
)
,

∼= Homk Out(H)

(
V,ResDD0

(F )(H)
)
,

∼= Homk Out(H)
(
V, F (H)

)
∼= HomFD,k

(
∆DH,V , F

)
.

Since this holds for any functor F , we have that l IndDD0
sends the standard

functors for the category D0 to the standard functors in FD,k.
It remains to check that the functor l IndDD0

is exact. For this, we use
the description of this induction due to Rosalie Chevalley (See Section 5.1
of [11] for more details). Let F be a deflation functor, then she proved(1)

that

l(IndDD0
F
)
(G) =

⊕
H6G

F (NG(H)/H)


G

∼=
⊕

[H6G]

F (NG(H)/H)NG(H).

Here [H 6 G] denotes a set of representatives of conjugacy classes of sub-
groups of G, and the group NG(H) acts on F (NG(H)/H) via conjugation.
However, the action of NG(H) over F (NG(H)/H) is trivial. So, we have:

l(IndDD0
F
)
(G) ∼=

⊕
[H6G]

F (NG(H)/H).

In particular, it becomes clear that the functor l IndDD0
is exact. �

For the double Burnside algebra, the situation is more complicated.

Theorem 6.5. — Let G be a finite group. Let k be a field such that
char(k) - |Out(H)| for H v G.

(1) The left-free double Burnside algebra kB0(G,G) is a quasi-heredi-
tary algebra with simple standard modules.

(2) If G is a non-vanishing group, then the double Burnside algebra
is quasi-hereditary. However, the left-free double Burnside algebra
kB0(G,G) is not always an exact Borel subalgebra.

Proof.
(1). — We denote by Σ(G)0 the subcategory of the biset category con-

sisting of the subquotients of G and where the morphisms are given by the
left-free double Burnside modules. In general the category of modules over

(1)under stronger hypothesis on the field and the category D. However, one can check
that her proof can be generalized to our situation.

TOME 69 (2019), FASCICULE 2



832 Baptiste ROGNERUD

kB0(G,G) is not equivalent to the category FΣ(G)0,k. Still, by Webb’s The-
orem 6.1, the category FΣ(G)0,k is a highest-weight category with simple
standard functors. Let Λ be the set of SH,V (G) where SH,V runs a set of rep-
resentatives of simple functors of FΣ(G)0,k such that SH,V (G) 6= 0. Then, by
the arguments of Lemma 3.2, the set Λ is a complete set of representatives
of simple modules over the left-free double Burnside algebra. Moreover, if
PH,V is a projective cover of SH,V , then PH,V (G) is a projective cover of
SH,V (G). The standard modules will be the evaluation at G of the standard
functors ∆H,V such that SH,V (G) 6= 0. By hypothesis, there are subfunc-
tors 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · ·Mn = PH,V such that Mi/Mi−1 ∼= ∆Hi,Vi

where Vi is a simple kOut(Hi)-module and Hi is a strict subquotient of
H. Since the evaluation functor is exact, we have a filtration of PH,V (G).
Moreover, Mi(G)/Mi−1(G) ∼= ∆Hi,Vi

(G) = SHi,Vi
(G). So this evaluation

is either zero or equal to the simple module SHi,Vi
(G). This shows that

the sequence of the Mi(G) is not a sequence of strict submodules. We let
N0 ⊂ N1 ⊂ · · ·Nk = PH,V (G) be the strict filtration obtained by removing
the multiple terms. Then by construction Ni/Ni−1 ∼= ∆Hj ,Vj (G) for some
simple module SHj ,Vj

(G) such that Hj is a strict subquotient of H. This
implies that every projective indecomposable module is filtered by standard
modules. Moreover the standard modules that appear in a filtration of the
projective indecomposable module PH,V (G) are indexed by groups K such
that K is isomorphic to a strict subquotient of H. Finally, the standard
modules are simple.
(2). — See Theorem 2.1 of [21] for a proof without using the equivalence

of Theorem 4.8. In this case the evaluation at G is an equivalence of cate-
gories between FG,k and kB(G,G)-Mod. The result follows from the fact
that under these hypothesis, the category FG,k is a highest-weight category.
If G is a non-vanishing group, this result does not implies that the left-free
double Burnside algebra is an exact Borel subalgebra of kB(G,G). Indeed
the last one may have more simple objects. For example if G is a s-self dual
group which is not self dual. That is a group such that every subgroup is
isomorphic to a quotient but there is a quotient H which is not isomorphic
to a subgroup. This is clearly a non-vanishing group. The left-free bisets of
B0(G,H) are linear combinations of transitive bisets of the form

IndG
C ◦ Iso(f) ◦DefB

B/A ◦ResH
B ,

where (B,A) is a section of H, C is a subgroup of G and f is an iso-
morphism from B/A to C. Since H is not isomorphic to a subgroup of G,
then B/A has to be a strict subquotient of H. In particular the quotient of
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kB0(G,H) by the ideal consisting of the morphisms factorizing strictly be-
lowH is zero. This implies that for any simple kOut(H)-module V , we have
∆Σ(G)0

H,V (G) = 0. But by Theorem 6.4, the simple deflation functor SΣ(G)0
H,V

is isomorphic to the corresponding standard functor. In particular, we have
S

Σ(G)0
H,V (G) = 0. �

As corollaries we have:

Corollary 6.6. — Let G be a finite group. Let k be a field such that
|Out(H)| is invertible in k for every subquotient H of G. Then, the global
dimension of the left-free double Burnside algebra kB0(G,G) is finite.

For the double Burnside algebra, we need more hypothesis.

Corollary 6.7. — Let G be a finite group. Let k be a field such that
|Out(H)| is invertible in k for every subquotient H of G. Then, if G is a
NVk-group we have:

(1) The global dimension of kB(G,G) is finite.
(2) The Cartan matrix of kB(G,G) has determinant 1.

The fact that the double Burnside algebra of a non-vanishing group is
quasi-hereditary is a direct consequence of the fact that the category of
biset functors is a highest-weight category. However, if the group G is a
vanishing group, one can wonder if the double Burnside algebra is still
quasi-hereditary. In particular, it may be possible to find a more suitable
order on the set of simple modules over the double Burnside algebra in
order to avoid the vanishing problems. In [21], we proved that the global
dimension of CB(A5, A5) is infinite. In particular, this shows that such a
better ordering does not exist for the double Burnside algebra for A5. We
have.

Proposition 6.8. — The double Burnside algebra CB(A5, A5) is not
quasi-hereditary.

Proof. — [21, Proposition 3.3]. �

7. Semi-simplicity revisited

In this section we revisit the semi-simple property of the double Burnside
algebra and the category of biset functors. By results of Barker and Bouc,
we know precisely when both objects are semi-simple. It is clear that the
result of Barker on the category of biset functors implies the result of
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Bouc about the double Burnside algebra. Curiously, Barker’s result can be
reformulated as follows. Let D be a replete biset category and k be a field.
Then, the category FD,k is semi-simple if and only if the endomorphism
algebra of every object of D is semi-simple. In general, it is easy to find a
category where all the endomorphism algebras of objects are semi-simple
but its category of representations is not semi-simple. Here we show that
this phenomenon is related to the generating relation. As corollary, this
gives a rather simple proof of Barker’s Theorem. We also give a useful
characterization of the semi-simple property in terms of the so-called trivial
object. More precisely, we show that similarly to the case of group algebras,
these categories are semi-simple if and only if the trivial object is projective.
This characterization will be used in the last Section of this article.
We start this section by recalling when the double Burnside algebra is

semi-simple.

Theorem 7.1 (Bouc). — Let k be a field and G be a finite group.
The double Burnside algebra is semi-simple if and only if G is cyclic and
char(k) - φ(|G|).

Proof. — [6, Proposition 6.1.7]. �

We need the following Lemma.

Lemma 7.2. — Let k be a field. Let D be a replete biset category. Let
H and K be two groups such that H is k-generated by K. Let V be a
kB(H,H)-module. Then,

LK,LH,V (K) ∼= LH,V .

Proof. — The co-unit of the adjunction between the evaluation at K
and LK,− gives a morphism from LK,LH,V (K) to LH,V . This morphism φ is
defined on a group G by

φG

(
W ⊗

(
U ⊗ v

))
=
(
W ×K U

)
⊗ v,

for W ∈ kB(G,K), U ∈ kB(K,H) and v ∈ V . Since H is generated by K,
there are Ui ∈ kB(H,K) and Wi ∈ kB(K,H) for i = 1, . . . , n such that
idH =

∑n
i=1 Ui ×K Wi. We define ψG : kB(G,H)⊗k V → LK,LH,V (K) by

ψG(U ⊗ v) =
n∑

i=1

(
U ×H Ui

)
⊗
(
Wi ⊗ v

)
,
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where U ∈ kB(G,H) and v ∈ V . If α ∈ kB(H,H), we have:

ψG

(
(U ×H α)⊗ v

)
=

n∑
i=1

(U ×H α×H Ui)⊗ (Wi ⊗ v),

=
n∑

i=1

U ×H

 n∑
j=1

Uj ×K Wj

×H α×H Ui

⊗ (Wi ⊗ v),

=
n∑

i,j=1
(U ×H Uj)⊗

(
(Wj ×H α×H Ui ×K Wi)⊗ v

)
,

=
n∑

j=1
(U ×H Uj)⊗

(
Wj ×H α×H

(
n∑

i=1
Ui ×K Wi

)
⊗ v

)
,

= ψG(U ⊗ (α×H v)
)
.

So ψ can be factorized as a morphism from kB(G,H) ⊗kB(H,H) V to
LK,LH,V (K). Moreover, it is clear that φG and ψG are two inverse isomor-
phisms. �

For the category of biset functors, we have the following theorem.
Barker’s theorem ([2, Theorem 1]) is exactly the equivalence of 1. and
3. with slightly stronger hypothesis on the characteristic of the field k.

Theorem 7.3 (Barker). — Let k be a field. Let D be a replete biset
category. Then, the following are equivalent.

(1) The category FD,k is semi-simple.
(2) For every group H ∈ D, the algebra kB(H,H) is a semi-simple

algebra.
(3) Every group H of D is cyclic and char(k) - φ(|H|).

Proof. — Let G ∈ D. If FD,k is semi-simple, then the Yoneda functor
YG is direct sum of simple functors. So its endomorphism algebra is semi-
simple. Moreover, by Yoneda’s Lemma this last algebra is nothing but the
double Burnside algebra of the group G. So (1) implies (2). And (3) is
nothing but a reformulation of (2) using Bouc’s Theorem 7.1.
Now, we will prove that (3) implies (1). Let H ∈ D. Let V be a sim-

ple kOut(H)-module. Then by inflation, the module V is also a simple
kB(H,H)-module. Since the last algebra is semi-simple, the module V is
a projective indecomposable kB(H,H)-module. Since LH,− is a left ad-
joint to the exact functor evH , it sends projective modules to projective
functors. Moreover, it sends indecomposable modules to indecomposable

TOME 69 (2019), FASCICULE 2



836 Baptiste ROGNERUD

functors. So the functor LH,V is a projective indecomposable functor with
simple quotient SH,V . In other words, this functor is a projective cover of
SH,V . It has a unique maximal subfunctor JH,V and this functor has the
property of vanishing at H.

• First let us assume that D is the full subcategory of the biset cat-
egory consisting of all the cyclic groups. Let K be a group of D.
Let M be a lcm of the groups H and K (a minimal cyclic group
such that H and K are subgroups of M). Then, the group M is in
the category D. Since M is abelian, the groups H and K are both
isomorphic to a quotient ofM . In other words, the groups H and K
are k-generated by M . So, by Lemma 7.2, we have an isomorphism

φ : LH,V
∼−→ LM,LH,V (M).

In particular, φ maps the maximal subfunctor JH,V to a maxi-
mal subfunctor of LM,LH,V (M). But as explain in Lemma 3.2, the
kB(M,M)-module LH,V (M) is a projective indecomposable mod-
ule. Moreover, by hypothesis M is a cyclic group such that φ(|M |)
is invertible in k, so the double Burnside algebra kB(M,M) is semi-
simple and LH,V (M) is a simple module. In particular, the functor
LM,LH,V (M) has a unique maximal subfunctor JM,LH,V (M) which
has the property of vanishing at M . In conclusion, we have:

JH,V (M) = 0.

The group K is also isomorphic to a quotient of M , so idK factor-
izes through M . In particular, the identity of JH,V (K) factorizes
through JH,V (M) = 0. This implies that JH,V (K) = 0. In con-
clusion, we proved that every projective indecomposable functor in
FD,k is simple. Any functor in FD,k is a quotient of a direct sum of
projective functors. So, a quotient of a direct sum of simple func-
tors. By usual arguments, this implies that every biset functor over
D is semi-simple.

• If H and K are two cyclic groups of D, then a lcm of H and K

may not be in the category D. We use the induction and restric-
tion functors between the category FD,k and FCyc,k where Cyc is
the full subcategory of the biset category consisting of all the cyclic
groups. We refer to Section 3.3 of [6] for more details. We use the
fact that the projective indecomposable functors of FD,k are exactly
the restriction of the projective indecomposable functors of FCyc,k

indexed by the groups of D. The arguments of the previous point (?)

ANNALES DE L’INSTITUT FOURIER



AROUND EVALUATIONS OF BISET FUNCTORS 837

shows that any projective indecomposable functor of FCyc,k is sim-
ple. Since the restriction functor sends the simple functors indexed
by groups of D to simple functors, the result follows.

? In order to apply the previous point we need to show that if H and
K are groups in D and M is a lcm of H and K, then the double
Burnside algebra of M is semi-simple. By assumption, we now that
φ(|H|) and φ(|K|) are invertible in k this implies that φ(|M |) =
φ(lcm(|H|, |K|) is invertible in k. So, the algebra kB(M,M) is semi-
simple. �

In general, when the category of biset functors is not semi-simple, it is
possible that some simple functors are also projective. However, the simple
functor indexed by the trivial group 1 is always as far from being projective
as possible. For that reason we call it the trivial functor. In the rest of the
section, we prove that a category of biset functors is semi-simple if and
only if the trivial object is projective.

Definition 7.4. — Let k be a field.
• Let D be a replete biset category. The simple functor S1,k of FD,k

is called the trivial functor.
• Let G be a finite group. The simple kB(G,G)-module S1,k(G) is
called the trivial module.

First, we need a technical lemma about the Burnside module.

Lemma 7.5. — Let k be a field. Let G be a cyclic p-group such that
char(k) | |Out(G)|. Then kB(G) is not a simple kB(G,G)-module.

Proof. — If char(k) 6= p, then Bouc has already classified the composi-
tion factors of the kB(G,G)-module kB(G) in Section 5.6.9 of [6]. How-
ever, Bouc used the idempotents of the Burnside ring kB(G) in co-prime
characteristic. So his method cannot be generalized to the case where the
characteristic of the field is p. Let us look more carefully at the action of
kB(G,G) on kB(G). Let H be a subgroup of G×G and L be a subgroup
of G. Then, the action of the transitive G-G biset (G×G)/H on the tran-
sitive G-set G/L is given by the Mackey formula (see (2.1)). Since G is a
commutative group, the action is given by:

(7.1)
(
(G×G)/H

)
·G/L = |[p2(H)\G/L]|G/(H • L).

Here |[p2(H)\G/L]| is the size of a set of representatives of the double
cosets p2(H)\G/L and H • L is the subgroup of G defined by:

H • L = {g ∈ G ; ∃ l ∈ L with (g, l) ∈ H}.
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It is clear that k1(H) 6 H • L 6 p1(H).
(1) If char(k) | (p − 1), then p = 1 in k. The action of a transitive

G-G-biset (G×G)/H on a transitive G-set G/L is given by
(
(G×

G)/H
)
· G/L = G/(H • L). Let us consider N(G) the subspace of

kB(G) defined by:

N(G) =

 ∑
[L6G]

λLG/L ∈ kB(G) ;
∑

[L6G]

λL = 0 ∈ k

 .

Where [L 6 G] denotes a set of representatives of the conjugacy
classes of the subgroups of G.

It is a k-vector space of codimension 1. Moreover, it is a non zero
proper kB(G,G)-submodule of kB(G).

(2) If n > 1 and char(k) = p, then p2 | |G| and dimk kB(G) > 3. (7.1)
becomes:(

(G×G)/H
)
·G/L =

{
0 if L 6= G and p2(H) 6= G,
G/(H • L) otherwise.

Let us consider the subspace N ′(G) of kB(G) defined by:

N ′(G) :=

 ∑
[L6G]

λLG/L ; λG = 0 and
∑

[L6G]

λL = 0

 .

It is a k-vector space of codimension 2 and we claim that it is also a
kB(G,G)-submodule of kB(G). Indeed if H is a subgroup of G×G
such that p2(H) 6= G, then the action of (G × G)/H on N ′(G) is
zero. Let H be a subgroup of G such that p2(H) = G. Then the
action of (G×G)/H on a transitive G-set G/L is given by:(

(G×G)/H
)
·G/L = G/(H • L).

We need to check if H • L can be equal to the group G. Since
H •L is a subgroup of p1(H), we can assume that p1(H) = G. The
map which sends g ∈ G/(H • L) to an element l(g) ∈ L such that
(g, l(g)) ∈ H induces an isomorphism of groups:

(H • L)/k1(H) ∼= L/(k2(H) ∩ L).

• Let H 6 G be such that p1(H) = p2(H) = G and k2(H) =
G. Since p1(H)/k1(H) ∼= p2(H)/k2(H), this condition implies
that k1(H) = G. Since k1(H) 6 H • L, then H • L = G for
every subgroup L of G. The space N ′(G) is therefore stable by
the action of such a transitive G-G-biset.

ANNALES DE L’INSTITUT FOURIER



AROUND EVALUATIONS OF BISET FUNCTORS 839

• If k2(H) = k1(H) < G. As G is a cyclic p-group, then either
L 6 k2(H) or k2(H) 6 L. If L 6 k2(H) then k2(H) ∩ L = L,
thereforeH•L = k1(H). If k2(H) = L then k2(H)∩L = k2(H).
So we have (H • L)/k1(H) = L/k2(H), since k2(H) = k1(H),
we have |H •L| = |L|. In both cases we cannot have H •L = G

and N ′(G) is a kB(G,G)-module. �

As corollary, we have the following useful reformulation of the Theorems
of Barker and Bouc.

Theorem 7.6. — Let k be a field.
(1) Let D be a replete biset category. Then, the category FD,k is semi-

simple if and only if the simple functor S1,k is projective.
(2) LetG be a finite group. Then, the double Burnside algebra kB(G,G)

is a semi-simple algebra if and only if the simple module S1,k(G) is
projective.

Proof. — By Theorem 7.3, we know that the category FD,k is semi-
simple if and only if every group in D is cyclic and for every H ∈ D,
char(k) doest not divide |Out(H)|. For the double Burnside algebra, by
Theorem 7.1, we know that kB(G,G) is semi-simple if and only if G is
cyclic and char(k) does not divide the order of |Out(G)|. So in both cases,
it remains to see that if the category is not semi-simple, then the trivial
functor (resp. module) is not projective. Or equivalently that its projective
cover kB is not simple.

• If G is not cyclic then kB(G) is an indecomposable non simple
module. Indeed by the proof of Proposition 6.1 of [6], the kernel of
the linearization functor is a non zero proper submodule of kB(G).
As consequence, if the category D contains a non cyclic group, the
functor kB is non simple.

• if G is cyclic, then by Theorem 4.8 the evaluation at G induces
an equivalence of categories between FG,k and kB(G,G)-Mod. The
group G is a direct product of cyclic groups of prime power order,
G = P1×· · ·×Pr. Let us assume that char(k) = p divides |Out(G)|,
then p | |Out(Ps)| for some s ∈ {1, . . . , r}. By Lemma 7.5, the
kB(Ps, Ps)-module kB(Ps) is not simple. This implies that the func-
tor kB is not simple in FG,k and by using one more times the
equivalence of Theorem 4.8, we have that kB(G) is not simple.

• If D is a replete category containing a cyclic group G such that
char(k) | |Out(G)|, then by the previous point, the kB(G,G)-
module kB(G) is not simple, so the functor kB is not simple. �
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8. Self-injective property of the double Burnside algebra

As explained in Section 6, if the group G is a non-vanishing group and
if k is a field of characteristic zero, then the double Burnside algebra is
quasi-hereditary. However, some easy computations show that over a field
of positive characteristic the double Burnside algebra may have infinite
global dimension. Moreover, in the case of A5, there is a self-injective block
isomorphic to C[X]/(X2) in CB(A5, A5). As consequence, we wonder under
which hypothesis on the field or the group, the double Burnside algebra is
a self-injective algebra.
If D is a replete biset category containing only finitely many isomorphism

classes of objects, then by Morita’s Theorem the category FD,k is equivalent
to the category of modules over a finite dimensional algebra. In particular,
we will say that the category FD,k is self-injective if the corresponding finite
dimensional algebra is self-injective. Then we have to following result.

Proposition 8.1. — Let k be a field and D be a replete biset category
with only finitely many isomorphism classes of objects. Then FD,k is self-
injective if and only if it is semi-simple.

Proof. — We only need to prove that if this category is self-injective, it
is semi-simple. If the category of biset functors over D is self-injective, the
application sending the top of a projective indecomposable functor to its
simple socle induces a bijection on the set of isomorphism classes of simple
functors. This bijection is called the Nakayama’s permutation (see [25,
Lemma 1.10.31] for more details). In particular, the simple functor S1,k

must be in the socle of a projective indecomposable functor.
Let PH,V be a projective cover of the simple functor SH,V . By Theo-

rem 6.3 of [24], there is a filtration

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = PH,V ,

such that Pi/Pi−1 ∼= ∆Hi,Ui
, where Hi ∈ D and Ui is a direct summand of

a permutation kOut(Hi)-module. So we have:

Soc(PH,V ) ⊆
⊕

Soc(∆Hi,Ui),

where the ∆′s runs through the standard quotients of PH,V . In particular, if
the simple functor S1,k is in the socle of PH,V , then it is in the socle of some
of its standard factors ∆Hi,Ui

. Also, for a finite group K, if ∆Hi,Ui
(K) 6= 0,

then Hi is a subquotient of K. So if S1,k is composition factor of ∆Hi,Ui

then Hi = 1 and Ui
∼= ⊕k. Moreover, ∆1,k = L1,k = kB. As consequence,

the simple functor S1,k only appears at the top of ∆1,k. So if the simple
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functor S1,k is in the socle of PH,V then it is in the socle of ∆1,k. This is
the case if and only if ∆1,k is simple. By Theorem 7.6 this is the case if
and only if FD,k is semi-simple. �

Now, we state the result for the double Burnside algebras.

Theorem 8.2. — Let k be a field. Let G be a finite group. Then, the
double Burnside algebra kB(G,G) is self-injective if and only if it is semi-
simple.

Proof. — Since the group 1 is a quotient of G, the evaluation at G of
S1,k is a non-zero simple module. Moreover, by Corollary 3.5, the simple
kB(G,G)-modules are the non-zero evaluation of the simple functors. And
if SH,V (G) 6= 0, then PH,V (G) is a projective cover of this simple module.
By Theorem 6.3 of [24], the projective functor PH,V has a filtration

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn = PH,V ,

such that Pi/Pi−1 ∼= ∆Hi,Ui
, where Hi ∈ D and Ui is a direct summand

of a permutation kOut(Hi)-module. Since the evaluation at G is an exact
functor, the kB(G,G)-module has a (weak form of) filtration:

0 = P0(G) ⊆ P1(G) ⊆ · · · ⊆ Pn(G) = PH,V (G),

and the quotients of this filtration are:

Pi(G)/Pi−1(G) ∼=
(
Pi/Pi−1

)
(G) ∼= ∆Hi,Ui

(G).

Note that some of these factors may be zero, but not all of them since
SH,V (G) 6= 0 by hypothesis. Moreover, we have that Soc

(
PH,V (G)

)
⊆⊕(

Soc ∆Hi,Ui
(G)
)
.

Let us assume that kB(G,G) is a self-injective algebra. Then the simple
module S1,k(G) must be in the socle of a projective indecomposable mod-
ule PH,V (G). So S1,k(G) is in the socle of some ∆Hi,Ui(G). Moreover, by
Proposition 3.1, S1,k(G) is composition factor of ∆Hi,Ui

(G) if and only if
S1,k is composition factor of ∆Hi,Ui

in the category of biset functors. So
by the proof of Proposition 8.1, we have Hi = 1 and Ui

∼= ⊕k. So S1,k(G)
must be in the socle of ∆1,k(G) = kB(G). By Theorem 7.6, this implies
that kB(G,G) is a semi-simple algebra. �

Remark 8.3. — As corollary, we have that the double Burnside algebra
of a finite group G over a field k is symmetric if and only if it is a semi-
simple algebra. In [22], the author studied the symmetry of the Mackey
algebra. The main tool was a central linear map on the Mackey algebra
which comes from the monoidal structure of the category of modules over
the Mackey algebra, that is the category of Mackey functors. There are lot
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of points in common between the theory of biset functors and the theory of
Mackey functors. In particular, the category of biset functors is also a closed
symmetric monoidal category under suitable hypothesis on the category
D. (see Chapter 8 of [6]). The trace map of this monoidal structure (see
Section 4 of [18] for more details about the trace of a monoidal category)
is a map which goes from the endomorphism ring of a finitely generated
projective biset functor to the endomorphism ring of the Burnside functor.
By taking a representable functor YG, we have a central linear map:

tr : kB(G,G)→ EndFG,k
(YG) ∼= kB(1) ∼= k.

One can compute this trace and show that if U is a G-G-biset then tr(U) =
|U/G| ∈ k, that is the number of G-orbits in U where G acts diagonally
on U . Unfortunately, this map cannot help to the comprehension of the
symmetry of kB(G,G) since the bilinear form (U, V ) 7→ tr(U ×G V ) is
always degenerate when G 6= 1.
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