Dans cet article, on montre qu’il y a non-unicité pour le problème de Calderón sur des variétés riemanniennes quand les données de Dirichlet et de Neumann sont mesurées sur des sous-ensembles disjoints du bord. On construit des contre-exemples à l’unicité en dimension et pour des variétés riemanniennes à bord topologiquement équivalentes à des cylindres dont les fibres sont des tores. La construction pourrait être aisément étendue à des variétés riemanniennes de dimensions supérieures.
In this paper, we show that there is non-uniqueness in the Calderón problem on Riemannian manifolds when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of two and three dimensional Riemannian manifolds with boundary having the topology of circular cylinders in dimension two and toric cylinders in dimension three. The construction could be easily extended to higher dimensional Riemannian manifolds.
Accepté le :
Publié le :
DOI : 10.5802/aif.3240
Keywords: Anisotropic Calderón problem, Helmholtz equation on a Riemannian manifold, Sturm–Liouville problems, Weyl–Titchmarsh functions
Mot clés : Problème de Calderón anisotropique, équation d’Helmholtz sur une variété riemannienne, problèmes de Sturm–Liouville, fonctions de Weyl–Titchmarsh
Daudé, Thierry 1 ; Kamran, Niky 2 ; Nicoleau, François 3
@article{AIF_2019__69_1_119_0, author = {Daud\'e, Thierry and Kamran, Niky and Nicoleau, Fran\c{c}ois}, title = {Non-uniqueness results for the anisotropic {Calder\'on} problem with data measured on disjoint sets}, journal = {Annales de l'Institut Fourier}, pages = {119--170}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3240}, zbl = {07067401}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3240/} }
TY - JOUR AU - Daudé, Thierry AU - Kamran, Niky AU - Nicoleau, François TI - Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets JO - Annales de l'Institut Fourier PY - 2019 SP - 119 EP - 170 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3240/ DO - 10.5802/aif.3240 LA - en ID - AIF_2019__69_1_119_0 ER -
%0 Journal Article %A Daudé, Thierry %A Kamran, Niky %A Nicoleau, François %T Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets %J Annales de l'Institut Fourier %D 2019 %P 119-170 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3240/ %R 10.5802/aif.3240 %G en %F AIF_2019__69_1_119_0
Daudé, Thierry; Kamran, Niky; Nicoleau, François. Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 119-170. doi : 10.5802/aif.3240. https://aif.centre-mersenne.org/articles/10.5802/aif.3240/
[1] Calderón’s inverse problem for anisotropic conductivity in the plane, Commun. Partial Differ. Equations, Volume 30 (2005) no. 1-3, pp. 207-224 | DOI | MR | Zbl
[2] A proof of the local Borg-Marchenko theorem, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 131-132 | DOI | MR | Zbl
[3] Entire functions, Pure and Applied Mathematics, 5, Academic Press Inc., 1954, x+276 pages | MR | Zbl
[4] Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math., Volume 78 (1946), pp. 1-96 | DOI | MR | Zbl
[5] Uniqueness theorems in the spectral theory of , Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, pp. 276-287 | MR | Zbl
[6] Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds, Inverse Probl. Imaging, Volume 10 (2016) no. 3, pp. 659-688 | DOI | MR | Zbl
[7] Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces, Inverse Probl., Volume 31 (2015) no. 12, 125009, 37 pages (Art. ID 125009, 37 p.) | DOI | MR | Zbl
[8] Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes, Ann. Henri Poincaré, Volume 12 (2011) no. 1, pp. 1-47 | DOI | MR | Zbl
[9] Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes, Mem. Am. Math. Soc., Volume 247 (2017) no. 1170, iv+113 pages | DOI | MR | Zbl
[10] Limiting Carleman weights and anisotropic inverse problems, Invent. Math., Volume 178 (2009) no. 1, pp. 119-171 | DOI | MR | Zbl
[11] The Calderón problem in transversally anisotropic geometries, J. Eur. Math. Soc., Volume 18 (2016) no. 11, pp. 2579-2626 | DOI | MR | Zbl
[12] Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra, Trans. Am. Math. Soc., Volume 365 (2013) no. 7, pp. 3923-3942 | DOI | MR | Zbl
[13] Inverse problems for differential operators with singular boundary conditions, Math. Nachr., Volume 278 (2005) no. 12-13, pp. 1561-1578 | DOI | MR | Zbl
[14] On local Borg-Marchenko uniqueness results, Commun. Math. Phys., Volume 211 (2000) no. 2, pp. 273-287 | DOI | MR | Zbl
[15] Inverse problems for Einstein manifolds, Inverse Probl. Imaging, Volume 3 (2009) no. 1, pp. 1-15 | DOI | MR | Zbl
[16] Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., Volume 158 (2011) no. 1, pp. 83-120 | DOI | MR | Zbl
[17] The Calderón inverse problem in two dimensions, Inverse problems and applications: inside out. II (Mathematical Sciences Research Institute Publications), Volume 60, Cambridge University Press, 2013, pp. 119-166 | MR | Zbl
[18] The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003, x+440 pages | DOI | MR | Zbl
[19] The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., Volume 23 (2010) no. 3, pp. 655-691 | DOI | MR | Zbl
[20] Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets, Inverse Probl., Volume 27 (2011) no. 8, 085007, 26 pages (Art. ID 085007, 26 p.) | DOI | MR | Zbl
[21] On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 95-105 | DOI | MR | Zbl
[22] Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal., Volume 34 (2002) no. 3, pp. 719-735 | DOI | MR | Zbl
[23] Inverse boundary spectral problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC Press, 2001, xx+290 pages | DOI | MR | Zbl
[24] Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., Volume 20 (2004) no. 2, pp. 419-436 | DOI | MR | Zbl
[25] The Calderón problem with partial data on manifolds and applications, Anal. PDE, Volume 6 (2013) no. 8, pp. 2003-2048 | DOI | MR | Zbl
[26] Recent progress in the Calderón problem with partial data, Inverse problems and applications (Contemporary Mathematics), Volume 615, American Mathematical Society, 2014, pp. 193-222 | DOI | MR | Zbl
[27] The Calderón problem with partial data, Ann. Math., Volume 165 (2007) no. 2, pp. 567-591 | DOI | MR | Zbl
[28] Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. (2012) no. 8, pp. 1699-1747 | DOI | MR | Zbl
[29] An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Probl., Volume 26 (2010) no. 8, 085012, 19 pages (Art. ID 085012, 19 p.) | DOI | MR | Zbl
[30] Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., Volume 163 (2014) no. 6, pp. 1071-1103 | DOI | MR | Zbl
[31] The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Commun. Anal. Geom., Volume 11 (2003) no. 2, pp. 207-221 | DOI | MR | Zbl
[32] On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 5, pp. 771-787 | DOI | MR | Zbl
[33] Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., Volume 42 (1989) no. 8, pp. 1097-1112 | DOI | MR | Zbl
[34] Lectures on entire functions, Translations of Mathematical Monographs, 150, American Mathematical Society, 1996, xvi+248 pages (In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko) | MR | Zbl
[35] Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Probl., Volume 13 (1997) no. 1, pp. 125-134 | DOI | MR | Zbl
[36] Some questions of the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obšč., Volume 1 (1952), pp. 327-420 | MR
[37] Inverse spectral theory, Pure and Applied Mathematics, 130, Academic Press Inc., 1987, x+192 pages | MR | Zbl
[38] Characterization of transmission data for Webster’s horn equation, Inverse Probl., Volume 16 (2000) no. 2, p. L9-L24 | DOI | MR | Zbl
[39] An inverse scattering problem with part of the fixed-energy phase shifts, Commun. Math. Phys., Volume 207 (1999) no. 1, pp. 231-247 | DOI | MR | Zbl
[40] Introduction to complex orbital momenta, Nuovo Cimento, Volume 14 (1959), pp. 951-976 | DOI | MR | Zbl
[41] Real and complex analysis, McGraw-Hill Book Co., 1987, xiv+416 pages | MR | Zbl
[42] The Calderón problem on Riemannian manifolds, Inverse problems and applications: inside out. II (Mathematical Sciences Research Institute Publications), Volume 60, Cambridge University Press, 2013, pp. 167-247 | MR | Zbl
[43] Theory and problems of complex variables, McGraw-Hill Book Co., 2009
[44] Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Graduate Studies in Mathematics, 157, American Mathematical Society, 2014, xiv+358 pages | MR | Zbl
[45] Electrical impedance tomography and Calderón’s problem, Inverse Probl., Volume 25 (2009) no. 12, 123011, 39 pages (Art. ID 123011, 39 p.) | DOI | MR | Zbl
[46] Sturm-Liouville theory, Mathematical Surveys and Monographs, 121, American Mathematical Society, 2005, xii+328 pages | MR | Zbl
Cité par Sources :