In this note, we establish the following Second Main Theorem type estimate for every algebraically nondegenerate entire curve , in presence of a generic divisor of sufficiently high degree : for every outside a subset of of finite Lebesgue measure and every real positive constant , we have
where and stand for the order function and the -truncated counting function in Nevanlinna theory. This inequality quantifies recent results on the logarithmic Green–Griffiths conjecture.
Dans cet article, nous établissons le théorème suivant : pour toute courbe entière algébriquement non-dégénérée intersectant un diviseur générique de degré pour tous en dehors d’un sous-ensemble de de mesure de Lebesgue finie et toute constante réelle positive , on a
où et sont la fonction d’ordre et la fonction de comptage -tronqué dans la théorie de Nevanlina. Cette inégalité quantifie des résultats récents sur la conjecture de Green–Griffiths logarithmique.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3253
Keywords: Nevanlinna theory, Second Main Theorem, holomorphic curve, Green–Griffiths’ conjecture, algebraic degeneracy
Mot clés : théorie de Nevanlina, le deuxième théorème fondamental, conjecture de Green–Griffiths, dégénéré algébriquement
@article{AIF_2019__69_2_653_0, author = {Huynh, Dinh Tuan and Vu, Duc-Viet and Xie, Song-Yan}, title = {Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree}, journal = {Annales de l'Institut Fourier}, pages = {653--671}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3253}, zbl = {07067414}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3253/} }
TY - JOUR AU - Huynh, Dinh Tuan AU - Vu, Duc-Viet AU - Xie, Song-Yan TI - Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree JO - Annales de l'Institut Fourier PY - 2019 SP - 653 EP - 671 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3253/ DO - 10.5802/aif.3253 LA - en ID - AIF_2019__69_2_653_0 ER -
%0 Journal Article %A Huynh, Dinh Tuan %A Vu, Duc-Viet %A Xie, Song-Yan %T Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree %J Annales de l'Institut Fourier %D 2019 %P 653-671 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3253/ %R 10.5802/aif.3253 %G en %F AIF_2019__69_2_653_0
Huynh, Dinh Tuan; Vu, Duc-Viet; Xie, Song-Yan. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 653-671. doi : 10.5802/aif.3253. https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
[1] The second main theorem for meromorphic mappings into a complex projective space, Acta Math. Vietnam., Volume 38 (2013) no. 1, pp. 187-205 | DOI | MR | Zbl
[2] Towards the Green-Griffiths-Lang conjecture via equivariant localisation (2015) (https://arxiv.org/abs/1509.03406)
[3] Sur les zéros des combinaisons linéaires de fonctions holomorphesdonnées, Mathematica, Volume 7 (1933), pp. 80-103 | Zbl
[4] A multivariate Faà di Bruno formula with applications, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 503-520 | DOI | MR | Zbl
[5] On the logarithmic Green-Griffiths conjecture, Int. Math. Res. Not. (2016) no. 6, pp. 1871-1923 | DOI | MR | Zbl
[6] Slanted vector fields for jet spaces, Math. Z., Volume 282 (2016) no. 1-2, pp. 547-575 | DOI | MR | Zbl
[7] Variétés projectives hyperboliques et équations différentielles algébriques, Journée en l’Honneur de Henri Cartan (SMF Journée Annuelle), Volume 1997, Société Mathématique de France, 1997, pp. 3-17 | MR | Zbl
[8] Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, pp. 1165-1207 | DOI | MR | Zbl
[9] Hyperbolic algebraic varieties and holomorphic differential equations, Acta Math. Vietnam., Volume 37 (2012) no. 4, pp. 441-512 | MR | Zbl
[10] Logarithmic jet bundles and applications, Osaka J. Math., Volume 38 (2001) no. 1, pp. 185-237 | MR | Zbl
[11] Effective algebraic degeneracy, Invent. Math., Volume 180 (2010), pp. 161-223 | DOI | MR | Zbl
[12] Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra Anal., Volume 3 (1991) no. 1, pp. 131-164 | MR
[13] Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, 1979), Springer, 1980, pp. 41-74 | DOI | MR | Zbl
[14] Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76, Springer, 1982, x+357 pages | MR | Zbl
[15] Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1077-1104 | DOI | MR | Zbl
[16] Algebraic differential equations for entire holomorphic curves in projective hypersurfaces of general type: optimal lower degree bound, Geometry and analysis on manifolds (Progress in Mathematics), Volume 308, Birkhäuser/Springer, 2015, pp. 41-142 | DOI | MR | Zbl
[17] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl
[18] Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to several complex variables (Aspects of Mathematics), Volume E9, Friedr. Vieweg & Sohn, 1986, pp. 227-249 | DOI | MR | Zbl
[19] Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften, 350, Springer, 2014, xiv+416 pages | DOI | MR | Zbl
[20] The second main theorem for holomorphic curves into semi-abelian varieties, Acta Math., Volume 188 (2002) no. 1, pp. 129-161 | DOI | MR | Zbl
[21] The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math., Volume 20 (2008) no. 3, pp. 469-503 | MR | Zbl
[22] Value Distribution Theory for Parabolic Riemann Surfaces (2014) (https://arxiv.org/abs/1403.6596)
[23] A defect relation for holomorphic curves intersecting hypersurfaces, Am. J. Math., Volume 126 (2004) no. 1, pp. 215-226 | MR | Zbl
[24] Holomorphic curves into algebraic varieties, Ann. Math., Volume 169 (2009), pp. 255-267 | MR | Zbl
[25] Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, 2004, pp. 543-566 | MR | Zbl
[26] Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math., Volume 202 (2015) no. 3, pp. 1069-1166 | DOI | MR | Zbl
[27] Holomorphic mappings into compact complex manifolds, Houston J. Math., Volume 43 (2017) no. 3, pp. 725-762 | MR | Zbl
[28] Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | MR | Zbl
Cited by Sources: