Dans cet article, nous établissons le théorème suivant : pour toute courbe entière algébriquement non-dégénérée intersectant un diviseur générique de degré pour tous en dehors d’un sous-ensemble de de mesure de Lebesgue finie et toute constante réelle positive , on a
où et sont la fonction d’ordre et la fonction de comptage -tronqué dans la théorie de Nevanlina. Cette inégalité quantifie des résultats récents sur la conjecture de Green–Griffiths logarithmique.
In this note, we establish the following Second Main Theorem type estimate for every algebraically nondegenerate entire curve , in presence of a generic divisor of sufficiently high degree : for every outside a subset of of finite Lebesgue measure and every real positive constant , we have
where and stand for the order function and the -truncated counting function in Nevanlinna theory. This inequality quantifies recent results on the logarithmic Green–Griffiths conjecture.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3253
Keywords: Nevanlinna theory, Second Main Theorem, holomorphic curve, Green–Griffiths’ conjecture, algebraic degeneracy
Mot clés : théorie de Nevanlina, le deuxième théorème fondamental, conjecture de Green–Griffiths, dégénéré algébriquement
Huynh, Dinh Tuan 1, 2 ; Vu, Duc-Viet 3 ; Xie, Song-Yan 4
@article{AIF_2019__69_2_653_0, author = {Huynh, Dinh Tuan and Vu, Duc-Viet and Xie, Song-Yan}, title = {Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree}, journal = {Annales de l'Institut Fourier}, pages = {653--671}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3253}, zbl = {07067414}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3253/} }
TY - JOUR AU - Huynh, Dinh Tuan AU - Vu, Duc-Viet AU - Xie, Song-Yan TI - Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree JO - Annales de l'Institut Fourier PY - 2019 SP - 653 EP - 671 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3253/ DO - 10.5802/aif.3253 LA - en ID - AIF_2019__69_2_653_0 ER -
%0 Journal Article %A Huynh, Dinh Tuan %A Vu, Duc-Viet %A Xie, Song-Yan %T Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree %J Annales de l'Institut Fourier %D 2019 %P 653-671 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3253/ %R 10.5802/aif.3253 %G en %F AIF_2019__69_2_653_0
Huynh, Dinh Tuan; Vu, Duc-Viet; Xie, Song-Yan. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 653-671. doi : 10.5802/aif.3253. https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
[1] The second main theorem for meromorphic mappings into a complex projective space, Acta Math. Vietnam., Volume 38 (2013) no. 1, pp. 187-205 | DOI | MR | Zbl
[2] Towards the Green-Griffiths-Lang conjecture via equivariant localisation (2015) (https://arxiv.org/abs/1509.03406)
[3] Sur les zéros des combinaisons linéaires de fonctions holomorphesdonnées, Mathematica, Volume 7 (1933), pp. 80-103 | Zbl
[4] A multivariate Faà di Bruno formula with applications, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 503-520 | DOI | MR | Zbl
[5] On the logarithmic Green-Griffiths conjecture, Int. Math. Res. Not. (2016) no. 6, pp. 1871-1923 | DOI | MR | Zbl
[6] Slanted vector fields for jet spaces, Math. Z., Volume 282 (2016) no. 1-2, pp. 547-575 | DOI | MR | Zbl
[7] Variétés projectives hyperboliques et équations différentielles algébriques, Journée en l’Honneur de Henri Cartan (SMF Journée Annuelle), Volume 1997, Société Mathématique de France, 1997, pp. 3-17 | MR | Zbl
[8] Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, pp. 1165-1207 | DOI | MR | Zbl
[9] Hyperbolic algebraic varieties and holomorphic differential equations, Acta Math. Vietnam., Volume 37 (2012) no. 4, pp. 441-512 | MR | Zbl
[10] Logarithmic jet bundles and applications, Osaka J. Math., Volume 38 (2001) no. 1, pp. 185-237 | MR | Zbl
[11] Effective algebraic degeneracy, Invent. Math., Volume 180 (2010), pp. 161-223 | DOI | MR | Zbl
[12] Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra Anal., Volume 3 (1991) no. 1, pp. 131-164 | MR
[13] Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, 1979), Springer, 1980, pp. 41-74 | DOI | MR | Zbl
[14] Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76, Springer, 1982, x+357 pages | MR | Zbl
[15] Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1077-1104 | DOI | MR | Zbl
[16] Algebraic differential equations for entire holomorphic curves in projective hypersurfaces of general type: optimal lower degree bound, Geometry and analysis on manifolds (Progress in Mathematics), Volume 308, Birkhäuser/Springer, 2015, pp. 41-142 | DOI | MR | Zbl
[17] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl
[18] Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to several complex variables (Aspects of Mathematics), Volume E9, Friedr. Vieweg & Sohn, 1986, pp. 227-249 | DOI | MR | Zbl
[19] Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften, 350, Springer, 2014, xiv+416 pages | DOI | MR | Zbl
[20] The second main theorem for holomorphic curves into semi-abelian varieties, Acta Math., Volume 188 (2002) no. 1, pp. 129-161 | DOI | MR | Zbl
[21] The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math., Volume 20 (2008) no. 3, pp. 469-503 | MR | Zbl
[22] Value Distribution Theory for Parabolic Riemann Surfaces (2014) (https://arxiv.org/abs/1403.6596)
[23] A defect relation for holomorphic curves intersecting hypersurfaces, Am. J. Math., Volume 126 (2004) no. 1, pp. 215-226 | MR | Zbl
[24] Holomorphic curves into algebraic varieties, Ann. Math., Volume 169 (2009), pp. 255-267 | MR | Zbl
[25] Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, 2004, pp. 543-566 | MR | Zbl
[26] Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math., Volume 202 (2015) no. 3, pp. 1069-1166 | DOI | MR | Zbl
[27] Holomorphic mappings into compact complex manifolds, Houston J. Math., Volume 43 (2017) no. 3, pp. 725-762 | MR | Zbl
[28] Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | MR | Zbl
Cité par Sources :