Let be a Lipschitz function. If is a bounded self-adjoint operator and if are commuting bounded self-adjoint operators such that then
where is a constant independent of , and and denotes the weak -norm.
If (respectively, ) are commuting bounded self-adjoint operators such that then
Soit une fonction Lipschitzienne. Si est un opérateur borné auto-adjoint et si sont des opérateurs bornés auto-adjoints qui commutent et tels que alors
où est une constante indépendante de , et et désigne la norme -faible.
Si (respectivement ) sont des opérateurs bornés qui commutent et tels que alors
Revised:
Accepted:
Published online:
Classification: 47B10, 47L20, 47A30
Keywords: Non-commutative -spaces, commutator estimates, Calderón–Zygmund theory
Author's affiliations:
@article{AIF_2018__68_4_1643_0, author = {Caspers, Martijn and Sukochev, Fedor and Zanin, Dmitriy}, title = {Weak type operator {Lipschitz} and commutator estimates for commuting tuples}, journal = {Annales de l'Institut Fourier}, pages = {1643--1669}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3195}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3195/} }
TY - JOUR TI - Weak type operator Lipschitz and commutator estimates for commuting tuples JO - Annales de l'Institut Fourier PY - 2018 DA - 2018/// SP - 1643 EP - 1669 VL - 68 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3195/ UR - https://doi.org/10.5802/aif.3195 DO - 10.5802/aif.3195 LA - en ID - AIF_2018__68_4_1643_0 ER -
Caspers, Martijn; Sukochev, Fedor; Zanin, Dmitriy. Weak type operator Lipschitz and commutator estimates for commuting tuples. Annales de l'Institut Fourier, Volume 68 (2018) no. 4, pp. 1643-1669. doi : 10.5802/aif.3195. https://aif.centre-mersenne.org/articles/10.5802/aif.3195/
[1] Functions of normal operators under perturbations, Adv. Math., Volume 226 (2011) no. 6, pp. 5216-5251 | Zbl: 1220.47018
[2] Double Stieltjes operator integrals, Probl. Mat. Fiz. (1966), pp. 33-67 | Zbl: 0161.34602
[3] Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications, Soviet Series, Volume 5, Kluwer Academic Publishers, 1987, xvi+301 pages | Zbl: 0744.47017
[4] Operator integration, perturbations and commutators, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 170 (1989), pp. 34-66 | Zbl: 0709.47022
[5] Double operator integrals in a Hilbert space, Integral Equations Oper. Theory, Volume 47 (2003) no. 2, pp. 131-168 | Zbl: 1054.47030
[6] Weak boundedness of Calderón-Zygmund operators on noncommutative L-spaces (2017) (https://arxiv.org/abs/1702.06536)
[7] The best constants for operator Lipschitz functions on Schatten classes, J. Funct. Anal., Volume 267 (2014) no. 10, pp. 3557-3579 | Zbl: 06354029
[8] Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture (to appear in Am. J. Math.)
[9] Weak type estimates for the absolute value mapping, J. Oper. Theory, Volume 73 (2015) no. 2, pp. 361-384 | Zbl: 06465646
[10] Noncommutative geometry, quantum fields and motives, Colloquium Publications, Volume 55, American Mathematical Society, 2008, xxii+785 pages | Zbl: 1209.58007
[11] Lipschitz continuity of functions of operators in the Schatten classes, J. Lond. Math. Soc., Volume 37 (1988), pp. 148-157 | Zbl: 0648.47011
[12] Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces, J. Funct. Anal., Volume 148 (1997) no. 1, pp. 28-69 | Zbl: 0899.46052
[13] Lipschitz continuity of the absolute value in preduals of semifinite factors, Integral Equations Oper. Theory, Volume 34 (1999) no. 1, pp. 28-44 | Zbl: 0946.46051
[14] An example of a Lipschitz function of self-adjoint operators with non-nuclear difference under a nuclear perturbation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 30 (1972), pp. 146-153 | Zbl: 0339.47012
[15] Classical Fourier analysis, Graduate Texts in Mathematics, Volume 249, Springer, 2014, xvii+638 pages | Zbl: 1304.42001
[16] Analysis in Banach spaces. Volume I: Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Volume 63, Springer, 2016, xvii+614 pages | Zbl: 1366.46001
[17] Symmetric norms and spaces of operators, J. Reine Angew. Math., Volume 621 (2008), pp. 81-121 | Zbl: 1152.47014
[18] Continuity of the map for linear operators, Proc. Japan Acad., Volume 49 (1973), pp. 157-160 | Zbl: 0301.47006
[19] Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. Lond. Math. Soc., Volume 105 (2012) no. 4, pp. 661-702 | Zbl: 1258.47022
[20] Unitarily invariant norms under which the map is continuous, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 2, pp. 299-313 | Zbl: 0817.47013
[21] Some new studies in the theory of perturbations of self-adjoint operators., First mathematical summer school, part I (Kanev, 1963), Naukova Dumka, 1964, pp. 103-187 | Zbl: 1245.47005
[22] On multipliers, Ann. Math., Volume 81 (1965), pp. 364-379 | Zbl: 0171.11803
[23] Singular traces. Theory and applications, de Gruyter Studies in Mathematics, Volume 46, de Gruyter, 2013, xvi+452 pages | Zbl: 1275.47002
[24] Lipschitz functions of perturbed operators, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 15-16, pp. 857-862 | Zbl: 1169.47015
[25] Differentiation of operator functions in non-commutative -spaces, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 28-75 | Zbl: 1075.46054
[26] Double operator integrals, J. Funct. Anal., Volume 192 (2002) no. 1, pp. 52-111 | Zbl: 1079.47502
[27] Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory, J. Funct. Anal., Volume 256 (2009) no. 2, pp. 509-593 | Zbl: 1179.46051
[28] Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funkts. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51
[29] Introduction to operator space theory, London Mathematical Society Lecture Note Series, Volume 294, Cambridge University Press, 2003, viii+478 pages | Zbl: 1093.46001
[30] Unbounded Fredholm modules and double operator integrals, J. Reine Angew. Math., Volume 626 (2009), pp. 159-185 | Zbl: 1189.46063
[31] Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math., Volume 207 (2011) no. 2, pp. 375-389 | Zbl: 1242.47013
[32] Asymptotic expansions for trace functionals, J. Funct. Anal., Volume 266 (2014) no. 5, pp. 2845-2866 | Zbl: 1317.47018
[33] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, Volume 30 (1970), xiv+387 pages | Zbl: 0207.13501
[34] Perturbations and operator trace functions, J. Funct. Anal., Volume 260 (2011) no. 8, pp. 2483-2496 | Zbl: 1218.46043
[35] Completeness of quasi-normed symmetric operator spaces, Indag. Math., Volume 25 (2014) no. 2, pp. 376-388 | Zbl: 1298.46051
[36] Some results on norm-ideal perturbations of Hilbert space operators, J. Oper. Theory, Volume 2 (1979), pp. 3-37 | Zbl: 0446.47003
Cited by Sources: