Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 653-671.

In this note, we establish the following Second Main Theorem type estimate for every algebraically nondegenerate entire curve f: n (), in presence of a generic divisor D n () of sufficiently high degree d15(5n+1)n n : for every r outside a subset of of finite Lebesgue measure and every real positive constant δ, we have

T f (r)N f [1] (r,D)+Olog T f (r)+δlogr,

where T f (r) and N f [1] (r,D) stand for the order function and the 1-truncated counting function in Nevanlinna theory. This inequality quantifies recent results on the logarithmic Green–Griffiths conjecture.

Dans cet article, nous établissons le théorème suivant : pour toute courbe entière algébriquement non-dégénérée f: n () intersectant un diviseur générique D n () de degré d15(5n+1)n n pour tous r en dehors d’un sous-ensemble de de mesure de Lebesgue finie et toute constante réelle positive δ, on a

T f (r)N f [1] (r,D)+Olog T f (r)+δlogr,

T f (r) et N f [1] (r,D) sont la fonction d’ordre et la fonction de comptage 1-tronqué dans la théorie de Nevanlina. Cette inégalité quantifie des résultats récents sur la conjecture de Green–Griffiths logarithmique.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3253
Classification: 32H30, 32A22, 30D35, 32Q45
Keywords: Nevanlinna theory, Second Main Theorem, holomorphic curve, Green–Griffiths’ conjecture, algebraic degeneracy
Mot clés : théorie de Nevanlina, le deuxième théorème fondamental, conjecture de Green–Griffiths, dégénéré algébriquement
Huynh, Dinh Tuan 1, 2; Vu, Duc-Viet 3; Xie, Song-Yan 4

1 Department of Mathematics College of Education, Hue University 34 Le Loi St. Hue City (Vietnam)
2 Department of Mathematics Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043 (Japan)
3 Korea institute for advanced study 85 Hoegiro, Dongdaemun-gu Seoul 02455 (Republic of Korea)
4 Max-Planck-Institut für Mathematik, Vivatsgasse 7 53111 Bonn (Germany)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_2_653_0,
     author = {Huynh, Dinh Tuan and Vu, Duc-Viet and Xie, Song-Yan},
     title = {Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree},
     journal = {Annales de l'Institut Fourier},
     pages = {653--671},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3253},
     zbl = {07067414},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3253/}
}
TY  - JOUR
AU  - Huynh, Dinh Tuan
AU  - Vu, Duc-Viet
AU  - Xie, Song-Yan
TI  - Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 653
EP  - 671
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
DO  - 10.5802/aif.3253
LA  - en
ID  - AIF_2019__69_2_653_0
ER  - 
%0 Journal Article
%A Huynh, Dinh Tuan
%A Vu, Duc-Viet
%A Xie, Song-Yan
%T Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
%J Annales de l'Institut Fourier
%D 2019
%P 653-671
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
%R 10.5802/aif.3253
%G en
%F AIF_2019__69_2_653_0
Huynh, Dinh Tuan; Vu, Duc-Viet; Xie, Song-Yan. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 653-671. doi : 10.5802/aif.3253. https://aif.centre-mersenne.org/articles/10.5802/aif.3253/

[1] An, Do Phuong; Quang, Si Duc; Thai, Do Duc The second main theorem for meromorphic mappings into a complex projective space, Acta Math. Vietnam., Volume 38 (2013) no. 1, pp. 187-205 | DOI | MR | Zbl

[2] Berczi, Gergely Towards the Green-Griffiths-Lang conjecture via equivariant localisation (2015) (https://arxiv.org/abs/1509.03406)

[3] Cartan, Henri Sur les zéros des combinaisons linéaires de p fonctions holomorphesdonnées, Mathematica, Volume 7 (1933), pp. 80-103 | Zbl

[4] Constantine, Gregory M.; Savits, Thomas H. A multivariate Faà di Bruno formula with applications, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 503-520 | DOI | MR | Zbl

[5] Darondeau, Lionel On the logarithmic Green-Griffiths conjecture, Int. Math. Res. Not. (2016) no. 6, pp. 1871-1923 | DOI | MR | Zbl

[6] Darondeau, Lionel Slanted vector fields for jet spaces, Math. Z., Volume 282 (2016) no. 1-2, pp. 547-575 | DOI | MR | Zbl

[7] Demailly, Jean-Pierre Variétés projectives hyperboliques et équations différentielles algébriques, Journée en l’Honneur de Henri Cartan (SMF Journée Annuelle), Volume 1997, Société Mathématique de France, 1997, pp. 3-17 | MR | Zbl

[8] Demailly, Jean-Pierre Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, pp. 1165-1207 | DOI | MR | Zbl

[9] Demailly, Jean-Pierre Hyperbolic algebraic varieties and holomorphic differential equations, Acta Math. Vietnam., Volume 37 (2012) no. 4, pp. 441-512 | MR | Zbl

[10] Dethloff, Gerd-Eberhard; Lu, Steven Shin-Yi Logarithmic jet bundles and applications, Osaka J. Math., Volume 38 (2001) no. 1, pp. 185-237 | MR | Zbl

[11] Diverio, Simone; Merker, Joël; Rousseau, Erwan Effective algebraic degeneracy, Invent. Math., Volume 180 (2010), pp. 161-223 | DOI | MR | Zbl

[12] Erëmenko, Alexandre È.; Sodin, Mikhail L. Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra Anal., Volume 3 (1991) no. 1, pp. 131-164 | MR

[13] Green, Mark; Griffiths, Phillip Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, 1979), Springer, 1980, pp. 41-74 | DOI | MR | Zbl

[14] Iitaka, Shigeru Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76, Springer, 1982, x+357 pages | MR | Zbl

[15] Merker, Joël Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1077-1104 | DOI | MR | Zbl

[16] Merker, Joël Algebraic differential equations for entire holomorphic curves in projective hypersurfaces of general type: optimal lower degree bound, Geometry and analysis on manifolds (Progress in Mathematics), Volume 308, Birkhäuser/Springer, 2015, pp. 41-142 | DOI | MR | Zbl

[17] Mumford, David Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl

[18] Noguchi, Junjiro Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to several complex variables (Aspects of Mathematics), Volume E9, Friedr. Vieweg & Sohn, 1986, pp. 227-249 | DOI | MR | Zbl

[19] Noguchi, Junjiro; Winkelmann, Jörg Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften, 350, Springer, 2014, xiv+416 pages | DOI | MR | Zbl

[20] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi The second main theorem for holomorphic curves into semi-abelian varieties, Acta Math., Volume 188 (2002) no. 1, pp. 129-161 | DOI | MR | Zbl

[21] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math., Volume 20 (2008) no. 3, pp. 469-503 | MR | Zbl

[22] Păun, Mihai; Sibony, Nessim Value Distribution Theory for Parabolic Riemann Surfaces (2014) (https://arxiv.org/abs/1403.6596)

[23] Ru, Min A defect relation for holomorphic curves intersecting hypersurfaces, Am. J. Math., Volume 126 (2004) no. 1, pp. 215-226 | MR | Zbl

[24] Ru, Min Holomorphic curves into algebraic varieties, Ann. Math., Volume 169 (2009), pp. 255-267 | MR | Zbl

[25] Siu, Yum-Tong Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, 2004, pp. 543-566 | MR | Zbl

[26] Siu, Yum-Tong Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math., Volume 202 (2015) no. 3, pp. 1069-1166 | DOI | MR | Zbl

[27] Thai, Do Duc; Vu, Duc-Viet Holomorphic mappings into compact complex manifolds, Houston J. Math., Volume 43 (2017) no. 3, pp. 725-762 | MR | Zbl

[28] Yamanoi, Katsutoshi Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | MR | Zbl

Cited by Sources: