Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets
[Non-unicité pour le problème de Calderón anisotropique avec données mesurées sur des ensembles disjoints]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 119-170.

Dans cet article, on montre qu’il y a non-unicité pour le problème de Calderón sur des variétés riemanniennes quand les données de Dirichlet et de Neumann sont mesurées sur des sous-ensembles disjoints du bord. On construit des contre-exemples à l’unicité en dimension 2 et 3 pour des variétés riemanniennes à bord topologiquement équivalentes à des cylindres dont les fibres sont des tores. La construction pourrait être aisément étendue à des variétés riemanniennes de dimensions supérieures.

In this paper, we show that there is non-uniqueness in the Calderón problem on Riemannian manifolds when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of two and three dimensional Riemannian manifolds with boundary having the topology of circular cylinders in dimension two and toric cylinders in dimension three. The construction could be easily extended to higher dimensional Riemannian manifolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3240
Classification : 81U40, 35P25, 58J50
Keywords: Anisotropic Calderón problem, Helmholtz equation on a Riemannian manifold, Sturm–Liouville problems, Weyl–Titchmarsh functions
Mot clés : Problème de Calderón anisotropique, équation d’Helmholtz sur une variété riemannienne, problèmes de Sturm–Liouville, fonctions de Weyl–Titchmarsh

Daudé, Thierry 1 ; Kamran, Niky 2 ; Nicoleau, François 3

1 Département de Mathématiques, UMR CNRS 8088 Université de Cergy-Pontoise 95302 Cergy-Pontoise (France)
2 Department of Mathematics and Statistics McGill University Montreal, QC, H3A 2K6 (Canada)
3 Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629 2 Rue de la Houssinière BP 92208 44322 Nantes Cedex 03 (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_1_119_0,
     author = {Daud\'e, Thierry and Kamran, Niky and Nicoleau, Fran\c{c}ois},
     title = {Non-uniqueness results for the anisotropic {Calder\'on} problem with data measured on disjoint sets},
     journal = {Annales de l'Institut Fourier},
     pages = {119--170},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3240},
     zbl = {07067401},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3240/}
}
TY  - JOUR
AU  - Daudé, Thierry
AU  - Kamran, Niky
AU  - Nicoleau, François
TI  - Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 119
EP  - 170
VL  - 69
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3240/
DO  - 10.5802/aif.3240
LA  - en
ID  - AIF_2019__69_1_119_0
ER  - 
%0 Journal Article
%A Daudé, Thierry
%A Kamran, Niky
%A Nicoleau, François
%T Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets
%J Annales de l'Institut Fourier
%D 2019
%P 119-170
%V 69
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3240/
%R 10.5802/aif.3240
%G en
%F AIF_2019__69_1_119_0
Daudé, Thierry; Kamran, Niky; Nicoleau, François. Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 119-170. doi : 10.5802/aif.3240. https://aif.centre-mersenne.org/articles/10.5802/aif.3240/

[1] Astala, Kari; Päivärinta, Lassi; Lassas, Matti Calderón’s inverse problem for anisotropic conductivity in the plane, Commun. Partial Differ. Equations, Volume 30 (2005) no. 1-3, pp. 207-224 | DOI | MR | Zbl

[2] Bennewitz, Christer A proof of the local Borg-Marchenko theorem, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 131-132 | DOI | MR | Zbl

[3] Boas, Ralph Philip Jr. Entire functions, Pure and Applied Mathematics, 5, Academic Press Inc., 1954, x+276 pages | MR | Zbl

[4] Borg, Göran Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math., Volume 78 (1946), pp. 1-96 | DOI | MR | Zbl

[5] Borg, Göran Uniqueness theorems in the spectral theory of y '' +(λ-q(x))y=0, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, pp. 276-287 | MR | Zbl

[6] Daudé, Thierry; Gobin, Damien; Nicoleau, François Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds, Inverse Probl. Imaging, Volume 10 (2016) no. 3, pp. 659-688 | DOI | MR | Zbl

[7] Daudé, Thierry; Kamran, Niky; Nicoleau, François Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces, Inverse Probl., Volume 31 (2015) no. 12, 125009, 37 pages (Art. ID 125009, 37 p.) | DOI | MR | Zbl

[8] Daudé, Thierry; Nicoleau, François Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes, Ann. Henri Poincaré, Volume 12 (2011) no. 1, pp. 1-47 | DOI | MR | Zbl

[9] Daudé, Thierry; Nicoleau, François Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes, Mem. Am. Math. Soc., Volume 247 (2017) no. 1170, iv+113 pages | DOI | MR | Zbl

[10] Dos Santos Ferreira, David; Kenig, Carlos; Salo, Mikko; Uhlmann, Gunther Limiting Carleman weights and anisotropic inverse problems, Invent. Math., Volume 178 (2009) no. 1, pp. 119-171 | DOI | MR | Zbl

[11] Dos Santos Ferreira, David; Kurylev, Yaroslav; Lassas, Matti; Salo, Mikko The Calderón problem in transversally anisotropic geometries, J. Eur. Math. Soc., Volume 18 (2016) no. 11, pp. 2579-2626 | DOI | MR | Zbl

[12] Eckhardt, Jonathan; Teschl, Gerald Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra, Trans. Am. Math. Soc., Volume 365 (2013) no. 7, pp. 3923-3942 | DOI | MR | Zbl

[13] Freiling, Gerhard; Yurko, Vjacheslav Inverse problems for differential operators with singular boundary conditions, Math. Nachr., Volume 278 (2005) no. 12-13, pp. 1561-1578 | DOI | MR | Zbl

[14] Gesztesy, Fritz; Simon, Barry On local Borg-Marchenko uniqueness results, Commun. Math. Phys., Volume 211 (2000) no. 2, pp. 273-287 | DOI | MR | Zbl

[15] Guillarmou, Colin; Sá Barreto, Antônio Inverse problems for Einstein manifolds, Inverse Probl. Imaging, Volume 3 (2009) no. 1, pp. 1-15 | DOI | MR | Zbl

[16] Guillarmou, Colin; Tzou, Leo Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., Volume 158 (2011) no. 1, pp. 83-120 | DOI | MR | Zbl

[17] Guillarmou, Colin; Tzou, Leo The Calderón inverse problem in two dimensions, Inverse problems and applications: inside out. II (Mathematical Sciences Research Institute Publications), Volume 60, Cambridge University Press, 2013, pp. 119-166 | MR | Zbl

[18] Hörmander, Lars The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003, x+440 pages | DOI | MR | Zbl

[19] Imanuvilov, Oleg Yu.; Uhlmann, Gunther; Yamamoto, Masahiro The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., Volume 23 (2010) no. 3, pp. 655-691 | DOI | MR | Zbl

[20] Imanuvilov, Oleg Yu.; Uhlmann, Gunther; Yamamoto, Masahiro Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets, Inverse Probl., Volume 27 (2011) no. 8, 085007, 26 pages (Art. ID 085007, 26 p.) | DOI | MR | Zbl

[21] Isakov, Victor On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 95-105 | DOI | MR | Zbl

[22] Kang, Hyeonbae; Yun, Kihyun Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal., Volume 34 (2002) no. 3, pp. 719-735 | DOI | MR | Zbl

[23] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti Inverse boundary spectral problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC Press, 2001, xx+290 pages | DOI | MR | Zbl

[24] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti; Mandache, Niculae Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., Volume 20 (2004) no. 2, pp. 419-436 | DOI | MR | Zbl

[25] Kenig, Carlos; Salo, Mikko The Calderón problem with partial data on manifolds and applications, Anal. PDE, Volume 6 (2013) no. 8, pp. 2003-2048 | DOI | MR | Zbl

[26] Kenig, Carlos; Salo, Mikko Recent progress in the Calderón problem with partial data, Inverse problems and applications (Contemporary Mathematics), Volume 615, American Mathematical Society, 2014, pp. 193-222 | DOI | MR | Zbl

[27] Kenig, Carlos; Sjöstrand, Johannes; Uhlmann, Gunther The Calderón problem with partial data, Ann. Math., Volume 165 (2007) no. 2, pp. 567-591 | DOI | MR | Zbl

[28] Kostenko, Aleksey; Sakhnovich, Alexander; Teschl, Gerald Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. (2012) no. 8, pp. 1699-1747 | DOI | MR | Zbl

[29] Lassas, Matti; Oksanen, Lauri An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Probl., Volume 26 (2010) no. 8, 085012, 19 pages (Art. ID 085012, 19 p.) | DOI | MR | Zbl

[30] Lassas, Matti; Oksanen, Lauri Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., Volume 163 (2014) no. 6, pp. 1071-1103 | DOI | MR | Zbl

[31] Lassas, Matti; Taylor, Michael; Uhlmann, Gunther The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Commun. Anal. Geom., Volume 11 (2003) no. 2, pp. 207-221 | DOI | MR | Zbl

[32] Lassas, Matti; Uhlmann, Gunther On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 5, pp. 771-787 | DOI | MR | Zbl

[33] Lee, John M.; Uhlmann, Gunther Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., Volume 42 (1989) no. 8, pp. 1097-1112 | DOI | MR | Zbl

[34] Levin, Boris Ya. Lectures on entire functions, Translations of Mathematical Monographs, 150, American Mathematical Society, 1996, xvi+248 pages (In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko) | MR | Zbl

[35] Lionheart, William R. B. Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Probl., Volume 13 (1997) no. 1, pp. 125-134 | DOI | MR | Zbl

[36] Marčenko, Vladimir A. Some questions of the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obšč., Volume 1 (1952), pp. 327-420 | MR

[37] Pöschel, Jürgen; Trubowitz, Eugene Inverse spectral theory, Pure and Applied Mathematics, 130, Academic Press Inc., 1987, x+192 pages | MR | Zbl

[38] Rakesh Characterization of transmission data for Webster’s horn equation, Inverse Probl., Volume 16 (2000) no. 2, p. L9-L24 | DOI | MR | Zbl

[39] Ramm, Alexander G. An inverse scattering problem with part of the fixed-energy phase shifts, Commun. Math. Phys., Volume 207 (1999) no. 1, pp. 231-247 | DOI | MR | Zbl

[40] Regge, Tullio Introduction to complex orbital momenta, Nuovo Cimento, Volume 14 (1959), pp. 951-976 | DOI | MR | Zbl

[41] Rudin, Walter Real and complex analysis, McGraw-Hill Book Co., 1987, xiv+416 pages | MR | Zbl

[42] Salo, Mikko The Calderón problem on Riemannian manifolds, Inverse problems and applications: inside out. II (Mathematical Sciences Research Institute Publications), Volume 60, Cambridge University Press, 2013, pp. 167-247 | MR | Zbl

[43] Spiegel, Murray Theory and problems of complex variables, McGraw-Hill Book Co., 2009

[44] Teschl, Gerald Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Graduate Studies in Mathematics, 157, American Mathematical Society, 2014, xiv+358 pages | MR | Zbl

[45] Uhlmann, Gunther Electrical impedance tomography and Calderón’s problem, Inverse Probl., Volume 25 (2009) no. 12, 123011, 39 pages (Art. ID 123011, 39 p.) | DOI | MR | Zbl

[46] Zettl, Anton Sturm-Liouville theory, Mathematical Surveys and Monographs, 121, American Mathematical Society, 2005, xii+328 pages | MR | Zbl

Cité par Sources :