On considère l’équation de Schrödinger sur le demi espace en dimension arbitraire pour une classe de conditions au bord non homogènes, incluant les conditions de Dirichlet, Neumann, et « transparentes ». Le principal résultat consiste en des estimations de Strichartz globales pour des données initiales , et des données au bord dans un espace naturel , il améliore les estimées de Strichartz locales en temps obtenues récemment par d’autres auteurs dans le cas des conditions de Dirichlet. Pour , la définition des conditions de compatibilité requiert une étude précise des espaces . En application, on résout des équations de Schrödinger non linéaires, et on construit des solutions dispersives globales si les données sont petites. On discute également le sens précis donné à « solution dispersive », ainsi que la question de l’optimalité de l’espace .
We consider the Schrödinger equation on a half space in any dimension with a class of nonhomogeneous boundary conditions including Dirichlet, Neuman and the so-called transparent boundary conditions. Building upon recent local in time Strichartz estimates (for Dirichlet boundary conditions), we obtain global Strichartz estimates for initial data in and boundary data in a natural space . For , the issue of compatibility conditions requires a thorough analysis of the space. As an application we solve nonlinear Schrödinger equations and construct global asymptotically linear solutions for small data. A discussion is included on the appropriate notion of scattering in this framework, and the optimality of the space.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3238
Keywords: Schrödinger equation, dispersive estimates, boundary conditions, Kreiss–Lopatinskii, compatibility condition
Mot clés : Équation de Schrödinger, estimation dispersives, conditions au bord, Kreiss–Lopatinskii, condition de compatibilité
Audiard, Corentin 1
@article{AIF_2019__69_1_31_0, author = {Audiard, Corentin}, title = {Global {Strichartz} estimates for the {Schr\"odinger} equation with non zero boundary conditions and applications}, journal = {Annales de l'Institut Fourier}, pages = {31--80}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3238}, zbl = {07067399}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3238/} }
TY - JOUR AU - Audiard, Corentin TI - Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications JO - Annales de l'Institut Fourier PY - 2019 SP - 31 EP - 80 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3238/ DO - 10.5802/aif.3238 LA - en ID - AIF_2019__69_1_31_0 ER -
%0 Journal Article %A Audiard, Corentin %T Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications %J Annales de l'Institut Fourier %D 2019 %P 31-80 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3238/ %R 10.5802/aif.3238 %G en %F AIF_2019__69_1_31_0
Audiard, Corentin. Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 31-80. doi : 10.5802/aif.3238. https://aif.centre-mersenne.org/articles/10.5802/aif.3238/
[1] Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I: Construction and a priori estimates, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 10, 1250026, 38 pages (Art. ID 1250026, 38 p.) | DOI | MR | Zbl
[2] Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, Bull. Soc. Math. Fr., Volume 136 (2008) no. 1, pp. 27-65 | DOI | MR | Zbl
[3] Non-homogeneous boundary value problems for linear dispersive equations, Commun. Partial Differ. Equations, Volume 37 (2012) no. 1-3, pp. 1-37 | DOI | MR | Zbl
[4] On the boundary value problem for the Schrödinger equation: compatibility conditions and global existence, Anal. PDE, Volume 8 (2015) no. 5, pp. 1113-1143 | DOI | MR | Zbl
[5] Multi-dimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Oxford University Press, 2007, xxvi+508 pages | MR | Zbl
[6] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 1976, x+207 pages | MR | Zbl
[7] On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Am. Math. Soc., Volume 136 (2008) no. 1, pp. 247-256 | DOI | MR | Zbl
[8] A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Am. Math. Soc., Volume 354 (2002) no. 2, pp. 427-490 | DOI | MR | Zbl
[9] Non-homogeneous Boundary-Value Problems for One-Dimensional Nonlinear Schrödinger Equations (2016) (https://arxiv.org/abs/1503.00065, to appear in J.Math. Pures Appl.) | Zbl
[10] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156 | DOI | MR | Zbl
[11] On nonlinear Schrödinger equations in exterior domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004) no. 3, pp. 295-318 | DOI | MR | Zbl
[12] Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions, Indiana Univ. Math. J., Volume 65 (2016) no. 5, pp. 1445-1502 | DOI | MR | Zbl
[14] Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. Math., Volume 167 (2008) no. 3, pp. 767-865 | DOI | MR | Zbl
[15] A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond., Ser. A, Volume 453 (1997) no. 1962, pp. 1411-1443 | DOI | MR | Zbl
[16] The nonlinear Schrödinger equation on the half-line, Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 681-709 | DOI | MR | Zbl
[17] The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differ. Integral Equ., Volume 18 (2005) no. 6, pp. 647-668 | MR | Zbl
[18] On the Schrödinger equation outside strictly convex obstacles, Anal. PDE, Volume 3 (2010) no. 3, pp. 261-293 | DOI | MR | Zbl
[19] Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 7, pp. 774-779 | DOI | MR | Zbl
[20] Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., Volume 4 (1991) no. 2, pp. 323-347 | DOI | MR | Zbl
[21] Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., Volume 138 (2016) no. 5, pp. 1193-1346 | DOI | MR | Zbl
[22] Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., Volume 23 (1970), pp. 277-298 | DOI | MR | Zbl
[23] Introduction to nonlinear dispersive equations, Universitext, Springer, 2009, xii+256 pages | MR | Zbl
[24] Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, 17, Dunod, 1968, xx+372 pages | MR | Zbl
[25] Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, 18, Dunod, 1968, xvi+251 pages | MR | Zbl
[26] Stability of multidimensional shocks, Advances in the theory of shock waves (Progress in Nonlinear Differential Equations and their Applications), Volume 47, Birkhäuser Boston, 2001, pp. 25-103 | DOI | MR | Zbl
[27] Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control, J. Math. Anal. Appl., Volume 389 (2012) no. 1, pp. 84-97 | DOI | MR | Zbl
[28] Nonhomogeneous Boundary Value Problems of Nonlinear Schrödinger Equations in a Half Plane, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 2773-2806 | DOI | Zbl
[29] Exact boundary controllability of the nonlinear Schrödinger equation, J. Differ. Equations, Volume 246 (2009) no. 10, pp. 4129-4153 | DOI | MR | Zbl
[30] Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., Volume 41 (1981), pp. 110-133 | DOI | MR | Zbl
[31] Design of absorbing boundary conditions for Schrödinger equations in , SIAM J. Numer. Anal., Volume 42 (2004) no. 4, pp. 1527-1551 | DOI | MR | Zbl
[32] An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer, 2007, xxvi+218 pages | MR | Zbl
Cité par Sources :