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ENTIRE HOLOMORPHIC CURVES INTO PROJECTIVE
SPACES INTERSECTING A GENERIC
HYPERSURFACE OF HIGH DEGREE

by Dinh Tuan HUYNH, Duc-Viet VU & Song-Yan XIE

Abstract. — In this note, we establish the following Second Main Theorem
type estimate for every algebraically nondegenerate entire curve f : C→ Pn(C), in
presence of a generic divisorD ⊂ Pn(C) of sufficiently high degree d > 15(5n+1)nn:
for every r outside a subset of R of finite Lebesgue measure and every real positive
constant δ, we have

Tf (r) 6 N [1]
f

(r,D) +O
(

log Tf (r)
)

+ δ log r,

where Tf (r) and N [1]
f

(r,D) stand for the order function and the 1-truncated count-
ing function in Nevanlinna theory. This inequality quantifies recent results on the
logarithmic Green–Griffiths conjecture.
Résumé. — Dans cet article, nous établissons le théorème suivant : pour toute

courbe entière algébriquement non-dégénérée f : C → Pn(C) intersectant un divi-
seur générique D ⊂ Pn(C) de degré d > 15(5n + 1)nn pour tous r en dehors d’un
sous-ensemble de R de mesure de Lebesgue finie et toute constante réelle positive
δ, on a

Tf (r) 6 N [1]
f

(r,D) +O
(

log Tf (r)
)

+ δ log r,

où Tf (r) et N [1]
f

(r,D) sont la fonction d’ordre et la fonction de comptage 1-tronqué
dans la théorie de Nevanlina. Cette inégalité quantifie des résultats récents sur la
conjecture de Green–Griffiths logarithmique.

1. Introduction and the main result

We first recall the standard notation in Nevanlinna theory. Let E =∑
i αi ai be a divisor on C where αi > 0, ai ∈ C and let k ∈ N ∪ {∞}.

Keywords: Nevanlinna theory, Second Main Theorem, holomorphic curve, Green–
Griffiths’ conjecture, algebraic degeneracy.
2010 Mathematics Subject Classification: 32H30, 32A22, 30D35, 32Q45.
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Denote by ∆t the disk {z ∈ C, |z| < t}. Summing the k-truncated degrees
of the divisor on disks by

n[k](t, E) :=
∑
ai∈∆t

min{k, αi} (t > 0),

the truncated counting function at level k of E is then defined by taking
the logarithmic average

N [k](r, E) :=
∫ r

1

n[k](t, E)
t

dt (r > 1).

When k = ∞, we write n(t, E), N(r, E) instead of n[∞](t, E), N [∞](r, E).
Let f : C→ Pn(C) be an entire curve having a reduced representation f =
[f0 : · · · : fn] in the homogeneous coordinates [z0 : · · · : zn] of Pn(C). Let
D = {Q = 0} be a divisor in Pn(C) defined by a homogeneous polynomial
Q ∈ C[z0, . . . , zn] of degree d > 1. If f(C) 6⊂ D, we define the truncated
counting function of f with respect to D as

N
[k]
f (r,D) := N [k](r, (Q ◦ f)0

)
,

where (Q ◦ f)0 denotes the zero divisor of Q ◦ f .
The proximity function of f for the divisor D is defined as

mf (r,D) :=
∫ 2π

0
log
∥∥f(reiθ)

∥∥d ‖Q‖∣∣Q(f)(reiθ)
∣∣ dθ

2π ,

where ‖Q‖ is the maximum absolute value of the coefficients of Q and∥∥f(z)
∥∥ = max{|f0(z)|, . . . , |fn(z)|}.

Since
∣∣Q(f)

∣∣ 6 ‖Q‖ · ‖f‖d, one has mf (r,D) > 0.
Lastly, the Cartan order function of f is defined by

Tf (r) := 1
2π

∫ 2π

0
log
∥∥f(reiθ)

∥∥dθ

=
∫ r

1

dt
t

∫
∆t

f∗ωn +O(1),

where ωn is the Fubini–Study form on Pn(C).
With the above notations, the Nevanlinna theory consists of two

fundamental theorems (for a comprehensive presentation, see Noguchi–
Winkelmann [19]).

First Main Theorem. — Let f : C→ Pn(C) be a holomorphic curve
and let D be a hypersurface of degree d in Pn(C) such that f(C) 6⊂ D.
Then for every r > 1, the following holds

mf (r,D) +Nf (r,D) = d Tf (r) +O(1),
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ENTIRE HOLOMORPHIC CURVES INTO PROJECTIVE SPACES 655

whence

(1.1) Nf (r,D) 6 d Tf (r) +O(1).

Hence the First Main Theorem gives an upper bound on the counting
function in terms of the order function. On the other side, in the harder
part, so-called Second Main Theorem, one tries to establish a lower bound
for the sum of certain counting functions. Such types of estimates were
given in several situations.

Throughout this note, for an entire curve f, the notation Sf (r) means a
real function of r ∈ R+ such that there is a constant C for which

Sf (r) 6 C Tf (r) + δ log r

for every positive constant δ and every r outside of a subset (depending on
δ) of finite Lebesgue measure of R+.

A holomorphic curve f : C→ Pn(C) is said to be algebraically (linearly)
nondegenerate if its image is not contained in any hypersurface (hyper-
plane). A family of q > n+1 hypersurfaces {Di}16i6q in Pn(C) is in general
position if any n+ 1 hypersurfaces in this family have empty intersection:⋂

i∈I
supp(Di) = ∅ (∀ I ⊂ {1, . . . , q}, |I| = n+ 1).

We recall here the following classical result [3], with truncation level n.

Cartan’s Second Main Theorem. — Let f : C → Pn(C) be a lin-
early nondegenerate holomorphic curve and let {Hi}16i6q be a family of
q > n + 1 hyperplanes in general position in Pn(C). Then the following
estimate holds

(q − n− 1)Tf (r) 6
q∑
i=1

N
[n]
f (r,Hi) + Sf (r).

In the one-dimensional case, Cartan recovered the classical Nevanlinna
theory for nonconstant meromorphic functions and families of q > 2 dis-
tinct points. Since then, many author tried to extend the result of Cartan
to the case of (possible) nonlinear hypersurface. Eremenko–Sodin [12] es-
tablished a Second Main Theorem for q > 2n hypersurfaces Di (1 6 i 6 q)
in general position in Pn(C) and for any nonconstant holomorphic curve
f : C → Pn(C) whose image is not contained in

⋃
16i6q supp(Di). Keep-

ing the same assumption on q > n + 1 hypersurfaces, Ru [23] proved
a stronger estimate for algebraically nondegenerate holomorphic curves
f : C→ Pn(C). He then extended this result to the case of algebraically non-
degenerate holomorphic mappings into an arbitrary nonsingular complex
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656 Dinh Tuan HUYNH, Duc-Viet VU & Song-Yan XIE

projective variety [24]. Note that it remains open the question of truncat-
ing the counting functions in the above generalizations of Cartan’s Second
Main Theorem. Some results in this direction are obtained recently but one
requires the presence of more targets, see for instance [1, 27].
In the other context, Noguchi–Winkelmann–Yamanoi [20] established a

Second Main Theorem for algebraically nondegenerate holomorphic curves
into semiabelian varieties intersecting an effective divisor. Yamanoi [28]
obtained a similar result in the case of abelian varieties with the best trun-
cation level 1, which is extended to the case of semiabelian varieties by
Noguchi–Winkelmann–Yamanoi [21].
In the qualitative aspect, the (strong) Green–Griffiths conjecture stipu-

lates that if X is a complex projective space of general type, then there
exists a proper subvariety Y ( X containing the image of every noncon-
stant entire holomorphic curve f : C→ X.
Following a beautiful strategy of Siu [25], Diverio, Merker and

Rousseau [11] confirmed this conjecture for generic hypersurface D ⊂ Pn+1

of degree d > 2n5 . Berczi [2] improved the degree bound to d > n9n. De-
mailly [9] gave a new degree bound

d >
n4

3 (n log(n log(24n)))n .

In the logarithmic case, namely for the complement of a hypersurface
D ⊂ Pn(C), there is another variant of this conjecture, so-called the loga-
rithmic Green–Griffiths conjecture, which expects that for a generic hyper-
surface D ⊂ Pn(C) having degree d > n + 2, there should exist a proper
subvariety Y ⊂ Pn(C) containing the image of every nonconstant entire
holomorphic curve f : C → Pn(C) \ D. Darondeau [5] gave a positive an-
swer for this case with effective degree bound

d > (5n)2nn.

In this note, we show that the current method towards the Green–
Griffiths conjecture can yield not only qualitative but also quantitative
result, namely a Second Main Theorem type estimate in presence of only
one generic hypersurface D of sufficiently high degree with the truncation
level 1.

Main Theorem. — Let D ⊂ Pn(C) be a generic divisor having degree

d > 15(5n+ 1)nn.

ANNALES DE L’INSTITUT FOURIER



ENTIRE HOLOMORPHIC CURVES INTO PROJECTIVE SPACES 657

Let f : C → Pn(C) be an entire holomorphic curve. If f is algebraically
nondegenerate, then the following estimate holds

Tf (r) 6 N [1]
f (r,D) + Sf (r).

For background and standard techniques in Nevanlinna theory, we use
the book of Noguchi–Winkelmann [19] as our main reference. The proof of
the existence of logarithmic jet differentials in the last part of this note is
based on the work of Darondeau [5].

Acknowledgments. The authors would like to thank Joël Merker for
his encouragements and his comments that greatly improved the manu-
script. We would like to thank Nessim Sibony for very fruitful discussions
on the paper [22]. We want to thank Junjiro Noguchi, Katsutoshi Yamanoi,
Yusaku Tiba and Yuta Kusakabe for their interests in our work and for lis-
tening through many technical details. We would like to thank the referee
for their careful reading of the manuscript and helpful suggestions. The first
author is supported by the fellowship of the Japan Society for the Promo-
tion of Science and the Grant-in-Aid for JSPS fellows Number 16F16317.

2. Logarithmic jet differentials

2.1. Logarithmic Green–Griffiths k-jet bundle

The general strategy to prove the logarithmic Green–Griffiths conjecture
consists of two steps. The first one is to produce many algebraically inde-
pendent differential equations that all holomorphic curve f : C→ Pn(C)\D
must satisfy. The second step consists in producing enough jet differentials
from an initial one such that from the corresponding algebraic differential
equations, one can eliminate all derivative in order to get purely algebraic
equations.
The central geometric object corresponding to the algebraic differential

equations is the logarithmic Green–Griffiths k-jet bundle constructed as
follows. Let X be a complex manifold of dimension n. For a point x ∈ X,
consider the holomorphic germs (C, 0) → (X,x). Two such germs are said
to be equivalent if they have the same Taylor expansion up to order k in
some local coordinates around x. The equivalence class of a holomorphic
germ f : (C, 0)→ (X,x) is called the k-jet of f , denote jk(f). A k-jet jk(f)
is said to be regular if f ′(0) 6= 0. For a point x ∈ X, denote by jk(X)x the

TOME 69 (2019), FASCICULE 2
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vector space of all k-jets of holomorphic germs (C, 0)→ (X,x). Set

Jk(X) :=
⋃
x∈X

Jk(X)x

and consider the natural projection

πk : Jk(X)→ X.

Then Jk(X) is a complex manifold which carries the structure of a holo-
morphic fiber bundle over X, which is called the k-jet bundle over X. When
k = 1, J1(X) is canonically isomorphic to the holomorphic tangent bundle
TX of X.

For an open subset U ⊂ X, for a section ω ∈ H0(U, T ∗X), for a k-jet
jk(f) ∈ Jk(X)|U , the pullback f∗ω is of the form A(z)dz for some holo-
morphic function A. Since each derivative A(j) (0 6 j 6 k − 1) is well
defined, independent of the representation of f in the class jk(f), the holo-
morphic 1-form ω induces the holomorphic map

(2.1) ω̃ : Jk(X)|U → Ck; jk(f)→
(
A(z), A(z)(1), . . . , A(z)(k−1)).

Hence on an open subset U , a local holomorphic coframe ω1 ∧ · · · ∧ ωn 6=
0 yields a trivialization H0(U, Jk(X)) → U × (Ck)n by giving new nk

independent coordinates:

σ → (πk ◦ σ; ω̃1 ◦ σ, . . . , ω̃n ◦ σ),

where ω̃i are defined as in (2.1). The components x(j)
i (1 6 i 6 n, 1 6 j 6 k)

of ω̃i ◦ σ are called jet-coordinates. In a more general setting where ω is a
section over U of the sheaf of meromorphic 1-forms, the induced map ω̃ is
meromorphic.
Now, in the logarithmic setting, let D ⊂ X be a normal crossing divi-

sor on X. This means that at each point x ∈ X, there exist some local
coordinates

z1, . . . , z`, z`+1, . . . , zn (` = `(x))

centered at x in which D is defined by

D = {z1 . . . z` = 0}.

Following Iitaka [14], the logarithmic cotangent bundle of X along D, de-
noted by T ∗X(logD), corresponds to the locally-free sheaf generated by

dz1

z1
, . . . ,

dz`
z`
, z`+1, . . . , zn

in the above local coordinates around x.
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A holomorphic section s ∈ H0(U, Jk(X)) over an open subset U ⊂ X is
said to be a logarithmic k-jet field if ω̃ ◦ s are holomorphic for all sections

ω ∈ H0(U ′, T ∗X(logD)),

for all open subsets U ′ ⊂ U , where ω̃ are induced maps defined as in (2.1).
Such logarithmic k-jet fields define a subsheaf of Jk(X), and this subsheaf
is itself a sheaf of sections of a holomorphic fiber bundle over X, called the
logarithmic k-jet bundle over X along D, denoted by Jk(X,− logD) [18].

The group C∗ acts fiberwise on the jet bundle as follows. For local coor-
dinates

z1, . . . , z`, z`+1, . . . , zn (` = `(x))
centered at x in which D = {z1 . . . z` = 0}, for any logarithmic k-jet field
along D represented by some germ f = (f1, . . . , fn), if ϕλ(z) = λz is the
homothety with ratio λ ∈ C∗, the action is given by{(

log(fi ◦ ϕλ)
)(j) = λj

(
log fi

)(j) ◦ ϕλ 1 6 i 6 `,(
fi ◦ ϕλ

)(j) = λjf
(j)
i ◦ ϕλ `+ 1 6 i 6 n.

Now we are ready to introduce the Green–Griffiths k-jet bundle [13] in
the logarithmic setting. A logarithmic jet differential of order k and degree
m at a point x ∈ X is a polynomial Q(f (1), . . . , f (k)) on the fiber over x of
Jk(X,− logD) enjoying weighted homogeneity:

Q(jk(f ◦ ϕλ)) = λmQ(jk(f)).

Denote by EGGk,mT ∗X(logD)x the vector space of such polynomials and set

EGGk,mT
∗
X(logD) :=

⋃
x∈X

EGGk,mT
∗
X(logD)x.

By Faà di bruno’s formula [4], [16], EGGk,mT ∗X(logD) carries the structure of
a vector bundle over X, called logarithmic Green–Griffiths vector bundle.
A global section P of EGGk,mT ∗X(logD) locally is of the following type in
jet-coordinates x(j)

i :∑
α1,...,αk∈Nn

|α1|+2|α2|+···+k|αk|=m

Aα1,...,αk

(∏̀
i=1

(
(log xi)(1))α1,i

n∏
i=`+1

(
(xi)(1))α1,i

)
. . .

(∏̀
i=1

(
(log xi)(k))αk,i

n∏
i=`+1

(
(xi)(k))αk,i

)
,

where
αλ = (αλ,1, . . . , αλ,n) ∈ Nn (1 6 λ 6 k)

TOME 69 (2019), FASCICULE 2



660 Dinh Tuan HUYNH, Duc-Viet VU & Song-Yan XIE

are multi-indices of length

|αλ| =
∑

16i6n
αλ,i,

and where Aα1,...,αk
are locally defined holomorphic functions.

By the following classical result, the first step to prove the Green–
Griffiths conjecture reduces to finding logarithmic jet differentials valued
in the dual of some ample line bundle.

Fundamental vanishing theorem ([7, 10]). — Let X be a smooth
complex projective variety and let D ⊂ X be a normal crossing divisor on
X. If P is a nonzero global holomorphic logarithmic jet differential along
D vanishing on some ample line bundle A on X, namely if

0 6= P ∈ H0(X,EGGk,mT ∗X(logD)⊗A −1),
then all nonconstant holomorphic curves f : C → X \D must satisfy the
associated differential equation

(2.2) P
(
jk(f)

)
≡ 0.

In the compact case, the existence of such global sections has been proved
recently, first by Merker [16] for the case of smooth hypersurfaces of gen-
eral type in Pn(C), and later for arbitrary general projective variety by
Demailly [8]. Adapting this technique in the logarithmic setting, Daron-
deau [5] obtained a similar result for smooth hypersurface in projective
space, provided that the degree is high enough compared with the dimen-
sion.

Proposition 2.1 ([5, Thm. 1.2]). — Let c ∈ N be a positive integer
and let D ⊂ Pn(C) be a smooth hypersurface having degree

d > 15(c+ 2)nn.

For jet order k = n, for weighted degrees m � d big enough, the vector
space of global logarithmic jet differentials along D of order k and weighted
degree m vanishing on the m-th tensor power of the ample line bundle
OPn(C)(c) has positive dimension:

dimH0(Pn(C), EGGn,mT ∗Pn(C)(logD)⊗OPn(C)(c)−m
)
> 0.

3. Second Main Theorem for logarithmic jet differential

Let D ⊂ Pn(C) be a smooth hypersurface in Pn(C). Let f : C → Pn(C)
be an entire holomorphic curve, not necessary in the complement of D.

ANNALES DE L’INSTITUT FOURIER
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If there exists a global logarithmic jet differential P which does not sat-
isfy (2.2), then the fundamental vanishing theorem guarantees that the
curve f must intersect the hypersurface D. Furthermore, in the quantita-
tive aspect, based on the proof of the fundamental vanishing theorem, it is
known that a Second Main Theorem type estimate

Tf (r) 6 C Nf (r,D) + Sf (r)

can be deduced from the existence of such global section P. There are
several variants of the above estimate, see for instance in [22, 26]. Here
we provide more information about the constant C and truncation of the
counting function.
Before going to introduce the main result of this section, we need to

recall the following lemma on logarithmic derivative which is a crucial tool
in Nevanlina theory.

Logarithmic derivative Lemma. — Let g 6≡ 0 be a nonzero mero-
morphic function on C. For any integer k > 1, we have

m g(k)
g

(r) := m g(k)
g

(r,∞) = Sg(r).

We refer to [19, Lem. 4.7.1] for a more general version of the above
Lemma. Here is our main result in this section.

Theorem 3.1. — Let f : C → Pn(C) be an entire curve and let D ⊂
Pn(C) be a smooth hypersurface. Let m̃ be a positive integer. If there exists
a global logarithmic jet differential

P ∈ H0(Pn(C), EGGk,mT ∗Pn(C)(logD)⊗OPn(C)(1)−m̃
)

such that
P
(
jk(f)

)
6≡ 0,

then the following Second Main Theorem type estimate holds:

Tf (r) 6 m

m̃
N

[1]
f (r,D) + Sf (r).

Proof. — Our proof is partly based on [19, Lem. 4.7.1] and [7]. Let Q
be the irreducible homogeneous polynomial defining D. By assumption,
P
(
jk(f)

)
is a nonzero meromorphic section of f∗OPn(C)(1)−m̃. Let DP,f

be the pole divisor of P
(
jk(f)

)
.

Let
(
V, φ) be a small enough local chart of Pn(C) such that φ : Pn(C)→

Cn is a rational map andD is given byD = {z1 = 0}, where z = (z1, . . . , zn)
are the natural coordinates on Cn. Put

fj := φ(f),(3.1)

TOME 69 (2019), FASCICULE 2
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which is a meromorphic function on C for 1 6 j 6 n. Then f is written
in the local chart V as (f1, . . . , fn) on f−1(V ). Observe that f1/Q(f) is a
nowhere vanishing holomorphic function on f−1(V ). Recall that on V , the
section P

(
jk(f)

)
can be written as

P
(
jk(f)

)
=

∑
α1,...,αk∈Nn

|α1|+2|α2|+···+k|αk|=m

Aα1,...,αk

k∏
`=1

((
(log f1)(`))α`,1

n∏
j=2

(
f

(`)
j

)α`,j

)
,

(3.2)

where Aα1,...,αk
are holomorphic functions on f−1(V ) and αj = (αj,1, . . . ,

αj,n) for 1 6 j 6 n. Hence, the support of DP,f is a subset of the zero
set of Q ◦ f on C. Furthermore, since for each 1 6 ` 6 k, the pole order of
(log f1)(`) at any point z ∈ C is at most `min{ordz f1, 1} (hence at most
`min{ordz Q(f), 1}) and since the degree of P is m, we get

DP,f 6 m
∑
z∈C

min{ordz(Q ◦ f), 1}z.

Let h be the pullback by f of the Fubini–Study form ωn on Pn(C). Using
the Poincaré–Lelong formula, we have

ddc log ‖P
(
jk(f)

)
‖h > m̃f∗ω − [DP,f ],

where [DP,f ] is the integration current of DP,f . Combining this fact with
the above inequality, we obtain

m̃ Tf (r) +O(1) 6
∫
∂∆r

log ‖P
(
jk(f)

)
‖2h

dθ
2π +mN

[1]
f (r,D).

Thus, it remains to verify

(3.3)
∫
∂∆r

log ‖P
(
jk(f)

)
‖2h

dθ
2π = Sf (r).

Using a partition of unity on Pn(C), the problem reduces to proving that

(3.4)
∫
∂∆r

log |χ(f)P
(
jk(f)

)
|2 dθ

2π = Sf (r),

where χ is a smooth positive function compactly supported on a
local chart V as above. Using the following elementary observations with
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s, s1, . . . , sN ∈ R∗+:

log s = log+ s− log+ 1
s
6 log+ s

log+
N∑
i=1

si 6
N∑
i=1

log+ si + logN

log+
N∏
i=1

si 6
N∑
i=1

log+ si,

where log+ denotes max{log, 0}, we get

(3.5)
∫
∂∆r

log |χ(f)P
(
jk(f)

)
|2 dθ

2π

6
∑

α1,...,αk∈Nn

|α1|+2|α2|+···+k|αk|=m

k∑
`=1

(∫
∂∆r

log+ (χ(f)|(log f1)(`)|α`,1
) dθ

2π

+
n∑
j=2

∫
∂∆r

log+ (χ(f)|f (`)
j |

α`,j
) dθ

2π

)
+O(1),

Recall from (3.1) that fj are meromorphic functions on C for 1 6 j 6 n.
Hence applying the logarithmic derivative Lemma to f1, we infer that∫

∂∆r

log+ (χ(f)|(log f1)(`)|α`,1
) dθ

2π = Sf (r).(3.6)

Therefore, it suffices to show that this property still holds for the remaining
terms in the right-hand side of (3.5). Continuing to apply the logarithmic
derivative Lemma, we obtain∫

∂∆r

log+ (χ(f)|f (`)
j |

α`,j
) dθ

2π 6 c
∫
∂∆r

log+ (χ(f)|f (1)
j |

2) dθ
2π + Sf (r),

for some constant c which is independent of r, f . Hence it remains to check∫
∂∆r

log+ (χ(f)|f (1)
j |

2) dθ
2π = Sf (r).

This can be done by using the similar arguments as in [19, p. 149]. For
the reader’s convenience, we present the idea here. Since χ is compactly
supported on V , there exists a bounded positive function B for which
χdzj ∧ dz̄j 6 B(z)ωn on V for 2 6 j 6 n. This yields

χ(f)|f (1)
j |

2 dz ∧ dz̄ = f∗(χ dzj ∧ dz̄j) 6 B(f)f∗ωn.
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The pullback f∗ωn is of the form B1 dz ∧ dz̄. Hence we deduce from the
above inequality that∫
∂∆r

log+ (χ(f)|f (1)
j |

2) dθ
2π 6

1
2π

∫
∂∆r

log+B(f) dθ + 1
2π

∫
∂∆r

log+B1 dθ

6
1

2π

∫
∂∆r

log+B1 dθ + suppz∈V |B(z)|.

Estimating
∫
∂∆r

log+B1 is done by following the same arguments as in the
proof of the logarithmic derivative Lemma, see [19, (3.2.8)]. The proof is
finished. �

4. Existence of logarithmic jet differentials

Let f : C→ Pn(C) be an algebraically nondegenerate holomorphic curve.
Following the second step in Siu’s strategy to prove the Green–Griffiths
conjecture, morally, if we can produce enough logarithmic jet differentials
valued in the dual of some ample line bundle on Pn(C), then among them,
we can choose at least one such that f does not satisfy the algebraic dif-
ferential equation (2.2).

Theorem 4.1. — Let c be a positive integer with c > 5n − 1. Let
D ⊂ Pn(C) be a generic smooth hypersurface in Pn(C) having degree

d > 15(c+ 2)nn.

Let f : C → Pn(C) be an entire holomorphic curve. If f is algebraically
nondegenerate, then for jet order k = n and for weighted degrees m > d

big enough, there exists an integer 0 6 ` 6 m and a global logarithmic jet
differential

P ∈ H0(Pn(C), EGGn,mT ∗Pn(C)(logD)⊗OPn(C)(1)−cm+`(5n−2))
such that

P
(
jn(f)

)
6≡ 0.(4.1)

The rest of this section is devoted to proving Theorem 4.1 whose proof is
based on [11, 5]. Let S := PH0(Pn(C),O(d)

)
be the projective parameter

space of homogeneous polynomials of degree d in Pn(C) which identifies
with the projective space PNd(C) of dimension

Nd = dimPH0(Pn(C),OPn(C)(d)
)

=
(
n+ d

d

)
− 1.
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We then introduce the universal hypersurface

H ⊂ Pn(C)× S

parametrizing all hypersurfaces of fixed degree d in Pn(C), defined by the
equation

0 =
∑

α∈Nn+1

Aα Z
α

in the following two collections of homogeneous coordinates

Z = [Z0 : · · · : Zn] ∈ Pn(C),

A = [(Aα)α∈Nn+1,|α|=d] ∈ PNd(C),

where α = (α0, . . . , αn) ∈ Nn+1 are multiindices. Since H is a smooth
hypersurface on Pn(C)× S, we can construct the logarithmic k-jet bundle

Jk(Pn(C)× S,− logH)

over Pn(C)× S along H.
Now, let η be the natural projection from Jk(Pn(C) × S,− logH) to

Pn(C) × S. Let pr1 and pr2 be the natural projections from Pn(C) × S
to the first and second part, respectively. Let VH,k be the analytic subset
of Jk(Pn(C)× S,− logH) consisting of all vertical logarithmic jet fields of
order k which, by definition, are jets jk(f) such that f lies entirely in some
fiber of the second projection pr2.
Denote by Vreg

H,k the open subset consisting of all regular jets. By [6,
p. 571–572] (see also [15, p. 1088]), Vreg

H,k is smooth manifold. Following
the method of producing new jet differentials developed by Siu [25], in the
logarithmic setting, one needs to construct low pole order frames on Vreg

H,k.

Proposition 4.2 ([6, Main Theorem]). — For jet order k > 1, for de-
gree d > k, the twisted tangent bundle

TVH,k
⊗ η∗

(
OPn(C)(5 k − 2)⊗OS(1)

)
is generated over Vreg

H,k \ η−1H by its global holomorphic sections.

In fact, those global sections mentioned in the above Proposition are
global vector fields on the whole logarithmic k-jet bundle and satisfy the
canonical tangential conditions described as in [6, 15]. Hence they are true
vector fields on the smooth part of VH,k. Moreover by the constructions
in [6, 15, 26], the coefficients of those vector fields are polynomials in local
logarithmic jet coordinates.
Let Z0 be the subset of S consisting of all s whose corresponding hy-

persurface Ds is not smooth. Observe that Z0 is a proper analytic subset
of S.
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From now on we work with the fixed jet order k = n. Since pr−1
2 s =

Pn(C)× {s} and since Ds is smooth for every s outside Z0, one can define
Jn(pr−1

2 s,− logDs) for any s ∈ S\Z0. Let us set

L :=
⋃

s∈S\Z0

Jn(pr−1
2 s,− logDs),

Lreg :=
⋃

s∈S\Z0

J reg
n (pr−1

2 s,− logDs).

Observe that L has a natural structure of holomorphic fiber bundle over
Pn(C)× (S\Z0). Note also that L,Lreg are open subsets of VH,n and Vreg

H,n,
respectively. Set

E :=
⋃

s∈S\Z0

EGGn,mT
∗ pr−1

2 s(logDs),

then E carries the structure of holomorphic vector bundle over Pn(C) ×
(S\Z0). This fact allows us to extend holomorphically a nonzero jet differ-
ential provided by Proposition 2.1. Let us enter the details.

Lemma 4.3. — Let c > 5n − 1 be a positive integer. For degree d >
15(c + 2)nn, for weighted degree m � d, there exists a proper analytic
subset Z of S containing Z0 such that for every s ∈ S \ Z, we can find
a Zariski open neighborhood Us of s in S\Z0 and a nonzero holomorphic
section P 6≡ 0 of the twisted vector bundle E ⊗ pr∗1OPn(C)(1)−cm over
pr−1

2 Us.

Proof. — By construction, for any s ∈ S\Z0, the restriction of E to
pr−1

2 s = Pn(C)× {s} coincides with

EGGn,mT
∗ pr−1

2 s(logDs).

Hence Proposition 2.1 guarantees the existence of a nonzero global section

0 6≡Ps ∈ H0(Pn(C)× {s}, E ⊗ pr∗1OPn(C)(1)−cm|pr−1
2 s

)
of the restriction of the twisted vector bundle E ⊗ pr∗1OPn(C)(1)−cm to
pr−1

2 s. By the semi-continuity theorem (c.f. [17, p. 50]), there exists a
proper Zariski closed subset Z of S containing Z0 such that for any s ∈ S\Z,
the natural restriction map

H0( pr−1
2 Us, E ⊗ pr∗1OPn(C)(1)−cm

)
−→ H0(pr−1

2 s, E ⊗ pr∗1OPn(C)(1)−cm|pr−1
2 s

)
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is onto for some Zariski open subset Us ⊂ S\Z0 containing s. As a conse-
quence, the above section Ps can be extended holomorphically to a section
P of E ⊗ pr∗1OPn(C)(1)−cm over pr−1

2 Us. �

Proof of Theorem 4.1. — Let Z,P be as in Lemma 4.3. Let us first
describe precisely the generic assumption of D in the statement. By this,
we mean that if D corresponds to the element s ∈ S (i.e. D = Ds), then s
lies outside Z∪HS, where HS is a fixed arbitrary hyperplane of S. Here the
condition s 6∈ HS is given in order to get rid of η∗OS(1) in Proposition 4.2
because the line bundle OS(1) is trivial on S\HS. From now on, we fix
s ∈ S \ Z and D = Ds.

Applying Proposition 4.2 for jet order k = n, the twisted tangent bundle

TVH,n
⊗ η∗

(
OPn(C)(5n− 2)⊗OS(1)

)
is generated by its global holomorphic sections over Vreg

H,n\η−1H. Moreover,
the coefficients of those sections are polynomials in the logarithmic n-jet
coordinates associated with the canonical coordinates of Pn(C) × S. In
particular, the restriction of the bundle

TVH,n
⊗ η∗OPn(C)(5n− 2)

to η−1Y , where
Y := pr−1

2 (Us\HS) \ H
is generated on (Vreg

H,n ∩ η−1Y ) by its global sections whose coefficients are
polynomials in the logarithmic jet coordinates as above.
For 0 6 ` 6 m, let v1, . . . , v` be sections of TVH,n

⊗ η∗OPn(C)(5n − 2)
over the open subset L ⊂ VH,n. As explained below, the significance of
those sections is that they allow to construct new global logarithmic jet
differentials. Indeed, we can view P as a holomorphic mapping

P : L|pr−1
2 Us

→ pr∗1OPn(C)(1)−cm|pr−1
2 Us

,

which is locally a homogeneous polynomial of degree m. It follows that the
Lie derivative (v1 . . . v`) ·P is also a holomorphic map from L|pr−1

2 Us
to

pr∗1OPn(C)(1)−cm+`(5n−2)

and is locally a homogeneous polynomial of the same degree m. The fact
that the derivative of P along vj preserves the degree m can be deduced
from the fact that the coefficients of vj are polynomials in the logarithmic
jet coordinates and by the chain rule of derivatives, the degree of those
polynomials should compensate the losses of degree due to the differentia-
tion with respect to vj , see [26, §3.7]. In summary, we obtain a holomorphic
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map

(v1 . . . v`) ·P : L|pr−1
2 Us

→ pr∗1OPn(C)(1)|−cm+`(5n−2)
pr−1

2 Us
.(4.2)

By composing f with the inclusion

Pn(C) ↪→ Pn(C)× {s} ⊂ Pn(C)× S,

we can consider f as a holomorphic curve into Y ⊂ Pn(C) × S because
s ∈ Us \ HS and f is not included in D. Let {P = 0} ⊂ pr−1

2 Us be
the zero divisor of P, where we view P as a holomorphic section of
E ⊗ pr∗1OPn(C)(1)−cm over pr−1

2 Us. Since f is algebraically nondegener-
ate, there exists z0 ∈ C such that f ′(z0) 6= 0 and f(z0) 6∈ D ∩ {P = 0}.
Consequently, we get

jn(f)(z0) ∈ (Lreg ∩ η−1Y ).(4.3)

Now proceeding as in [11], we can show that there exist global slanted
vector fields v1, . . . , v` for some 0 6 ` 6 m such that

(v1 . . . v`) ·P
(
jn(f)

)
6= 0.

For reader’s convenience, we briefly recall the idea. Denoted by Ps the
restriction of P to Pn(C) × {s}. Consider the logarithmic jet coordinates
(z, z(1), . . . , z(n)) ∈ Cn(n+1) around jn(f)(z0) of L|Pn(C)×{s}. Using a lin-
ear change of coordinates, we obtain modified logarithmic jet coordinates
(z′, z′(1), . . . , z′(n)) in which jn(f)(z0) is the origin. Since Ps is locally a
homogeneous polynomial in logarithmic jet coordinates whose coefficients
are holomorphic functions on local charts of Pn(C), so it is in the new
logarithmic jet coordinates.
By the choice of z0, there exists a coefficient Aα1,...,αn

(z) of Ps (see (3.2))
for which Aα1,...,αn(f(z0)) 6= 0. Let

Aα1,...,αn(z)
(
z′(1))α1

. . .
(
z′(n))αn

be the monomial of Ps associated with Aα1,...,αn , where αj ∈ Nn for 1 6
j 6 n and |α1|+ 2|α2|+ · · ·+n|αn| 6 m. We then choose local vector fields
v′1, . . . v

′
` around the origin jn(f)(z0) for which

(v′1 . . . v′`) ·P
(
jn(f)(z0)

)
= Aα1,...,αn

(
f(z0)

)
6= 0.

As we mentioned above, these vector fields v′1, . . . , v′` can be generated by
global vector fields v1, . . . , v` on (Lreg ∩ η−1Y ). Combining this with (4.3),
we get (v1 . . . v`) ·P

(
jn(f)(z0)

)
6= 0. This together with (4.2) implies (4.1).

The proof of Theorem 4.1 is completed. �
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Corollary 4.4. — Let c be a positive integer with c > 5n − 1. Let
D ⊂ Pn(C) be a generic hypersurface in Pn(C) having degree

d > 15(c+ 2)nn.

Let f : C → Pn(C) be an entire holomorphic curve. If f is algebraically
nondegenerate, then the following Second Main Theorem type estimate
holds:

Tf (r) 6 1
c− 5n+ 2 N

[1]
f (r,D) + Sf (r).

In particular, choosing c = 5n− 1, one obtains the Main Theorem.

Proof. — This is a direct application of Theorem 3.1 to global logarith-
mic jet differential P supplied by Theorem 4.1, where

m̃ = mc− `(5n− 2) > m(c− 5n+ 2) > m. �
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