Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
[Courbes entières holomorphes dans un espace projectif intersectant une hypersurface générique de degré supérieur]
Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 653-671.

Dans cet article, nous établissons le théorème suivant : pour toute courbe entière algébriquement non-dégénérée f: n () intersectant un diviseur générique D n () de degré d15(5n+1)n n pour tous r en dehors d’un sous-ensemble de de mesure de Lebesgue finie et toute constante réelle positive δ, on a

T f (r)N f [1] (r,D)+Olog T f (r)+δlogr,

T f (r) et N f [1] (r,D) sont la fonction d’ordre et la fonction de comptage 1-tronqué dans la théorie de Nevanlina. Cette inégalité quantifie des résultats récents sur la conjecture de Green–Griffiths logarithmique.

In this note, we establish the following Second Main Theorem type estimate for every algebraically nondegenerate entire curve f: n (), in presence of a generic divisor D n () of sufficiently high degree d15(5n+1)n n : for every r outside a subset of of finite Lebesgue measure and every real positive constant δ, we have

T f (r)N f [1] (r,D)+Olog T f (r)+δlogr,

where T f (r) and N f [1] (r,D) stand for the order function and the 1-truncated counting function in Nevanlinna theory. This inequality quantifies recent results on the logarithmic Green–Griffiths conjecture.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3253
Classification : 32H30, 32A22, 30D35, 32Q45
Keywords: Nevanlinna theory, Second Main Theorem, holomorphic curve, Green–Griffiths’ conjecture, algebraic degeneracy
Mot clés : théorie de Nevanlina, le deuxième théorème fondamental, conjecture de Green–Griffiths, dégénéré algébriquement

Huynh, Dinh Tuan 1, 2 ; Vu, Duc-Viet 3 ; Xie, Song-Yan 4

1 Department of Mathematics College of Education, Hue University 34 Le Loi St. Hue City (Vietnam)
2 Department of Mathematics Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043 (Japan)
3 Korea institute for advanced study 85 Hoegiro, Dongdaemun-gu Seoul 02455 (Republic of Korea)
4 Max-Planck-Institut für Mathematik, Vivatsgasse 7 53111 Bonn (Germany)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_2_653_0,
     author = {Huynh, Dinh Tuan and Vu, Duc-Viet and Xie, Song-Yan},
     title = {Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree},
     journal = {Annales de l'Institut Fourier},
     pages = {653--671},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3253},
     zbl = {07067414},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3253/}
}
TY  - JOUR
AU  - Huynh, Dinh Tuan
AU  - Vu, Duc-Viet
AU  - Xie, Song-Yan
TI  - Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 653
EP  - 671
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
DO  - 10.5802/aif.3253
LA  - en
ID  - AIF_2019__69_2_653_0
ER  - 
%0 Journal Article
%A Huynh, Dinh Tuan
%A Vu, Duc-Viet
%A Xie, Song-Yan
%T Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
%J Annales de l'Institut Fourier
%D 2019
%P 653-671
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3253/
%R 10.5802/aif.3253
%G en
%F AIF_2019__69_2_653_0
Huynh, Dinh Tuan; Vu, Duc-Viet; Xie, Song-Yan. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 653-671. doi : 10.5802/aif.3253. https://aif.centre-mersenne.org/articles/10.5802/aif.3253/

[1] An, Do Phuong; Quang, Si Duc; Thai, Do Duc The second main theorem for meromorphic mappings into a complex projective space, Acta Math. Vietnam., Volume 38 (2013) no. 1, pp. 187-205 | DOI | MR | Zbl

[2] Berczi, Gergely Towards the Green-Griffiths-Lang conjecture via equivariant localisation (2015) (https://arxiv.org/abs/1509.03406)

[3] Cartan, Henri Sur les zéros des combinaisons linéaires de p fonctions holomorphesdonnées, Mathematica, Volume 7 (1933), pp. 80-103 | Zbl

[4] Constantine, Gregory M.; Savits, Thomas H. A multivariate Faà di Bruno formula with applications, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 503-520 | DOI | MR | Zbl

[5] Darondeau, Lionel On the logarithmic Green-Griffiths conjecture, Int. Math. Res. Not. (2016) no. 6, pp. 1871-1923 | DOI | MR | Zbl

[6] Darondeau, Lionel Slanted vector fields for jet spaces, Math. Z., Volume 282 (2016) no. 1-2, pp. 547-575 | DOI | MR | Zbl

[7] Demailly, Jean-Pierre Variétés projectives hyperboliques et équations différentielles algébriques, Journée en l’Honneur de Henri Cartan (SMF Journée Annuelle), Volume 1997, Société Mathématique de France, 1997, pp. 3-17 | MR | Zbl

[8] Demailly, Jean-Pierre Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, pp. 1165-1207 | DOI | MR | Zbl

[9] Demailly, Jean-Pierre Hyperbolic algebraic varieties and holomorphic differential equations, Acta Math. Vietnam., Volume 37 (2012) no. 4, pp. 441-512 | MR | Zbl

[10] Dethloff, Gerd-Eberhard; Lu, Steven Shin-Yi Logarithmic jet bundles and applications, Osaka J. Math., Volume 38 (2001) no. 1, pp. 185-237 | MR | Zbl

[11] Diverio, Simone; Merker, Joël; Rousseau, Erwan Effective algebraic degeneracy, Invent. Math., Volume 180 (2010), pp. 161-223 | DOI | MR | Zbl

[12] Erëmenko, Alexandre È.; Sodin, Mikhail L. Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra Anal., Volume 3 (1991) no. 1, pp. 131-164 | MR

[13] Green, Mark; Griffiths, Phillip Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, 1979), Springer, 1980, pp. 41-74 | DOI | MR | Zbl

[14] Iitaka, Shigeru Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76, Springer, 1982, x+357 pages | MR | Zbl

[15] Merker, Joël Low pole order frames on vertical jets of the universal hypersurface, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 1077-1104 | DOI | MR | Zbl

[16] Merker, Joël Algebraic differential equations for entire holomorphic curves in projective hypersurfaces of general type: optimal lower degree bound, Geometry and analysis on manifolds (Progress in Mathematics), Volume 308, Birkhäuser/Springer, 2015, pp. 41-142 | DOI | MR | Zbl

[17] Mumford, David Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl

[18] Noguchi, Junjiro Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to several complex variables (Aspects of Mathematics), Volume E9, Friedr. Vieweg & Sohn, 1986, pp. 227-249 | DOI | MR | Zbl

[19] Noguchi, Junjiro; Winkelmann, Jörg Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften, 350, Springer, 2014, xiv+416 pages | DOI | MR | Zbl

[20] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi The second main theorem for holomorphic curves into semi-abelian varieties, Acta Math., Volume 188 (2002) no. 1, pp. 129-161 | DOI | MR | Zbl

[21] Noguchi, Junjiro; Winkelmann, Jörg; Yamanoi, Katsutoshi The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math., Volume 20 (2008) no. 3, pp. 469-503 | MR | Zbl

[22] Păun, Mihai; Sibony, Nessim Value Distribution Theory for Parabolic Riemann Surfaces (2014) (https://arxiv.org/abs/1403.6596)

[23] Ru, Min A defect relation for holomorphic curves intersecting hypersurfaces, Am. J. Math., Volume 126 (2004) no. 1, pp. 215-226 | MR | Zbl

[24] Ru, Min Holomorphic curves into algebraic varieties, Ann. Math., Volume 169 (2009), pp. 255-267 | MR | Zbl

[25] Siu, Yum-Tong Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, 2004, pp. 543-566 | MR | Zbl

[26] Siu, Yum-Tong Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math., Volume 202 (2015) no. 3, pp. 1069-1166 | DOI | MR | Zbl

[27] Thai, Do Duc; Vu, Duc-Viet Holomorphic mappings into compact complex manifolds, Houston J. Math., Volume 43 (2017) no. 3, pp. 725-762 | MR | Zbl

[28] Yamanoi, Katsutoshi Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | MR | Zbl

Cité par Sources :