Given a compact complex -fold satisfying the -lemma and supposed to have a trivial canonical bundle and to admit a balanced (=semi-Kähler) Hermitian metric , we introduce the concept of deformations of that are co-polarised by the balanced class and show that the resulting theory of balanced co-polarised deformations is a natural extension of the classical theory of Kähler polarised deformations in the context of Calabi–Yau or holomorphic symplectic compact complex manifolds. The concept of Weil–Petersson metric still makes sense in this strictly more general, possibly non-Kähler context, while the Local Torelli Theorem still holds.
Soit une variété complexe compacte lisse de dimension , à fibré canonique trivial, qui satisfait le lemme du et possède une métrique hermitienne équilibrée (=semi-kählérienne) . Nous introduisons le concept de déformations de co-polarisées par la classe équilibrée et montrons que la théorie des déformations équilibrées co-polarisées est une extension naturelle de la théorie classique des déformations kählériennes polarisées dans le contexte des variétés complexes compactes lisses de Calabi–Yau et dans celui des variétés holomorphes symplectiques. La notion de métrique de Weil–Petersson a encore un sens dans ce contexte strictement plus général, non nécéssairement kählérien, tandis que le théorème de Torelli local est encore valable.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3254
Keywords: co-polarisation by a balanced class, $\partial \bar{\partial }$-manifold, possibly non-Kähler Calabi–Yau manifold, deformations of complex structures, Weil–Petersson metric
Mot clés : co-polarisation par une classe équilibrée, $\partial \bar{\partial }$-variété, variété de Calabi–Yau non nécéssairement kählérienne, déformations de structures complexes, métrique de Weil–Petersson
@article{AIF_2019__69_2_673_0, author = {Popovici, Dan}, title = {Holomorphic {Deformations} of {Balanced} {Calabi-Yau} $\partial \bar{\partial }${-Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {673--728}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3254}, zbl = {07067415}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3254/} }
TY - JOUR AU - Popovici, Dan TI - Holomorphic Deformations of Balanced Calabi-Yau $\partial \bar{\partial }$-Manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 673 EP - 728 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3254/ DO - 10.5802/aif.3254 LA - en ID - AIF_2019__69_2_673_0 ER -
%0 Journal Article %A Popovici, Dan %T Holomorphic Deformations of Balanced Calabi-Yau $\partial \bar{\partial }$-Manifolds %J Annales de l'Institut Fourier %D 2019 %P 673-728 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3254/ %R 10.5802/aif.3254 %G en %F AIF_2019__69_2_673_0
Popovici, Dan. Holomorphic Deformations of Balanced Calabi-Yau $\partial \bar{\partial }$-Manifolds. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 673-728. doi : 10.5802/aif.3254. https://aif.centre-mersenne.org/articles/10.5802/aif.3254/
[1] Small Deformations of a Class of Compact Non-Kähler Manifolds, Proc. Am. Math. Soc., Volume 109 (1990) no. 4, pp. 1059-1062 | Zbl
[2] Metric Properties of Manifolds Bimeromorphic to Compact Kähler Spaces, J. Differ. Geom., Volume 37 (1993), pp. 95-121 | DOI | Zbl
[3] Modifications of Compact Balanced Manifolds, C. R. Math. Acad. Sci. Paris, Volume 320 (1995) no. 12, pp. 1517-1522 | MR | Zbl
[4] The class of Compact Balanced Manifolds Is Invariant under Modifications, Complex Analysis and Geometry (Trento, 1993) (Lecture Notes in Pure and Applied Mathematics), Volume 173, Marcel Dekker, 1996, pp. 1-17 | MR | Zbl
[5] The Class Is Not Stable by Small Deformations, Math. Ann., Volume 290 (1991), pp. 19-30 | DOI | MR
[6] On Twistor Spaces of the Class , J. Differ. Geom., Volume 33 (1991), pp. 541-549 | DOI | MR | Zbl
[7] Remarques sur les groupes de Kähler nilpotents, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 3, pp. 307-316 | DOI | Zbl
[8] Orbifolds, Special Varieties and Classification Theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | MR | Zbl
[9] Obstructions to the Existence of Kähler Structures on Compact Complex Manifolds, Proc. Am. Math. Soc., Volume 142 (2014) no. 10, pp. 3561-3568 | DOI | MR | Zbl
[10] Real Homotopy Theory of Kähler Manifolds, Invent. Math., Volume 29 (1975), pp. 245-274 | DOI | Zbl
[11] Complex Analytic and Algebraic Geometry (http://www-fourier.ujf-grenoble.fr/~demailly/books.html) | Numdam | Zbl
[12] Six Dimensional Solvmanifolds with Holomorphically Trivial Canonical Bundle, Int. Math. Res. Not., Volume 2015 (2015) no. 24, pp. 13757-13799 | DOI | MR | Zbl
[13] -Lemma for General Clemens Manifolds (2017) (https://arxiv.org/abs/1708.00828v1)
[14] Balanced Metrics on Non-Kähler Calabi-Yau Threefolds, J. Differ. Geom., Volume 90 (2012) no. 1, pp. 81-129 | Zbl
[15] Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. Fr., Volume 105 (1977), pp. 113-140 | DOI | Zbl
[16] Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1991) no. 4, pp. 563-629 | Zbl
[17] Techniques of Computations of Dolbeault Cohomology of Solvmanifolds, Math. Z., Volume 273 (2013) no. 1-2, pp. 437-447 | DOI | MR | Zbl
[18] On Holomorphic Sections of Certain Hermitian Vector Bundles, Math. Ann., Volume 189 (1970), pp. 1-4 | DOI | MR | Zbl
[19] On Deformations of Complex Analytic Structures, III. Stability Theorems for Complex Structures, Ann. Math., Volume 71 (1960) no. 1, pp. 43-76 | MR | Zbl
[20] On the Locally Complete Families of Complex Analytic Structures, Ann. Math., Volume 75 (1962) no. 3, pp. 536-577 | MR | Zbl
[21] Twistors, Kähler Manifolds, and Bimeromorphic Geometry. II, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 317-325 | Zbl
[22] On the Existence of Special Metrics in Complex Geometry, Acta Math., Volume 149 (1982) no. 3-4, pp. 261-295 | DOI | MR | Zbl
[23] Deformation Openness and Closedness of Various Classes of Compact Complex Manifolds; Examples, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 13 (2014) no. 2, pp. 255-305 | MR | Zbl
[24] Aeppli Cohomology Classes Associated with Gauduchon Metrics on Compact Complex Manifolds, Bull. Soc. Math. Fr., Volume 143 (2015) no. 4, pp. 1-37 | MR | Zbl
[25] Autour de la cohomologie de Bott-Chern (2007) (https://arxiv.org/abs/0709.3528v1)
[26] Gauduchon Metrics with Prescribed Volume Form, Acta Math., Volume 219 (2017) no. 1, pp. 181-211 | DOI | MR | Zbl
[27] Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Petersson-Weil Metric, Mathematical Aspects of String Theory (San Diego, 1986) (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | DOI | MR | Zbl
[28] The Weil-Petersson Geometry of the Moduli Space of (Calabi-Yau) Manifolds I, Commun. Math. Phys., Volume 126 (1989), pp. 325-346 | DOI | MR | Zbl
[29] Hermitian Metrics, -forms and Monge-Ampère Equations (2013) (https://arxiv.org/abs/1310.6326, to appear in J. Reine Angew. Math.) | Zbl
[30] Hodge Theory and Complex Algebraic Geometry. I., Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002 | MR | Zbl
[31] On the Geometry of Superstrings with Torsion, Ph. D. Thesis, Harvard University (USA) (2006) | MR
[32] Moduli Spaces of Stable Sheaves on Abelian Surfaces, Math. Ann., Volume 321 (2001), pp. 817-884 | DOI | MR | Zbl
Cited by Sources: