The rational stable homology of mapping class groups of universal nil-manifolds
Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 783-803.

We compute the rational stable homology of the automorphism groups of free nilpotent groups. These groups interpolate between the general linear groups over the ring of integers and the automorphism groups of free groups, and we employ functor homology to reduce to the abelian case. As an application, we also compute the rational stable homology of the outer automorphism groups and of the mapping class groups of the associated aspherical nil-manifolds in the TOP, PL, and DIFF categories.

Nous calculons l’homologie rationnelle stable des groupes d’automorphismes de groupes nilpotents libres. Ces groupes s’intercalent entre les groupes généraux linéaires sur l’anneau des entiers et les groupes d’automorphismes de groupes libres, et nous employons l’homologie de foncteurs pour nous réduire au cas abélien. A titre d’application, nous calculons également l’homologie rationnelle stable des groupes d’automorphismes extérieurs et des groupes modulaires des variétés asphériques associées dans les catégories TOP, PL, et DIFF.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3258
Classification: 20J05, 20E36, 19M05, 18A25, 18G40
Keywords: stable homology, automorphism groups, nilpotent groups, functor categories, Hochschild homology, stable K-theory, spectral sequences
Mot clés : homologie stable, groupes d’automorphismes, groupes nilpotents, catégories de foncteurs, homologie de Hochschild, K-théorie stable, suites spectrales
Szymik, Markus 1

1 Department of Mathematical Sciences NTNU Norwegian University of Science and Technology 7491 Trondheim (Norway)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_2_783_0,
     author = {Szymik, Markus},
     title = {The rational stable homology of mapping class groups of universal nil-manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {783--803},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3258},
     zbl = {07067419},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3258/}
}
TY  - JOUR
AU  - Szymik, Markus
TI  - The rational stable homology of mapping class groups of universal nil-manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 783
EP  - 803
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3258/
DO  - 10.5802/aif.3258
LA  - en
ID  - AIF_2019__69_2_783_0
ER  - 
%0 Journal Article
%A Szymik, Markus
%T The rational stable homology of mapping class groups of universal nil-manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 783-803
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3258/
%R 10.5802/aif.3258
%G en
%F AIF_2019__69_2_783_0
Szymik, Markus. The rational stable homology of mapping class groups of universal nil-manifolds. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 783-803. doi : 10.5802/aif.3258. https://aif.centre-mersenne.org/articles/10.5802/aif.3258/

[1] Andreadakis, S. On the automorphisms of free groups and free nilpotent groups, Proc. Lond. Math. Soc., Volume 15 (1965), pp. 239-268 | DOI | MR | Zbl

[2] Balcerak, W.; Hajduk, Bogusław Homotopy type of automorphism groups of manifolds, Colloq. Math., Volume 45 (1981) no. 1, pp. 1-33 | DOI | MR | Zbl

[3] Bestvina, Mladen Homological stability of Aut(F n ) revisited, Hyperbolic geometry and geometric group theory (Advanced Studies in Pure Mathematics), Volume 73, Mathematical Society of Japan, 2017, pp. 1-11

[4] Betley, Stanisław Homology of Gl(R) with coefficients in a functor of finite degree, J. Algebra, Volume 150 (1992) no. 1, pp. 73-86 | MR | Zbl

[5] Betley, Stanisław; Pirashvili, Teimuraz Stable K-theory as a derived functor, J. Pure Appl. Algebra, Volume 96 (1994) no. 3, pp. 245-258 | DOI | MR | Zbl

[6] Borel, Armand Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 235-272 | DOI | MR | Zbl

[7] Burghelea, Dan Automorphisms of manifolds, Algebraic and geometric topology (Stanford, 1976), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 32, American Mathematical Society, 1978, pp. 347-371 | DOI | Zbl

[8] Charney, Ruth M. Homology stability for GL n of a Dedekind domain, Invent. Math., Volume 56 (1980) no. 1, pp. 1-17 | MR | Zbl

[9] Djament, Aurélien Sur l’homologie des groupes unitaires à coefficients polynomiaux, J. K-Theory, Volume 10 (2012) no. 1, pp. 87-139 | MR | Zbl

[10] Fiedorowicz, Zbigniew; Pirashvili, Teimuraz; Schwänzl, Roland; Vogt, Rainer; Waldhausen, Friedhelm Mac Lane homology and topological Hochschild homology, Math. Ann., Volume 303 (1995) no. 1, pp. 149-164 | MR | Zbl

[11] Franjou, Vincent; Friedlander, Eric M.; Scorichenko, Alexander; Suslin, Andreĭ A. General linear and functor cohomology over finite fields, Ann. Math., Volume 150 (1999) no. 2, pp. 663-728 | MR | Zbl

[12] Franjou, Vincent; Pirashvili, Teimuraz On the Mac Lane cohomology for the ring of integers, Topology, Volume 37 (1998) no. 1, pp. 109-114 | DOI | MR | Zbl

[13] Franjou, Vincent; Pirashvili, Teimuraz Stable K-theory is bifunctor homology (after A. Scorichenko), Rational representations, the Steenrod algebra and functor homology (Panoramas et Synthèses), Volume 16, Société Mathématique de France, 2003, pp. 107-126 | MR | Zbl

[14] Galatius, Søren Stable homology of automorphism groups of free groups, Ann. Math., Volume 173 (2011) no. 2, pp. 705-768 | MR | Zbl

[15] Hatcher, Allen E. Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Stanford, 1976), Part 1 (Proceedings of Symposia in Pure Mathematics), American Mathematical Society, 1978, pp. 3-21 | DOI | Zbl

[16] Hatcher, Allen E. Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995) no. 1, pp. 39-62 | DOI | MR | Zbl

[17] Hatcher, Allen E.; Vogtmann, Karen Cerf theory for graphs, J. Lond. Math. Soc., Volume 58 (1998) no. 3, pp. 633-655 | DOI | MR | Zbl

[18] Hatcher, Allen E.; Vogtmann, Karen Rational homology of Aut(F n ), Math. Res. Lett., Volume 5 (1998) no. 6, pp. 759-780 | Zbl

[19] Hsiang, Wu-Chung; Sharpe, Richard W. Parametrized surgery and isotopy, Pac. J. Math., Volume 67 (1976) no. 2, pp. 401-459 | DOI | MR | Zbl

[20] Igusa, Kiyoshi What happens to Hatcher and Wagoner’s formulas for π 0 C(M) when the first Postnikov invariant of M is nontrivial?, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982) (Lecture Notes in Mathematics), Volume 1046, Springer, 1984, pp. 104-172 | MR | Zbl

[21] Jibladze, Mamuka; Pirashvili, Teimuraz Cohomology of algebraic theories, J. Algebra, Volume 137 (1991) no. 2, pp. 253-296 | MR | Zbl

[22] van der Kallen, Wilberd Homology stability for linear groups, Invent. Math., Volume 60 (1980) no. 3, pp. 269-295 | DOI | MR | Zbl

[23] Kassel, Christian La K-théorie stable, Bull. Soc. Math. Fr., Volume 110 (1982) no. 4, pp. 381-416 | DOI | Zbl

[24] Kassel, Christian Calcul algébrique de l’homologie de certains groupes de matrices, J. Algebra, Volume 80 (1983) no. 1, pp. 235-260 | Zbl

[25] Lazard, Michel Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér., Volume 71 (1954), pp. 101-190 | DOI | MR | Zbl

[26] Loday, Jean-Louis Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer, 1998, xx+513 pages | MR | Zbl

[27] Madsen, Ib; Milgram, R. James The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, 92, Princeton University Press; University of Tokyo Press, 1979, xii+279 pages | MR | Zbl

[28] Nomizu, Katsumi On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math., Volume 59 (1954), pp. 531-538 | DOI | MR | Zbl

[29] Pickel, P. F. Rational cohomology of nilpotent groups and Lie algebras, Commun. Algebra, Volume 6 (1978) no. 4, pp. 409-419 | DOI | MR | Zbl

[30] Pirashvili, Teimuraz; Waldhausen, Friedhelm Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra, Volume 82 (1992) no. 1, pp. 81-98 | DOI | MR | Zbl

[31] Schlesinger, James W. The semi-simplicial free Lie ring, Trans. Am. Math. Soc., Volume 122 (1966), pp. 436-442 | DOI | MR | Zbl

[32] Suslin, Andreĭ A. Stability in algebraic K-theory, Algebraic K-theory, Part I (Oberwolfach, 1980) (Lecture Notes in Mathematics), Volume 966, Springer, 1982, pp. 304-333 | MR | Zbl

[33] Szymik, Markus Twisted homological stability for extensions and automorphism groups of free nilpotent groups, J. K-Theory, Volume 14 (2014) no. 1, pp. 185-201 | MR | Zbl

[34] Waldhausen, Friedhelm Algebraic K-theory of generalized free products. III, IV, Ann. Math., Volume 108 (1978) no. 2, pp. 205-256 | MR | Zbl

[35] Waldhausen, Friedhelm Algebraic K-theory of topological spaces. I, Algebraic and geometric topology (Stanford, 1976), Part 1 (Proceedings of Symposia in Pure Mathematics), American Mathematical Society, 1978, pp. 35-60 | DOI | MR | Zbl

[36] Wall, Charles T. C. Surgery on compact manifolds, 1, Academic Press Inc., 1970, x+280 pages (London Mathematical Society Monographs) | MR | Zbl

[37] Weiss, Michael; Williams, Bruce Automorphisms of manifolds, Surveys on surgery theory, Vol. 2 (Annals of Mathematics Studies), Volume 149, Princeton University Press, 2001, pp. 165-220 | MR | Zbl

Cited by Sources: