Le travail fondateur d’Eskin–Masur–Zorich a décrit la limite principale des espaces de modules des différentielles abéliennes qui paramètre les surfaces plates possédant une configuration générique de petites connexions de selles parallèles prescrite. Dans cet article, nous décrivons la limite principale pour chaque configuration en terme de différentielles entrelacées sur les courbes stables pointées de Deligne–Mumford. Nous décrivons également la limite principale des espaces de modules des différentielles quadratiques étudiée à l’origine par Masur–Zorich. Nos principaux outils sont la dégénérescence géométrique plate et le lissage développés par Bainbridge–Chen–Gendron–Grushevsky–Möller.
The seminal work of Eskin–Masur–Zorich described the principal boundary of moduli spaces of abelian differentials that parameterizes flat surfaces with a prescribed generic configuration of short parallel saddle connections. In this paper we describe the principal boundary for each configuration in terms of twisted differentials over Deligne–Mumford pointed stable curves. We also describe similarly the principal boundary of moduli spaces of quadratic differentials originally studied by Masur–Zorich. Our main technique is the flat geometric degeneration and smoothing developed by Bainbridge–Chen–Gendron–Grushevsky–Möller.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3239
Keywords: Abelian differential, principal boundary, moduli space of stable curves, spin and hyperelliptic structures
Mot clés : Différentiel abélien, limite principale, espace modulaire des courbes stables, structures spinales et hyperelliptiques
Chen, Dawei 1 ; Chen, Qile 1
@article{AIF_2019__69_1_81_0, author = {Chen, Dawei and Chen, Qile}, title = {Principal boundary of moduli spaces of abelian and quadratic differentials}, journal = {Annales de l'Institut Fourier}, pages = {81--118}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3239}, zbl = {07067400}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3239/} }
TY - JOUR AU - Chen, Dawei AU - Chen, Qile TI - Principal boundary of moduli spaces of abelian and quadratic differentials JO - Annales de l'Institut Fourier PY - 2019 SP - 81 EP - 118 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3239/ DO - 10.5802/aif.3239 LA - en ID - AIF_2019__69_1_81_0 ER -
%0 Journal Article %A Chen, Dawei %A Chen, Qile %T Principal boundary of moduli spaces of abelian and quadratic differentials %J Annales de l'Institut Fourier %D 2019 %P 81-118 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3239/ %R 10.5802/aif.3239 %G en %F AIF_2019__69_1_81_0
Chen, Dawei; Chen, Qile. Principal boundary of moduli spaces of abelian and quadratic differentials. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 81-118. doi : 10.5802/aif.3239. https://aif.centre-mersenne.org/articles/10.5802/aif.3239/
[1] Riemann surfaces and spin structures, Ann. Sci. Éc. Norm. Supér., Volume 4 (1971), pp. 47-62 | DOI | MR | Zbl
[2] A smooth compactification of strata of abelian differentials (in preparation) | Zbl
[3] Strata of -differentials (2016) (to appear in Algebr. Geom., https://arxiv.org/abs/1610.09238) | Zbl
[4] Compactification of strata of abelian differentials, Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | DOI | MR | Zbl
[5] Geometry of periodic regions on flat surfaces and associated Siegel-Veech constants, Geom. Dedicata, Volume 174 (2015), pp. 203-233 | DOI | MR | Zbl
[6] Connected components of the strata of the moduli space of meromorphic differentials, Comment. Math. Helv., Volume 90 (2015) no. 2, pp. 255-286 | DOI | MR | Zbl
[7] Degenerations of Abelian differentials, J. Differ. Geom., Volume 107 (2017) no. 3, pp. 395-453 | DOI | MR | Zbl
[8] Teichmüller dynamics in the eyes of an algebraic geometer, Surveys on recent developments in algebraic geometry (Proceedings of Symposia in Pure Mathematics), Volume 95, American Mathematical Society, 2017, pp. 171-197 | MR | Zbl
[9] Spin and hyperelliptic structures of log twisted abelian differentials (2016) (https://arxiv.org/abs/1610.05345) | Zbl
[10] Moduli of curves and theta-characteristics, Proceedings of the First College on Riemann Surfaces held in Trieste, November 9–December 18, 1987, World Scientific, 1989, pp. 560-589 | MR | Zbl
[11] Asymptotic formulas on flat surfaces, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 2, pp. 443-478 | DOI | MR | Zbl
[12] Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math., Inst. Hautes Étud. Sci., Volume 97 (2003), pp. 61-179 | DOI | MR | Zbl
[13] The moduli space of twisted canonical divisors, with an appendix by Felix Janda, Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine, J. Inst. Math. Jussieu, Volume 17 (2018) no. 3, pp. 615-672 | Zbl
[14] The Deligne-Mumford and the incidence variety compactifications of the strata of , Ann. Inst. Fourier, Volume 68 (2018) no. 3, pp. 1169-1240 | DOI | MR | Zbl
[15] Siegel-Veech constants for strata of moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 25 (2015) no. 5, pp. 1440-1492 | DOI | MR | Zbl
[16] A generalization of the double ramification cycle via log-geometry (2016) (https://arxiv.org/abs/1603.09213) | Zbl
[17] On the Kodaira dimension of the moduli space of curves, Invent. Math., Volume 67 (1982) no. 1, pp. 23-88 | DOI | MR | Zbl
[18] Spin structures and quadratic forms on surfaces, J. Lond. Math. Soc., Volume 22 (1980), pp. 365-373 | DOI | MR | Zbl
[19] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR | Zbl
[20] Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008) no. 3, pp. 919-987 | DOI | MR | Zbl
[21] The boundary of an affine invariant submanifold, Invent. Math., Volume 209 (2017) no. 3, pp. 927-984 | DOI | MR | Zbl
[22] Theta characteristics of an algebraic curve, Ann. Sci. Éc. Norm. Supér., Volume 4 (1971), pp. 181-192 | DOI | MR | Zbl
[23] Siegel measures, Ann. Math., Volume 148 (1998) no. 3, pp. 895-944 | DOI | MR | Zbl
[24] Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci., Volume 2 (2015) no. 1, pp. 63-108 | DOI | MR | Zbl
[25] Flat surfaces, Frontiers in number theory, physics, and geometry I. On random matrices, zeta functions, and dynamical systems. Papers from the meeting, Les Houches, France, March 9–21, 2003, Springer, 2006, pp. 437-583 | MR | Zbl
Cité par Sources :