On étudie une classe de fonctionnelles non-locales dans l’esprit de la récente caractérisation des espaces de Sobolev obtenue par Bourgain, Brezis et Mironescu. On montre que celle-ci fournit un cadre unifié qui permet de décrire simultanément les espaces , , et , et on obtient de nouvelles caractérisations de ces espaces. On établit également un résultat de non-compacité ainsi que de nouvelles (non-)injections limites entre espaces de Lipschitz et de Besov qui étendent les résultats connus.
We study a class of nonlocal functionals in the spirit of the recent characterization of the Sobolev spaces derived by Bourgain, Brezis and Mironescu. We show that it provides a common roof to the description of the , , and scales and we obtain new equivalent characterizations for these spaces. We also establish a non-compactness result for sequences and new (non-)limiting embeddings between Lipschitz and Besov spaces which extend the previous known results.
Révisé le :
Accepté le :
Publié le :
Keywords: Fractional spaces, higher order Besov spaces, Nikol$^{\prime }$skii spaces, nonlocal functionals, limiting embeddings, non-compactness
Mot clés : Espaces fractionnaires, espaces de Besov d’ordres élevés, fonctionnelles non-locales, injections limites, non-compacité
BRASSEUR, Julien 1
@article{AIF_2018__68_4_1671_0, author = {BRASSEUR, Julien}, title = {A {Bourgain{\textendash}Brezis{\textendash}Mironescu} characterization of higher order {Besov{\textendash}Nikol}$^{\prime }$skii spaces}, journal = {Annales de l'Institut Fourier}, pages = {1671--1714}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3196}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3196/} }
TY - JOUR AU - BRASSEUR, Julien TI - A Bourgain–Brezis–Mironescu characterization of higher order Besov–Nikol$^{\prime }$skii spaces JO - Annales de l'Institut Fourier PY - 2018 SP - 1671 EP - 1714 VL - 68 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3196/ DO - 10.5802/aif.3196 LA - en ID - AIF_2018__68_4_1671_0 ER -
%0 Journal Article %A BRASSEUR, Julien %T A Bourgain–Brezis–Mironescu characterization of higher order Besov–Nikol$^{\prime }$skii spaces %J Annales de l'Institut Fourier %D 2018 %P 1671-1714 %V 68 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3196/ %R 10.5802/aif.3196 %G en %F AIF_2018__68_4_1671_0
BRASSEUR, Julien. A Bourgain–Brezis–Mironescu characterization of higher order Besov–Nikol$^{\prime }$skii spaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1671-1714. doi : 10.5802/aif.3196. https://aif.centre-mersenne.org/articles/10.5802/aif.3196/
[1] Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, American Mathematical Society, 2010 | Zbl
[2] Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful to solve variational problems?, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 844-860 | Zbl
[3] Persistence criteria for populations with non-local dispersion, J. Math. Biol., Volume 72 (2016) no. 7, pp. 1693-1745 | Zbl
[4] How to recognize polynomials in higher order Sobolev spaces, Math. Scand., Volume 112 (2013) no. 2, pp. 161-181 | Zbl
[5] Some properties of Sobolev spaces, Asymptotic Anal., Volume 51 (2007) no. 3, pp. 303-318 | Zbl
[6] Another look at Sobolev spaces, Optimal control and partial differential equations (Paris, 2000) (2001), pp. 439-455 | Zbl
[7] How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002), pp. 59-74 | Zbl
[8] Some function classes related to the class of convex functions, Pac. J. Math., Volume 12 (1962) no. 4, pp. 1203-1215 | Zbl
[9] On the definitions of Sobolev and BV spaces into singular spaces and the trace problem, Commun. Contemp. Math., Volume 7 (2007) no. 4, pp. 473-513 | Zbl
[10] On an open question about functions of bounded variations, Calc. Var. Partial Differ. Equ., Volume 15 (2002), pp. 519-527 | Zbl
[11] Characterization of polynomials and higher-order Sobolev spaces in terms of functionals involving difference quotients, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, Volume 112 (2015), pp. 199-214 | Zbl
[12] Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn., Math., Volume 40 (2015), pp. 235-253 | Zbl
[13] Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., Volume 6 (2007) no. 2, pp. 595-630 | Zbl
[14] Nonlocal operators with applications to image processing, Multiscale Model. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | Zbl
[15] Limits of higher-order Besov spaces and sharp reiteration theorems, J. Funct. Anal., Volume 221 (2005) no. 2, pp. 323-339 | Zbl
[16] On limiting embeddings of Besov spaces, Stud. Math., Volume 171 (2005) no. 1, pp. 1-13 | Zbl
[17] A method of approximation of Besov spaces, Stud. Math., Volume 96 (1990) no. 2, pp. 183-193 | Zbl
[18] An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Birkhäuser, 2009, xiv+595 pages (edited by A. Gilányi) | Zbl
[19] Characterization of function spaces via low regularity mollifiers, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 6015-6030 | Zbl
[20] On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 | Zbl
[21] Approximation of Functions of Several Variables and Embedding Theorems, Die Grundlehren der mathematischen Wissenschaften, Springer, 1975, viii+420 pages | Zbl
[22] An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc., Volume 6 (2004), pp. 1-15 | Zbl
[23] A new approach to Sobolev spaces and connections to Gamma-convergence, Calc. Var. Partial Differ. Equ., Volume 19 (2004) no. 3, pp. 229-255 | Zbl
[24] Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and Comparisons for Vector Valued Spaces on an Interval, Ann. Mat. Pura Appl., Volume 157 (1990) no. 1, pp. 117-148 | Zbl
[25] Characterization of Sobolev and BV Spaces, Dissertation, Volume 78 (2011)
[26] Approximation of functions from Nikolskii-Besov type classes of generalized mixed smoothness, Anal. Math., Volume 41 (2015), pp. 311-334 | Zbl
[27] Local and nonlocal models in Thin-Plate and Bridge Dynamics, Dissertation, Theses and Student Research Paper in Mathematics, Volume 64 (2015)
[28] Theory of Function Spaces, Monographs in Mathematics, Birkhäuser, 1983 no. 78 | Zbl
[29] Fractals and Spectra Related to Fourier Analysis and Function Spaces, Monographs in Mathematics, Birkhäuser, 1997 no. 91, viii+271 pages | Zbl
[30] Interpolation theory, Function Spaces, Differential Operators, Monographs in Mathematics, Wiley-VCH, 1998
[31] The Structure of Functions, Monographs in Mathematics, Birkhäuser, 2001 no. 97, xii+425 pages | Zbl
[32] Limits of Besov norms, Arch. Math., Volume 96 (2011) no. 2, pp. 169-175 | Zbl
Cité par Sources :