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A BOURGAIN–BREZIS–MIRONESCU
CHARACTERIZATION OF HIGHER ORDER

BESOV–NIKOL′SKII SPACES

by Julien BRASSEUR

Abstract. — We study a class of nonlocal functionals in the spirit of the
recent characterization of the Sobolev spaces W 1,p derived by Bourgain, Brezis
and Mironescu. We show that it provides a common roof to the description of the
BV (RN ), W 1,p(RN ), Bs

p,∞(RN ) and C0,1(RN ) scales and we obtain new equiva-
lent characterizations for these spaces. We also establish a non-compactness result
for sequences and new (non-)limiting embeddings between Lipschitz and Besov
spaces which extend the previous known results.
Résumé. — On étudie une classe de fonctionnelles non-locales dans l’esprit

de la récente caractérisation des espaces de Sobolev W 1,p obtenue par Bourgain,
Brezis et Mironescu. On montre que celle-ci fournit un cadre unifié qui permet de
décrire simultanément les espaces BV (RN ), W 1,p(RN ), Bs

p,∞(RN ) et C0,1(RN ),
et on obtient de nouvelles caractérisations de ces espaces. On établit également
un résultat de non-compacité ainsi que de nouvelles (non-)injections limites entre
espaces de Lipschitz et de Besov qui étendent les résultats connus.

1. Introduction

1.1. A brief state of art

Let (ρε)ε>0 ⊂ L1(RN ) be a sequence of mollifiers, i.e. a sequence of
functions satisfying

ρε > 0 in RN for any ε > 0,ˆ
RN

ρε(z)dz = 1 for an ε > 0,

lim
ε↓0

ˆ
|z|>δ

ρε(z)dz = 0 for all δ > 0.

(1.1)

Keywords: Fractional spaces, higher order Besov spaces, Nikol′skii spaces, nonlocal func-
tionals, limiting embeddings, non-compactness.
2010 Mathematics Subject Classification: 46E35.



1672 Julien BRASSEUR

LetM ∈ N∗, 1 6 p <∞ and s ∈ (0,M ]. We are interested in the properties
of functions f ∈ Lp(RN ), satisfying

(1.2)
ˆ
RN

ρε(h)ω
(ˆ

RN

|∆M
h f(x)|p

|h|sp
dx
)

dh 6 C as ε ↓ 0,

where ω : R+ → R+ is an increasing, concave function and ∆M
h f(x) stands

for the usual M -th order forward difference of f given by

∆M
h f(x) :=

M∑
j=0

(−1)M−j
(
M

j

)
f(x+ hj), x, h ∈ RN .(1.3)

The assumptions on ω will be made precise later on.

Functionals of the type of (1.2) were initially introduced by Bourgain,
Brezis and Mironescu [6, 7] to obtain a new characterization of the Sobolev
space W 1,p(RN ). Namely, for M = s = 1 and ω(t) = t, (1.2) readsˆ

RN

ˆ
RN

ρε(h) |f(x+ h)− f(x)|p

|h|p
dxdh 6 C as ε ↓ 0,(1.4)

and the result of Bourgain, Brezis and Mironescu states that, any f ∈
Lp(RN ) satisfying (1.4) belongs to the Sobolev space W 1,p(RN ) if 1 < p <

∞, or to BV (RN ) if p = 1, provided (ρε)ε>0 is radial. More precisely, they
have shown that

lim
ε↓0

ˆ
RN

ˆ
RN

ρε(h) |f(x+ h)− f(x)|p

|h|p
dxdh = Kp,N‖∇f‖pLp(RN ),(1.5)

where
Kp,N :=

ˆ
SN−1

|σ · e|pdHN−1(σ), e ∈ SN−1.

As a result, they were able to establish the following limiting embedding

lim
r↑1

(1− r)p‖f‖p
W r,p(RN ) = Kp,N‖∇f‖pLp(RN ).(1.6)

Since this original work, numerous new characterizations of the Sobolev
spaces W k,p(RN ) or BV (RN ) have been obtained [4, 5, 10, 11, 22, 23, 25]
and various asymptotic formulas characterizing the Sobolev norms in terms
of fractional norms have been derived [15, 16, 20, 32]. For instance, Maz’ya
and Shaposhnikova [20] obtained the counterpart of (1.6) in the critical
case r ↓ 0, that is

lim
r↓0

rp‖f‖p
W r,p(RN ) = 2σN‖f‖pLp(RN ),(1.7)

whenever f ∈
⋃

0<r<1 W
r,p(RN ) and where σN stands for the superficial

measure of the unit sphere SN−1.
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A BBM CHARACTERIZATION OF BESOV–NIKOL′SKII SPACES 1673

Also, let us mention the work of Ponce [23] who was the first to obtain
a characterization of the space BV (RN ) in terms of a class of functions in
L1(RN ) satisfying

ˆ
RN

ˆ
RN

ρε(h) Ω
(
|f(x+ h)− f(x)|

|h|

)
dxdh 6 C as ε ↓ 0,(1.8)

under suitable growth assumptions on Ω ∈ C(R+,R+).
More recently, such type of characterizations were extended by

Borghol [5], Bojarski, Ihnatsyeva, Kinnunen [4] and Ferreira, Kreisbeck
and Ribeiro [11], who considered the cases 1 < p < ∞ in higher order
Sobolev spaces. Typically, in [11] it is shown that the spaces W k,p(RN ),
with p ∈ (1,∞) and k ∈ N∗, can be characterized by quantities of the type

ˆ
RN

ˆ
RN

ρε(h) Ω
(
|∆k

hf(x)|
|h|k

)
dxdh,(1.9)

where Ω : R+ → R+ is an increasing, convex function such that

m1t
p 6 Ω(t) 6 m2t

p,(1.10)

for all t > 0 and some positive constants 0 < m1 < m2.
To our knowledge, very few is known in the case 0 < s < M . Nonetheless,

recent works of Lamy and Mironescu [19] suggest a connection between
expressions of the type of (1.2) and Besov spaces. In [19], the authors
prove the following

Theorem 1.1 (Lamy, Mironescu, [19]). — Let s > 0, p, q ∈ [1,∞] and
let (ρε)ε>0 ⊂ L1(RN ) satisfying (1.1) and such that

ρε(h) = ε−Nρ

(
h

ε

)
for some ρ ∈ L1(RN ).(1.11)

Then,

‖f‖Bsp,q(RN ) . ‖f‖Lp(RN ) +
∥∥∥∥ 1
εs
‖f ∗ ρε − f‖Lp(RN )

∥∥∥∥
Lq((0,1), dε

ε )
.(1.12)

The converse of this holds under some additional moment condition on ρ
(see [19] for further details). In fact, the case q =∞ is not properly stated
nor explicitly proven in [19]. To fill this gap, we shall give some additional
details at the end of the paper. A consequence of this, which has not been
noticed in [19], is the following

TOME 68 (2018), FASCICULE 4



1674 Julien BRASSEUR

Proposition 1.2. — Let s ∈ (0, 1), p ∈ [1,∞) and (ρε)ε>0 ⊂ L1(RN )
satisfying (1.1) and (1.11). Then, the following are equivalent:

(1) f ∈ Bsp,∞(RN ),
(2) f ∈ Lp(RN ) satisfies

ˆ
RN

ˆ
RN

ρε(h) |f(x+ h)− f(x)|p

|h|sp
dxdh 6 C as ε ↓ 0.(1.13)

Moreover,

‖f‖p
Bsp,∞(RN ) ∼ ‖f‖

p
Lp(RN ) + sup

ε∈(0,1)

ˆ
RN

ˆ
RN

ρε(h) |f(x+ h)− f(x)|p

|h|sp
dxdh.

(1.14)

It is worth noticing that, by contrast with the representation ofBsp,∞(RN )
obtained in [19], no moment condition on ρε is needed. Moreover, since ρε
does not need to be radial some directions may be privileged, yet with no
impact on the resulting norm. This is in clear contrast with the case s = 1
(see also [9, Remark 10] or [23, Corollary 3, p. 232]).
This sheds new lights on how to describe smoothness and could be of

potential interest in some problems of the calculus of variations and in the
study of some integro-differential equations (see e.g. [1, 2, 3, 13, 14, 27]).

Also, in view of Theorem 1.2, it is natural to ask for corresponding asser-
tions of (1.8) and (1.9) in the framework of the fractional Besov-Nikol′skii
spaces Bsp,∞(RN ). For example: what can be said about the limiting be-
havior of (1.13) when ε ↓ 0? Can one describe higher order Besov-Nikol′skii
spaces via expressions of the type (1.2)? It is the main concern of this paper
to deal with these issues.

1.2. Main Motivation

This work originates in a problem raised in [3]. Consider the heteroge-
neous Fisher-KPP equation:

1
εm
(
Jε ∗ u(x)− u(x)

)
+ f(x, u) = 0, u = uε, x ∈ RN , ε > 0,(1.15)

where m ∈ [0, 2], u is the density of a given population, Jε(z) := 1
εN
J
(
z
ε

)
,

with J ∈ C ∩ L1(RN ) a symmetric positive dispersal kernel with unit
mass and having finite m-th order moment, and f ∈ C1,α(RN+1) is a

ANNALES DE L’INSTITUT FOURIER



A BBM CHARACTERIZATION OF BESOV–NIKOL′SKII SPACES 1675

heterogeneous KPP type non-linearity, that is:
f( · , 0) = 0,
for all x ∈ RN , f(x, s)/s is decreasing with respect to s ∈ (0,∞),
there exists S ∈ C(RN ) ∩ L∞(RN ) such that f( · , S( · )) 6 0.

For the sake of simplicity, we restrict our attention to non-linearities of the
form

f(x, s) = s(a(x)− s), with lim sup
|x|→∞

a(x) < 0.

Roughly speaking, f models the growth rate of the population and J the
probability to jump from one location to another. The parameter ε is a
measure of the spread of dispersal of the species. The scaling term 1

εm can be
interpreted as the rate of dispersal of the species. It arises when considering
a cost function (see [3, Section 2] for a more detailed explanation on the
matter). Consider for instance a tree reproducing and dispersing seeds.
Then, ε� 1 represents a strategy where the dispersal rate is large but the
seeds are spread over smaller distances, and ε� 1 represents the opposite
strategy (i.e. smaller dispersal rate but the seeds are spread over larger
distances). As for the parameter m, it measures the influence of the cost
function on the different strategies.
Existence of positive solutions to (1.15) is naturally expected to provide

a persistence criteria for the population under consideration. Nonetheless,
if the asymptotic of a solution of (1.15) are quite well understood when
ε → ∞ (see [3]), it is not the case when ε ↓ 0 and 0 < m < 2. Berestycki
et al. [3] were able to prove the

Theorem 1.3 (Berestycki, Coville, Vo, [3]). — Assume J is compactly
supported with J(0) > 0, m ∈ (0, 2), max{a, 0} 6≡ 0 and a ∈ C2(RN ).

Then, when ε ↓ 0, the solution uε of (1.15) converges almost everywhere
to some non-negative bounded function v satisfying

v(x)
(
a(x)− v(x)

)
= 0 in RN .(1.16)

Unfortunately, equation (1.16) admits infinitely many solutions, so it
may happen that v ≡ 0 (extinction) or that v = a+1K for some compact
K ⊂ supp(a+) (persistence in a given area of the ecological niche). Whence,
one cannot directly infer a persistence strategy for that case.
However, it is known that solutions to (1.15), when they exist, satisfy

ˆ
RN

ˆ
RN

ρε(x− y) |uε(x)− uε(y)|2

|x− y|m
dxdy 6 C for all ε > 0,(1.17)

TOME 68 (2018), FASCICULE 4



1676 Julien BRASSEUR

with ρε(z) = ε−m|z|mJε(z) a smooth mollifier satisfying (1.1) (see [3,
Lemma 5.1(ii)] for a proof).
To quote Berestycki et al.: “If for the case m = 2 we could rely on el-

liptic regularity and the new description of Sobolev Spaces developed in
Bourgain et al. [6], Brezis [7], Ponce [22, 23] to get some compactness, this
characterization does not allow us to treat the case m < 2. We believe that
a new characterization of fractional Sobolev spaces in the spirit of the work
of Bourgain, Brezis and Mironescu [6, 7] will be helful to resolve this issue.”

This motivates the study of general classes of functions of the type
of (1.2), in particular the forthcoming Theorem 2.3 and Theorem 2.15.

1.3. Comments

If (1.13) is very similar to (1.4), the underlying spaces, W 1,p(RN ) and
Bsp,∞(RN ), are very different in nature and one has to cope with some
technicalities. Among others, it is not clear anymore whether the limit
of (1.13) as ε ↓ 0 exists nor, even if it does, whether it provides an equivalent
semi-norm. In the integer order case, things are not too controversial in the
sense that

‖∇f‖Lp(RN ) ∼ lim sup
|h|→0

‖∆1
hf‖Lp(RN )

|h|
= sup

h6=0

‖∆1
hf‖Lp(RN )

|h|
.(1.18)

(see e.g. [32] or Lemma 7.1), while the counterpart of (1.18) in the fractional
case s ∈ (0, 1) is not true in general. Indeed, every nontrivial function
f ∈ C∞c (RN ) satisfies

lim
|h|→0

‖∆1
hf‖Lp(RN )

|h|s
= 0 < sup

h6=0

‖∆1
hf‖Lp(RN )

|h|s
= [f ]Bsp,∞(RN ),(1.19)

whenever s ∈ (0, 1), p ∈ [1,∞]. Finiteness of either or both the two
first terms in the left-hand side of (1.19) equally describes Bsp,∞(RN ) in
the sense that they define the same set of functions. But the respective
(semi-)norms induced by these quantities are not equivalent (see Section 5).
For these reasons, at some places, it will be more convenient to state our
results in terms of suprema as in (1.14) instead of limits.
On the other hand, smooth functions are not dense in Bsp,∞(RN ), so

that the arguments used in the integer case do not simply adapt. We show
how to do this in a way that allows, not only to give a meaning, but also
to handle the tricky case p = ∞ in both the integer and the fractional
case, using only elementary arguments. Also, in the particular case where

ANNALES DE L’INSTITUT FOURIER
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ρ is radially symmetric, we improve (1.14) to a semi-norm equivalence at
all orders s > 0. More general quantities are also investigated as well as
compactness in the case of a sequence (fε)ε>0 ⊂ Lp(RN ).

At the end, this yields a common nonlocal description for the Besov-
Nikol′skii spaces Bsp,∞(RN ), the Hölder–Zygmund spaces Cs(RN ), the
Sobolev spaces W k,p(RN ), the BV (RN ) space and the Lipschitz space
C0,1(RN ). As a by-product, we obtain new characterizations for these
spaces and a new limiting embedding between Lipschitz and Besov spaces
which extends the previous known results (see Theorem 2.12).

Acknowledgments. The author would like to express his gratitude to
Jérôme Coville for suggesting him the problem and for careful reading of the
manuscript. The author is grateful to François Hamel who made valuable
comments, and to Petru Mironescu whose lessons have been an inspiration
for this work. The author warmly thanks the anonymous referees whose in-
sightful comments helped improve and clarify this manuscript. This project
has been supported by the French National Research Agency (ANR) in the
framework of the ANR NONLOCAL project (ANR-14-CE25-0013).

2. Main results

2.1. A new characterization of Besov-Nikol′skii spaces

To state our results, we shall introduce some notations and terminology.

Definition 2.1. — A function ω : R+ → R+ is said to be roughly
subadditive if there exists a constant A > 0 such that,

ω(t1 + t2) 6 A {ω(t1) + ω(t2)} ,

for every t1, t2 ∈ R+. When A = 1 we say that ω is subadditive.

To shorten our statements, it will be more convenient to call Cinc the
set of all continuous, increasing functions ω : [0,∞) → [0,∞) satisfying
ω(0) = 0 and

lim
t→∞

ω(t) =∞.(2.1)

Also, we set

C+
inc := {ω ∈ Cinc such that ω is roughly subadditive}.(2.2)

Remark 2.2. — Observe that if ω1, ω2 ∈ C+
inc, then ω1 ◦ ω2 ∈ C+

inc.

TOME 68 (2018), FASCICULE 4



1678 Julien BRASSEUR

Typical examples of functions in C+
inc are:

(1) ω1(t) = tα with α > 0,
(2) ω2(t) = ln(1 + t),

(3) ω3(t) = t tanh(t),
(4) ω4(t) = arsinh(t) . . .

More generally, if ω ∈ Cinc is concave, then ω ∈ C+
inc (see e.g. [8, Theo-

rem 5]). As indicated by the example of tα with α > 1, C+
inc contains also

some convex functions as long as they do not increase too fast. Indeed,
a direct computation shows that if ω : [0,∞) → [0,∞) is a continuous,
convex function with ω(0) = 0 and if ω(2t) 6 κ ω(t), for all t > 0 and some
constant κ > 0 (independent of t), then ω ∈ C+

inc.
Our first result reads as follows

Theorem 2.3. — Let M ∈ N∗, s ∈ (0,M) and p ∈ [1,∞]. Let ω ∈ C+
inc

and (ρε)ε>0 ⊂ L1(RN ) be a sequence of radial functions satisfying (1.1)
and (1.11). Then, the following are equivalent:

(1) f ∈ Bsp,∞(RN ),
(2) f ∈ Lp(RN ) is such that

ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh 6 C as ε ↓ 0.(2.3)

Moreover,

ω
(

[f ]Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh.

Remark 2.4. — It is noteworthy that the assumptions of Theorem 2.3
are somehow self-improving. For example, if ω ∈ Cinc is such that

α1 ω 6 ω 6 α2 ω a.e. in RN ,(2.4)

for some ω, ω ∈ C+
inc and α1, α2 > 0, then ω still characterizes Bsp,∞(RN ).

Note also that the Jensen inequality allows to extend this result to convex
ω ∈ Cinc.
Moreover, the conclusion of Theorem 2.3 still holds under the slightly

weaker assumption that (ρε)ε>0 ⊂ L1(RN ) satisfies (1.1) and (1.11) with
ρ ∈ L1(RN ) such that there exists a number δ > 0 and a nonnegative radial
function ϕ with ρ > ϕ a.e. in Bδ and

´
Bδ
ϕ > 0.

Also, when 1 6 p <∞, the fact that ω ∈ C+
inc allows one to replace (2.3)

by
ˆ
RN

ρε(h) ω
(ˆ

RN
Ω
(
|∆M

h f(x)|
|h|s

)
dx
)

dh,(2.5)

ANNALES DE L’INSTITUT FOURIER
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for any continuously increasing Ω : R+ → R+ with Ω(0) = 0 and

m1t
p 6 Ω(t) 6 m2t

p,(2.6)

for all t > 0 and some 0 < m1 6 m2.

By the same token, we obtain the following counterpart for the Lipschitz
space.

Theorem 2.5. — Let ω ∈ C+
inc and (ρε)ε>0 ⊂ L1(RN ) be a sequence of

radial functions satisfying (1.1) and (1.11). Then, the following are equiv-
alent:

(1) f ∈ C0,1(RN ),
(2) f ∈ L∞(RN ) is such thatˆ

RN
ρε(h) ω

(‖f(0, ·+ h)− f‖L∞(RN )

|h|

)
dh 6 C as ε ↓ 0.(2.7)

Moreover,

ω
(
[f ]C0,1(RN )

)
∼ lim sup

ε↓0

ˆ
RN

ρε(h) ω
(‖f( ·+ h)− f‖L∞(RN )

|h|

)
dh.

In fact, our proof also allows to cover first order Sobolev spaces. For
example, in view of (2.5), we have the

Theorem 2.6. — Let 1 6 p < ∞, (ω,Ω) ∈ C+
inc × Cinc with Ω satisfy-

ing (2.6) and (ρε)ε>0 ⊂ L1(RN ) be a sequence of radial functions satisfy-
ing (1.1) and (1.11).
Then, the following are equivalent:
(1) f ∈W 1,p(RN ) (resp. f ∈ BV (RN ) if p = 1),
(2) f ∈ Lp(RN ) is such thatˆ
RN

ρε(h) ω
(ˆ

RN
Ω
(
|f(x+ h)− f(x)|

|h|

)
dx
)

dh 6 C as ε ↓ 0.

Moreover,

(2.8) ω
(
‖∇f‖p

Lp(RN )

)
∼ lim sup

ε↓0

ˆ
RN
ρε(h)ω

(ˆ
RN

Ω
(
|f(x+ h)− f(x)|

|h|

)
dx
)

dh.

Note that the limit superior in the right-hand side of (2.8) may not
necessarily coincide with the limit inferior, depending on the choices of ω
and Ω.

Remark 2.7. — If ω(t) = t and Ω is convex, then the corresponding
assertion still holds in higher order Sobolev spaces, see [11] for a proof.

TOME 68 (2018), FASCICULE 4



1680 Julien BRASSEUR

Here are some straightforward consequences of Theorem 2.3.

Example 2.8. — Let M ∈ N∗, s ∈ (0,M) and J ∈ L1(RN ) be a radial
function such that

J :=
ˆ
RN

J(z)|z|sqdh <∞ for some 1 6 q <∞.

Then, choosing

ρε(h) = 1
J
|h|sq

εsq
Jε(h),

and ω(t) = tq we obtain

[f ]Bsp,∞(RN ) ∼ sup
ε>0

(
1
εsq

ˆ
RN

Jε(h)‖∆M
h f‖

q
Lp(RN )dh

)1/q
.(2.9)

Remark 2.9. — Notice that the quantity (1.17) appearing in the study of
the nonlocal Fisher-KPP equation (1.15) can be seen as a particular case
of (2.9).

Other choices of ρε highlight interesting links with the more classical
Besov spaces Bsp,q(RN ) with 1 6 q <∞ (see Definition 3.3 on Section 3 for
the definition of these spaces).

Example 2.10. — Given 1 6 q <∞, the choice ω(t) = tq and

ρε(h) = 1
C|h|N

1(ε,2ε)(|h|),(2.10)

where C = σN ln(2), yields

[f ]Bsp,∞(RN ) ∼ sup
ε>0

(ˆ
ε<|h|<2ε

‖∆M
h f‖

q
Lp(RN )

|h|N+sq dh
)1/q

.

Example 2.11. — Given 1 6 q <∞, the choice ω(t) = tq and

ρε(h) = 1
σNε(s−r)q

(s− r)q
|h|N−(s−r)q 1(0,ε)(|h|),

for some r ∈ (0, s), gives

q−1/q[f ]Bsp,∞(RN ) ∼ sup
ε>0

(s− r)1/q

εs−r

(ˆ
|h|<ε

‖∆M
h f‖

q
Lp(RN )

|h|N+rq dh
)1/q

.(2.11)

ANNALES DE L’INSTITUT FOURIER
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2.2. Limits of Besov norms

Following the original result of Bourgain, Brezis and Mironescu in [6];
Karadzhov, Milman, Xiao [15] and Triebel [32] proved the following limiting
embedding

q−1/q‖∇f‖Lp(RN ) ∼ lim
r↑1

(1− r)1/q[f ]Brp,q(RN ), for 1 < p, q <∞.(2.12)

See e.g. [32] where higher order derivatives are also studied.
The counterpart of Example 2.11 for the Lipschitz space leads one to

ask wether (2.12) still holds in the critical case p = ∞ (recall W 1,∞(RN )
is the same as C0,1(RN )). However, because of the restriction to (1.11) in
Theorem 2.5 one cannot directly infer that this is the case. In addition,
spaces of the type W 1,∞(RN ) or Bs∞,q(RN ) do not admit nice spaces such
as C∞c (RN ) as dense subset (they are not even separable) and they inherit
from the “bad” properties of L∞(RN ). This makes the validity of (2.12) in
the case p =∞ rather unclear.

We prove that a weaker version of (2.12) still holds when p =∞.

Theorem 2.12. — Let q ∈ [1,∞) and assume f ∈ L∞(RN ) is such that

lim sup
r↑1

(1− r)1/q‖f‖Br∞,q(RN ) <∞.(2.13)

Then, f ∈ C0,1(RN ). Moreover,

q−1/q[f ]C0,1(RN ) ∼ lim sup
r↑1

(1− r)1/q‖f‖Br∞,q(RN ).(2.14)

Remark 2.13. — Due to the lack of continuity of the translations in
L∞(RN ) it is not clear wether the lim sup in (2.13) (resp. in (2.14)) can be
replaced by a lim inf.

The proof can be carried out using subadditivity and monotonicity ar-
guments via an improvement of the Chebychev inequality due to Bourgain,
Brezis and Mironescu [6] together with Theorem 2.3.

However, in the fractional case, one lose the aforementioned monotonicity
and the arguments fail. In view of Example 2.11 and Cs(RN ) = Bs∞,∞(RN )
it is natural to ask wether or not the counterpart holds for Bsp,∞(RN ).

Using subatomic decompositions we were able to show that this is not
the case.

Theorem 2.14. — Let s > 0, p ∈ [1,∞) and q ∈ [1,∞). Then, there
exists a function f belonging to Lp(RN ), satisfying

sup
0<r<s

(s− r)1/q‖f‖Br
p,q(RN ) <∞,(2.15)
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but f /∈ Bsp,∞(RN ).

Here, “‖f‖Br
p,q(RN )” stands for the Brp,q(RN )-norm of f in the sense of

subatomic decomposition theory (see Definition 4.2 below).
In particular, this suggests that the restriction to (1.11) in Theorems 1.2

and 2.3 (and actually also in (1.12) when q = ∞) is not far from being
optimal.

2.3. A non-compactness result

In the integer case s = 1, it is known that any bounded sequence
(fε)ε>0 ⊂ Lp(RN ) satisfyingˆ

RN

ˆ
RN

ρε(h) |fε(x+ h)− fε(x)|p

|h|p
dxdh 6 C as ε ↓ 0,(2.16)

must be relatively compact in Lploc(RN ) provided (ρε)ε>0 is a suitable se-
quence of mollifiers (e.g. nonincreasing if N = 1 [6] or radially symmetric
if N > 2 [22]).

Per contra, we show that this phenomenon does not extend to s ∈ R+\N,
at least if ρε exhibits a reasonable decay at infinity.

Theorem 2.15. — Let M ∈ N∗, s ∈ (0,M) and p ∈ [1,∞). Let (ρε)ε>0
be a sequence of mollifiers of the form (1.11) with ρ ∈ L1(RN ) satisfying
the moment condition ˆ

RN
ρ(z)|z|p(M−s)dz <∞.(2.17)

Then, there exists a bounded sequence (fε)ε>0 ⊂ Lp(RN ) satisfying
ˆ
RN

ˆ
RN

ρε(h) |∆
M
h fε(x)|p

|h|sp
dxdh 6 C as ε ↓ 0,(2.18)

but which is not relatively compact in Lploc(RN ).

Remark 2.16. — In some particular cases it is possible to get rid of as-
sumption (1.11). For instance, if the ρε are non-increasing and supported
in some ball of the form Brε for all ε > 0 and some r > 0, then the result
still holds. Notice also that the conclusion of Theorem 2.15 still holds for
slightly more general functionals in the spirit of (2.3) with, say, ω = | · |q/p,
Ω = | · |p, for any q > 1.

In the same vein, we obtain the following
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Theorem 2.17. — Let s > 0, p ∈ [1,∞) and q ∈ [1,∞). Then, there
exists a bounded sequence (fε)ε>0 ⊂ Lp(RN ) satisfying

lim sup
ε↓0

ε‖fε‖qBs−εp,q (RN )∗ <∞,(2.19)

but which is not relatively compact in Lploc(RN ).

The subscript “∗” in (2.19) means that the Bs−εp,q -norm of fε is calculated
using (bsc+1)-th order finite differences (according to Definition 3.3). This
is no longer true if, instead, we use smaller order differences. For example,
if (fε)ε>0 is bounded in Lp(RN ), then

lim sup
ε↓0

ε‖fε‖pW 1−ε,p(RN ) <∞,(2.20)

implies that (fε)ε>0 is relatively compact in Lploc(RN ), while

lim sup
ε↓0

ε‖fε‖pB1−ε
p,p (RN )∗ <∞,(2.21)

does not. Evidently, this restriction is immaterial if 0 < s /∈ N.

2.4. An approximation criteria

It is well-known that neither the space C∞c (RN ) nor the space S(RN )
are dense in Bsp,∞(RN ). If the question of how to approximate a given
f ∈ Bsp,q(RN ) in a “suitable manner” has already been well-studied (see
e.g. [17, 21, 26]), to the author’s knowledge it seems, however, that no
criterion to recognize a function f ∈ Bsp,∞(RN ) which can be approximated
by smooth functions in its natural (strong) topology is available in the
literature.
An interesting consequence of (the proof of) Theorem 2.3 is that it gives

such a criterion.

Corollary 2.18. — LetM ∈ N∗, s ∈ (0,M), p ∈ [1,∞). Let (ρε)ε>0 ⊂
L1(RN ) be a sequence of radial functions satisfying (1.1) and (1.11), and
let ω ∈ C+

inc. Then, the following are equivalent:
(1) f ∈ Lp(RN ) is such that

lim
ε↓0

ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh = 0,

(2) f ∈ Bsp,∞(RN ) and there exists (fn)n>0 ⊂ C∞c (RN ) such that

‖f − fn‖Bsp,∞(RN ) → 0 as n→∞.
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A noteworthy consequence of Corollary 2.18 is the following

Example 2.19. — Let s ∈ (0, 1) and p ∈ [1,∞). Then, with the choice
(2.10) and ω(t) = tp we find that condition (2) above is equivalent to

lim
ε↓0

ˆ
RN

ˆ
ε<|x−y|<2ε

|f(x)− f(y)|p

|x− y|N+sp dxdy = 0,(2.22)

or, more generally, to

lim
ε↓0

ˆ
ε<|h|<2ε

‖∆M
h f‖

q
Lp(RN )

|h|N+sq dh = 0,(2.23)

in the higher order case.

In Sections 3 and 4 we detail all our notations and useful definitions.
In Section 5, we show some preliminary estimates which aims to simul-
taneously open the way to Corollary 2.18 and to explain why it is more
convenient to represent Bsp,∞(RN ) in terms of the supremum of (2.3) rather
than in terms of its limits. Section 6 is devoted to the proof of Theorem 2.3
and Section 7 to that of Theorems 2.5, 2.6, and 2.12. In Section 8 we estab-
lish Theorem 2.14. In Section 9, we prove Theorems 2.15 and 2.17. Finally,
in the Appendix, we discuss Proposition 1.2.

3. Notations and definitions

Throughout the paper we will make use of the following notations.
SN−1 : is the unit sphere of RN ;
HN−1 : is the (N − 1)-dimensional Hausdorff measure;
|K| : is the Lebesgue measure of the set K (also denoted λn(K));
1K : is the characteristic function of the set K;
BR : is the ball of radius R > 0 centered at the origin;

BR(x) : is the ball of radius R > 0 centered at x ∈ RN ;
τh : is the translation operator τhf(x) = f(x+ h), x, h ∈ RN ;

f ∗ g : is the convolution of f and g;
. : is the “approximatively-less-than” symbol: a . b⇔ a 6 Cb;
∼ : is the equivalence symbol: a ∼ b⇔ a . bandb . a;ffl
A

: is the integral mean symbol:
ffl
A
f = 1

|A|
´
A
f .

We denote by Lp(RN ) the Lebesgue space of (equivalence classes of)
functions for which the p-th power of the absolute value is Lebesgue inte-
grable (resp. essentially bounded functions when p =∞); by C∞c (RN ) the
space of smooth compactly supported functions; by S(RN ) the Schwartz
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space of rapidly decaying functions; and, by S′(RN ), its dual, the space
of tempered distributions. The Lipschitz space C0,1(RN ) is the space of
functions f ∈ L∞(RN ) for which the semi-norm

[f ]C0,1(RN ) := sup
h6=0

‖τhf − f‖L∞(RN )

|h|
,(3.1)

is finite. The space C0,1(RN ) is a Banach space for the norm

‖f‖C0,1(RN ) := ‖f‖L∞(RN ) + [f ]C0,1(RN ) .

The number (3.1) is called the Lipschitz constant of f . For the sake of
clarity, we recall some further definitions.

Definition 3.1. — Let p ∈ [1,∞) and k ∈ N∗. The k-th order Sobolev
space W k,p(RN ) is defined as the closure of C∞c (RN ) under the norm

‖f‖Wk,p(RN ) := ‖f‖Lp(RN ) +
( ∑

16|α|6k

‖Dαf‖p
Lp(RN )

)1/p
.

Definition 3.2. — The space of functions of bounded variation, de-
noted by BV (RN ), is the space of all f ∈ L1(RN ) such that

[f ]BV (RN ) := sup
φ∈C1

c (RN )
‖φ‖L∞(RN )61

ˆ
RN

f(x) divφ(x) dx <∞,

naturally endowed with the norm

‖f‖BV (RN ) := ‖f‖L1(RN ) + [f ]BV (RN ).

Definition 3.3. — Let M ∈ N∗, s ∈ (0,M) and p, q ∈ [1,∞]. The
Besov space Bsp,q(RN ) consists in all functions f ∈ Lp(RN ) such that

[f ]Bsp,q(RN ) :=
(ˆ

RN
‖∆M

h f‖
q
Lp(RN )

dh
|h|N+sq

) 1
q

<∞,(3.2)

which, in the case q =∞, is to be understood as

[f ]Bsp,∞(RN ) := sup
h∈RN\{0}

‖∆M
h f‖Lp(RN )

|h|s
<∞,

where ∆M
h f is given by (1.3). The space Bsp,q(RN ) is naturally endowed

with the norm

‖f‖Bsp,q(RN ) := ‖f‖Lp(RN ) + [f ]Bsp,q(RN ).
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Remark 3.4. — Of course, if one denotes by [f ](M)
Bsp,q(RN ) the semi-

norm (3.2), then for M1,M2 ∈ N∗ with M1 < M2 and s ∈ (0,M1) it holds

[f ](M1)
Bsp,q(RN ) ∼ [f ](M2)

Bsp,q(RN ),

(similarly when q = ∞), so that the definition above is indeed consistent.
We refer to [28] (e.g. Estimate (45) on p. 99) or Lemma 6.3 for further
details.

Remark 3.5. — The integral in (3.2) can be indifferently replaced by an
integral over {|h| 6 δ} for any δ > 0, or on the whole RN since the singular
part in h in the integral arise when h is close to zero, while the integral on
{|h| > δ} can always be dominated by the Lp-norm of f .

Of special interest are the cases q = p, p = ∞ and/or q = ∞. The
fractional Sobolev spaces W s,p(RN ) (sometimes also called Slobodeckij,
Gagliardo, or Aronszajn spaces) is defined by W s,p(RN ) = Bsp,p(RN ) for
s /∈ N. In this context, the semi-norm (3.2) when s ∈ (0, 1) is often referred
to as the Gagliardo semi-norm.
When q = ∞, the space Bsp,∞(RN ) is called the Nikol′skii space. This

scale gives another interesting way to measure the convergence rate of the
translate of a given function to itself. It is well-known that, for any p, q ∈
[1,∞) and s > 0,

Bsp,q(RN ) ↪→ Bsp,∞(RN ),
where “↪→” stands for the continuous imbedding symbol. We refer to [24, 30]
for a proof of this fact. When p = q = ∞, then the space Bs∞,∞(RN )
coincides with the Hölder–Zygmund space Cs(RN ).

Moreover, by contrast with W s,p(RN ) (see e.g. [12] for a simple proof of
this fact) or, more generally, with the spaces Bsp,q(RN ) with p, q ∈ (1,∞),
neither C∞c (RN ) nor S(RN ) are dense in Bsp,∞(RN ), see e.g. [30, Theo-
rem 2.3.2(a), p. 172]. The Nikol′skii spaces are Banach spaces but, unlike,
say, W s,p(RN ) with 1 < p < ∞, neither reflexive [30, Remark 2, p. 199]
nor separable [30, Theorem 2.11.2(d), p. 237].

4. Subatomic decompositions

There exists many ways to decompose a function f ∈ Bsp,q(RN ) into
“building blocks”. The theory of subatomic (or quarkonial) decompositions
developed by Triebel in [29, 31] is one of them of particular interest because,
unlike related decompositions of atomic or, say, Littlewood–Paley type, it
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yields a decomposition of any function f ∈ Bsp,q(RN ) on a suitable system
of functions which is independent of f and the resulting coefficients are
linearly dependent on f . In such a framework, the search for a function
amounts, roughly speaking, to seeking for a discrete sequence of numbers.
For the convenience of the reader we recall some basic definitions.

Definition 4.1. — Let ν > 0, m ∈ ZN and ψ ∈ C∞c (RN ) be a non-
negative function with supp(ψ) ⊂ B2r for some r > 0 and∑

k∈ZN
ψ(x− k) = 1, if x ∈ RN .(4.1)

LetQν,m be the cube of sides parallel to the coordinate axis with side-length
2−ν and centered at 2−νm. Let s ∈ R, 1 6 p 6∞, β ∈ NN and

ψβ(x) = xβψ(x) := xβ1
1 . . . xβNN ψ(x).

Then,
(βqu)ν,m(x) := 2−ν(s−Np )ψβ(2νx−m), x ∈ RN ,

is called an (s, p)-β-quark relative to Qν,m.

Definition 4.2. — Let s > 0, 1 6 p, q 6 ∞ and (βqu)ν,m be (s, p)-β-
quarks according to Definition 4.1. Let % > r where r has the same meaning
as in Definition 4.1. For all λ = {λβν,m ∈ C : (ν,m, β) ∈ N× ZN × NN} we
set

‖λ‖%,p,q := sup
β∈NN

2%|β|
(∑
ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

,(4.2)

with obvious modification if p =∞ and/or q =∞.
We call Bs

p,q(RN ) the collection of all f ∈ S′(RN ) which can be repre-
sented as

f(x) =
∑
β∈NN

∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x),(4.3)

endowed with the norm

‖f‖Bs
p,q(RN ) := inf ‖λ‖%,p,q,(4.4)

where the infinimum is taken over all admissible representations (4.3).

The standard fact of subatomic decompositions states as follows

Theorem 4.3. — Let s > 0 and 1 6 p, q 6∞. Then, (4.4) does not de-
pend upon the choice of % nor on ψ, and Bs

p,q(RN ) is a Banach space which
coincides with the space Bsp,q(RN ) introduced in Definition 3.3. Moreover,

‖f‖Bs
p,q(RN ) ∼ ‖f‖Bsp,q(RN ).(4.5)
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We refer to [31] and references therein for a proof of this. In fact, there
are optimal subatomic coefficients, i.e. coefficients λβν,m(f) realizing the
infinimum in (4.4) and which can be obtained as a dual pairing of the
form 〈f,Ψβ,%

ν,m〉S′,S where (Ψβ,%
ν,m) ⊂ S(RN ) is an appropriate sequence of

functions. We refer to [31] for further details.

5. The space N s,p(RN )

The aim of this section is twofold. On the one hand, we point out that,
even though the spaces Bsp,∞(RN ) can be characterized as limits superior
(see Proposition 5.2 below), it does not yield an equivalent norm (as it
does for the Sobolev spaces W 1,p(RN ) with p > 1, see e.g. Lemma 7.1). As
will become clear in the next section, this is the reason why Bsp,∞(RN ) is
more conveniently described as the supremum of (2.3) rather than as its
limit superior. On the other hand, we provide some preliminary results to-
wards Corollary 2.18. For simplicity, we consider only first order differences
∆1
hf = τhf − f but all the results of this section also hold for higher order

differences.
For the sake of convenience, we define a “new” function space which, in

fact, is merely another way to look at the Nikol′skii space Bsp,∞(RN ) as
shown hereafter.

Definition 5.1. — Let s ∈ (0, 1) and p ∈ [1,∞]. Then, the space
Ns,p(RN ) consists of all functions f ∈ Lp(RN ) such that

[f ]Ns,p(RN ) := lim sup
|h|→0

‖τhf − f‖Lp(RN )

|h|s
<∞.

It is endowed with the following norm:

‖f‖Ns,p(RN ) := ‖f‖Lp(RN ) + [f ]Ns,p(RN ).

In addition, we also define

Ns,p
0 (RN ) :=

{
f ∈ Ns,p(RN ) : [f ]Ns,p(RN ) = 0

}
.

As expected, we have the

Proposition 5.2. — Let s ∈ (0, 1) and p ∈ [1,∞]. Then,

Bsp,∞(RN ) = Ns,p(RN ).

Remark 5.3. — The equality here holds in the sense of sets: the topology
of both are not precisely equivalent as shown below. In fact, “[ · ]Ns,p(RN )”
is a quite crude way to characterize the Nikol′skii space. For these reasons
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(and in order not to mix with both topologies) we shall write Bsp,∞(RN ) =
(Bsp,∞(RN ), ‖·‖Bsp,∞(RN )) and Ns,p(RN ) = (Bsp,∞(RN ), ‖ · ‖Ns,p(RN )).

Proof. — Let f ∈ Bsp,∞(RN ). Then, for all δ > 0, we have

[f ]Bsp,∞(RN ) := sup
h∈RN\{0}

‖τhf − f‖Lp(RN )

|h|s
> sup

0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
.

Letting δ ↓ 0, we get

[f ]Bsp,∞(RN ) > lim sup
|h|→0

‖τhf − f‖Lp(RN )

|h|s
=: [f ]Ns,p(RN ),(5.1)

and so f ∈ Ns,p(RN ). Conversely, let f ∈ Ns,p(RN ). Then, for all η > 0
there is a δ0 > 0 such that for all δ ∈ (0, δ0) we have∣∣∣∣∣ sup

0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
− [f ]Ns,p(RN )

∣∣∣∣∣ < η.

Now fix such η and δ. By the triangle inequality we obtain

sup
0<|h|<δ

‖τhf − f‖Lp(RN )

|h|s
< η + [f ]Ns,p(RN ) <∞.

On the other hand,

sup
δ6|h|

‖τhf − f‖Lp(RN )

|h|s
6

2
δs
‖f‖Lp(RN ) <∞.

Therefore, f ∈ Bsp,∞(RN ). �

Proposition 5.4. — Let s ∈ (0, 1) and p ∈ (1,∞]. Then,

W 1,p(RN ) ⊂ Ns,p
0 (RN ) and BV (RN ) ⊂ Ns,1

0 (RN ).

Proof. — First, let f ∈W 1,p(RN ) (resp. f ∈ BV (RN ) if p = 1). Then,

‖τhf − f‖Lp(RN )

|h|s
6 |h|1−s‖∇f‖Lp(RN ), ∀ h ∈ RN .

Taking the limit superior as |h| → 0 gives f ∈ Ns,p
0 (RN ). �

Proposition 5.5. — Let s ∈ (0, 1), p ∈ [1,∞) and N̊s,p(RN ) denote
the closure of C∞c (RN ) in Ns,p(RN ). Then,

N̊s,p(RN ) = Ns,p
0 (RN ).

In particular, Ns,p
0 (RN ) is a closed subspace of Ns,p(RN ).
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Proof. — “⊂”: By definition, C∞c (RN ) is dense in N̊s,p(RN ), whence the
inclusion N̊s,p(RN ) ⊂ Ns,p

0 (RN ) is straightforward.
“⊃”: Let f ∈ Ns,p

0 (RN ) and let (fn)n>0 ⊂ C∞c (RN ) be such that

‖f − fn‖Lp(RN ) → 0 as n→∞.

Then, clearly,

‖f − fn‖Ns,p(RN ) := ‖f − fn‖Lp(RN ) + [f − fn]Ns,p(RN )

6 ‖f − fn‖Lp(RN ) + [f ]Ns,p(RN ) + [fn]Ns,p(RN )

= ‖f − fn‖Lp(RN ) −→ 0 as n→∞.

Whence, f ∈ N̊s,p(RN ). Moreover, the map

Θ : f ∈ Ns,p(RN ) 7→ [f ]Ns,p(RN )

is continuous. Therefore Ns,p
0 (RN ) = Θ−1({0}) is closed in Ns,p(RN ). �

Proposition 5.6. — Let s ∈ (0, 1), p ∈ [1,∞) and B̊sp,∞(RN ) (resp.
N̊s,p(RN )) denote the closure of C∞c (RN ) in Bsp,∞(RN ) (resp. Ns,p(RN )).
Then,

f ∈ N̊s,p(RN ) if, and only if, f ∈ B̊sp,∞(RN ).

Proof. — Let f ∈ N̊s,p(RN ) and (fn)n>0 ⊂ C∞c (RN ) be such that

fn → f in Ns,p(RN ) as n→∞.

Thus, for all η > 0 there exists n0 = n0(η) > 0 and δ0 = δ0(η) > 0 such
that

n > n0, δ ∈ (0, δ0)⇒ sup
|h|<δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.

Now, fix such η, δ and n0. On the other hand, for all η > 0 and all δ > 0
there is a n1 = n1(η, δ) > 0 such that

n > n1 ⇒ sup
|h|>δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.

Indeed, this is because

sup
|h|>δ

‖∆1
h(f − fn)‖Lp(RN )

|h|s
6

2
δs
‖f − fn‖Lp(RN ) → 0 as n→∞.

Therefore, for all n > max{n0, n1},

sup
h6=0

‖∆1
h(f − fn)‖Lp(RN )

|h|s
< η.(5.2)

Summing up, we find that, for all η > 0, there exists M > 0 such that

n >M ⇒ [f − fn]Bsp,∞(RN ) < η.
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Thus, f ∈ B̊sp,∞(RN ).
Conversely, let f ∈ B̊sp,∞(RN ) and (fn)n>0 ⊂ C∞c (RN ) be such that

fn → f in Bsp,∞(RN ). Using (5.1) we find

[f ]Ns,p(RN ) 6 [f − fn]Ns,p(RN ) + [fn]Ns,p(RN )

= [f − fn]Ns,p(RN )

6 [f − fn]Bsp,∞(RN ) → 0 as n→∞.

Thus f ∈ N̊s,p(RN ). �

6. Characterization of Besov-Nikol′skii spaces

6.1. Preliminary

For the sake of clarity we shall introduce the following short notation

Dω(ρε, f) :=
ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh.

First, an easy observation.

Proposition 6.1. — Let M ∈ N∗, s > 0, p ∈ [1,∞] and (ρε)ε>0 be a
sequence of mollifiers. Assume ω ∈ C+

inc. Then,

lim sup
ε↓0

Dω(ρε, f) 6 ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
,(6.1)

and

sup
ε>0

Dω(ρε, f) 6 ω

(
sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s

)
.(6.2)

Proof. — Let η > 0 be any fixed number. Then, we have

Dω(ρε, f) =
(ˆ

06|h|6η
+
ˆ
|h|>η

)
ρε(h) ω

(
‖∆M

h f‖Lp(RN )

|h|s

)
dh.

On the one hand,
ˆ

06|h|6η
ρε(h) ω

(
‖∆M

h f‖Lp(RN )

|h|s

)
dh

6 sup
06|h|6η

ω

(
‖∆M

h f‖Lp(RN )

|h|s

) ˆ
06|h|6η

ρε(h)dh

6 sup
06|h|6η

ω

(
‖∆M

h f‖Lp(RN )

|h|s

)
.
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On the other hand, since ω is non-decreasing
ˆ
|h|>η

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh 6 ω

(
2M‖f‖Lp(RN )

ηs

) ˆ
|h|>η

ρε(h)dh

−→ 0 as ε ↓ 0.

Therefore,

lim sup
ε↓0

ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh 6 sup

06|h|6η
ω

(
‖∆M

h f‖Lp(RN )

|h|s

)
.

Taking now the limit as η ↓ 0 and using ω ∈ C+
inc we obtain

lim sup
ε↓0

Dω(ρε, f) 6 ω
(

lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
.

The remaining inequality follows by a direct application of Hölder’s in-
equality. �

Here is another estimate we shall need.

Lemma 6.2. — Let p ∈ [1,∞], M ∈ N∗, h1, h2 ∈ RN and h = h1 + h2.
Then,

‖∆2M
h f‖Lp(RN ) . ‖∆M

h1
f‖Lp(RN ) + ‖∆M

h2
f‖Lp(RN ),

for all f ∈ Lp(RN ).

This is essentially covered by [28, Estimate (16), p. 112] but, for the sake
of completeness, we choose to provide the details.

Proof. — Let f ∈ S(RN ). Since translations τhf have Fourier transform
eih·ξ f̂ , the Fourier transform of ∆M

h f writes

F [∆M
h f ](ξ) = f̂(ξ)

M∑
j=0

(
M

j

)
(−1)M−j(eih·ξ)j .

And so, by applying the binomial formula and taking the inverse Fourier
transform of the result one gets

∆M
h f = F−1[(eih·ξ − 1)M f̂ ].

Now let h1, h2 ∈ RN and h = h1 + h2. Notice that we have

eih·ξ − 1 = eih1·ξ(eih2·ξ − 1) + eih1·ξ − 1.

Let P ∈ C[X,Y ] be the polynomial defined by

P (X,Y ) = (X(Y − 1) + (X − 1))2M
.
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By the binomial formula one may find Q1, Q2 ∈ C[X,Y ] such that

P (X,Y ) = (X − 1)MQ1(X,Y ) +XM (Y − 1)MQ2(X,Y ).

This holds for any X,Y ∈ C. In particular

(eih·ξ − 1)2M = (eih1·ξ − 1)MQ1(eih1·ξ, eih2·ξ)

+ eiMh1·ξ(eih2·ξ − 1)MQ2(eih1·ξ, eih2·ξ).

Multiplying this equality by f̂(ξ) and taking the inverse Fourier transform
of the result, we obtain:

∆2M
h f = F−1

 M∑
k,`=0

αk,`(eih1·ξ − 1)MF
[
f( ·+ kh1 + `h2)

]
+ F−1

 M∑
k,`=0

βk,`e
iMh1·ξ(eih2·ξ − 1)MF

[
f( ·+ kh1 + `h2)

]
where αk,` and βk,` are the respective coefficients of Q1 and Q2. Otherwise
said,

∆2M
h f =

M∑
k,`=0

αk,`∆M
h1
f
(
·+kh1 + `h2

)
+

M∑
k,`=0

βk,`∆M
h2
f
(
·+(k +M)h1 + `h2

)
.

We therefore obtain that, for each f ∈ S(RN )

‖∆2M
h f‖Lp(RN ) 6 C

(
‖∆M

h1
f‖Lp(RN ) + ‖∆M

h2
f‖Lp(RN )

)
,(6.3)

for some constant C > 0 depending only on M , Q1 and Q2. Since S(RN ) is
dense in Lp(RN ) for p <∞ the result follows for every f ∈ Lp(RN ). When
p =∞, the above still holds in the S′ sense and, thus, extends to L∞(RN )
as well. �

Also, we recall the following well-known fact.

Lemma 6.3. — Let M ∈ N∗, s ∈ (0,M) and f ∈ Lp(RN ). Then,

sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s
6 C(s,M) sup

h6=0

‖∆2M
h f‖Lp(RN )

|h|s
,(6.4)

for some constant C(s,M) > 0 depending only on s and M . Similarly,

lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s
6 C(s,M) lim sup

|h|→0

‖∆2M
h f‖Lp(RN )

|h|s
.(6.5)
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This is a consequence of [28, Estimate (45), p. 99], but the proof being
very short we chose to provide all the details.

Proof. — Let f ∈ Lp(RN ) and P ∈ C[X] be the unique polynomial such
that

P (X)(X − 1) = 1−
(
X + 1

2

)M
.(6.6)

Note that P exists because X−1 is a divisor of the right-hand side of (6.6).
In particular, we have that

(X − 1)M = 1
2M (X2 − 1)M + (X − 1)M+1P (X).(6.7)

Hence, for every h, ξ ∈ RN we have

(eih·ξ − 1)M = 1
2M (ei2h·ξ − 1)M + (eih·ξ − 1)M+1P (eih·ξ).(6.8)

Whence, reasoning as in Lemma 6.2, we obtain

∆M
h f(x) = 1

2M ∆M
2hf(x) + ∆M+1

h

(∑
`∈L

a`f(x+ h`)
)
,(6.9)

for some finite set of indices L ⊂ N and coefficients a` depending on P .
Thus, for every s ∈ (0,M), h 6= 0 and f ∈ Lp(RN ) it holds,

‖∆M
h f‖Lp(RN )

|h|s
6

1
2M−s

‖∆M
2hf‖Lp(RN )

|2h|s + C
‖∆M+1

h f‖Lp(RN )

|h|s
.(6.10)

We obtain that(
1− 1

2M−s

)
sup
h6=0

‖∆M
h f‖Lp(RN )

|h|s
6 C sup

h6=0

‖∆M+1
h f‖Lp(RN )

|h|s
.(6.11)

Therefore (6.4) follows by induction. The proof of (6.5) is similar. �

6.2. Proof of Theorem 2.3

Let M ∈ N∗, s > 0, p ∈ [1,∞], ω ∈ C+
inc and (ρε)ε>0 be as in the state-

ment of Theorem 2.3. Here again, we will make use of the short notation

Dω(ρε, f) :=
ˆ
RN

ρε(h) ω
(
‖∆M

h f‖Lp(RN )

|h|s

)
dh.(6.12)
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In addition, we call M(RN ) the set of mollifiers (ρε)ε>0 ⊂ L1(RN ) satisfy-
ing (1.11) for some ρ ∈ L1(RN ) such that there exists a number δ > 0 and
a nonnegative, nondecreasing, radial function Ψ ∈ C(RN ) with

ρ(h) > Ψ(h) for a.e. h ∈ Bδ and
ˆ
Bδ/4

Ψ > 0.(6.13)

Note that, by Proposition 6.1, we only need to establish a one-sided in-
equality.
We begin with a few preliminary facts (Claim A and Claim B) showing

that the proof of Theorem 2.3 reduces to the case where (ρε)ε>0 ∈M(RN ).

Claim A. — It is enough to establish Theorem 2.3 for radial ρ’s such
that

ess inf
A

ρ > 0 for some annulus A ⊂ RNcentered at zero.(6.14)

Proof of Claim A. — Let ρ ∈ L1(RN ) be a nonnegative radial function
with unit mass. Then, there is a nonnegative function ρ̃ ∈ L1

loc(R+) with
ρ(z) = ρ̃(|z|). In particular, we may find some 0 < c1 < c2 such thatˆ c2

c1

ρ̃(θ)dθ > 0.

Let 0 < θ0 < 1 be such that c1 > c2θ0 and let ρ∗ be the radial function
given by

ρ∗(z) := C

 1

θ0

ρ(θz)dθ = C

 1

θ0

ρ̃(θ|z|)dθ for z ∈ RN ,

where C > 0 is given by

C := (1− θ0)
(ˆ 1

θ0

dθ
θN

)−1

.

Notice that, by Fubini, ρ∗ ∈ L1(RN ) and ρ∗ has unit mass. Indeed, this is
because

‖ρ∗‖L1(RN ) = C

1− θ0

ˆ 1

θ0

ˆ
RN

ρ(θz)dzdθ = C

1− θ0

ˆ 1

θ0

dθ
θN

= 1.

Furthermore, one easily checks that ρ∗ satisfies (6.14). Indeed, we have

ess inf
|z|∈
[
c2,

c1
θ0

] ρ∗(z) = C

1− θ0
ess inf
|z|∈
[
c2,

c1
θ0

] ˆ |z|
θ0|z|

ρ̃(θ)dθ
|z|

>
Cθ0

c1(1− θ0)

ˆ c2

c1

ρ̃(θ)dθ > 0.
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On the other hand, we have

ρε(θ ·) = θ−Nρε/θ 6 θ
−N
0 ρε/θ for any θ ∈ [θ0, 1].

Hence,
1
C

Dω(ρ∗ε, f) =
 1

θ0

Dω(ρε(θ ·), f)dθ 6 θ−N0 sup
θ06θ61

Dω(ρε/θ, f).(6.15)

Assuming that Theorem 2.3 holds for mollifiers with ρ satisfying (6.14), we
finally obtain

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0
Dω(ρε, f).

Thus, the claim follows. �

Claim B. — It is enough to establish Theorem 2.3 for (ρε)ε>0 ∈M(RN ).

Proof of Claim B. — Let ρ ∈ L1(RN ) be a nonnegative radial function
with unit mass. Then, there is a nonnegative function ρ̃ ∈ L1

loc(R+) with
ρ(z) = ρ̃(|z|). On account of Claim A, we may assume that there are some
0 < r1 < r2 and some α > 0 with

ρ̃(t) > α 1(r1,r2)(t) =: Ψ(t) for a.e. t > 0.

If r1 <
r2
4 , then (ρε)ε>0 ∈M(RN ) and the claim is trivial. Hence, we may

assume that r1 >
r2
4 . To show that the latter case reduces to the former, we

simply clip together rescaled copies of Ψ as follows. For any j > 0, define

θj :=
(
r1

r2

)j
and Ψθj (t) := θ−Nj Ψ

(
t

θj

)
.

Observe that, by construction, θj → 0 as j →∞ and

0 < · · · < θj+1r1 < θj+1r2 = θjr1 < θjr2 < · · · < θ1r2 = r1 < r2.

Thus, the supports of the Ψθj ’s are mutually disjoint and they form a
countable partition of [0, r2]. Now take an integer k ∈ N such that

k >
ln
( 1

5
)

ln
(
r1
r2

) .
By construction, this guarantees that θk < 1

5 and, in turn, that

supp(Ψθk) ⊂
[
0, r2

5

]
.

In particular, we have [
r2

5 , r2

)
⊂

k⋃
j=0

supp(Ψθj ).
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Figure 6.1. Construction of η∗ and Φ∗.

Fix such a k ∈ N and set J = [[0, k]]. Then, the function

η∗(t) :=
∑
j∈J

Ψθj (t), for t > 0,

is bounded and [
r2

5 , r2

)
⊂ supp(η∗) ⊂ [0, r2].

Moreover, η∗ satisfies the following monotonicity property:

η∗(t1) > η∗(t2) > α whenever r2

5 < t1 < t2 < r2.

Thus, there is a nondecreasing function Φ∗ ∈ C(R+) with

η∗ > Φ∗ a.e. in [0, r2] and
ˆ r2/4

0
Φ∗(t) tN−1dt > 0.(6.16)

Indeed, it suffices to take e.g.

Φ∗(t) := 5α
4r2

(
t− r2

5

)
1( r2

5 ,∞)(t).

See Figure 6.1 for a visual evidence. Now, set

Φ(x) := 1
c

Φ∗(|x|) and η(x) := 1
c
η∗(|x|) where c :=

ˆ
Br2

η∗(|x|)dx.

By construction, η ∈ L1(RN ) and η has unit mass. Moreover, by (6.16) we
have

η > Φ a.e. in Br2 and
ˆ
Br2/4

Φ > 0.

TOME 68 (2018), FASCICULE 4



1698 Julien BRASSEUR

Whence, (ηε)ε>0 ∈M(RN ). On the other hand,

c Dω(ηε, f) =
∑
j∈J

Dω

(
Ψθjε(| · |), f

)
6
∑
j∈J

Dω(ρθjε, f),(6.17)

Hence, one obtains

sup
ε>0

Dω(ηε, f) 6 #J
c

sup
ε>0

Dω(ρε, f).

Assuming that Theorem 2.3 holds for mollifiers belonging to M(RN ), we
finally obtain

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0
Dω(ρε, f).

Thus, the claim follows. �

Remark 6.4. — By (6.15) and (6.17) we also have that

ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
. lim sup

ε↓0
Dω(ρε, f),

holds for any (ρε)ε>0 satisfying (1.1) and (1.11) whenever it holds for any
(ρε)ε>0 belonging to M(RN ).

We may now complete the proof of Theorem 2.3.
Step 1: case M = 1 and s ∈ (0, 1). — Let p ∈ [1,∞], (ρε)ε>0 ∈M(RN ),

ω ∈ C+
inc and f ∈ Lp(RN ) satisfying (2.3). Let h ∈ RN (to be fixed later)

and let z ∈ RN . Then, we have

τzf − f = τhf − f + τh(τz−hf − f).(6.18)

This implies

‖τhf − f‖Lp(RN ) 6 ‖τzf − f‖Lp(RN ) + ‖τz−hf − f‖Lp(RN ).(6.19)

Now, choose z ∈ B|h|(h). Then, since z and z− h belong to B2|h|, it comes

1
2s
‖τhf − f‖Lp(RN )

|h|s
6
‖τzf − f‖Lp(RN )

|z|s
+
‖τz−hf − f‖Lp(RN )

|z − h|s
.(6.20)

Since ω is roughly subadditive, there exists a constant Aω > 0 depending
only on ω and such that, for every x, y ∈ R+,

ω(x+ y) 6 Aω {ω(x) + ω(y)} .(6.21)

Remark 6.5. — Note that (6.21) implies ω(2x) 6 2Aωω(x) and, since
ω ∈ C+

inc, it is increasing, thus ω(2sx) 6 2Aωω(x) for s 6 1. Similarly,
when s 6M ∈ N∗, one has ω(2sx) 6 (2Aω)Mω(x).
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Figure 6.2. Spatial conditions on h and z.

From (6.20), Remark 6.5 and thanks to s 6 1, using the short notation
∆1
hf = τhf − f we have

ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6 ω

(
2s
‖∆1

zf‖Lp(RN )

|z|s
+ 2s

‖∆1
z−hf‖Lp(RN )

|z − h|s

)
6 Aω

{
ω

(
2s
‖∆1

zf‖Lp(RN )

|z|s

)
+ω

(
2s
‖∆1

z−hf‖Lp(RN )

|z − h|s

)}
6 2A2

ω

{
ω

(‖∆1
zf‖Lp(RN )

|z|s

)
+ ω

(‖∆1
z−hf‖Lp(RN )

|z − h|s

)}
.(6.22)

Using (ρε)ε>0 ∈ M(RN ) we know there is a radially nondecreasing Ψ ∈
C(RN ) and a number δ > 0 such that

ρε(z) > Ψε(|z|), for a.e.z ∈ Bεδ and all ε > 0.(6.23)

As seen in Figure 6.2, we clearly have

Ψε(|z − h|) 6 Ψε(|z|), for allh ∈ Bεδ/2, z ∈ B|h|/2(h) and ε > 0.(6.24)

Let h ∈ Bεδ/2. Multiplying (6.22) by Ψε(|z−h|) and using (6.23)-(6.24) we
obtain

Ψε(|z − h|) ω
(‖∆1

hf‖Lp(RN )

|h|s

)
6 2A2

ω

{
ρε(z) ω

(‖∆1
zf‖Lp(RN )

|z|s

)
+ ρε(z − h) ω

(‖∆1
z−hf‖Lp(RN )

|z − h|s

)}
,

and this holds for all h ∈ Bεδ/2 and a.e. z ∈ B|h|/2(h).
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So, taking |h| = δε/2 and integrating over z ∈ B|h|/2(h), yields:

C(Ψ, δ) ω
(‖∆1

hf‖Lp(RN )

|h|s

)
6 2A2

ω

ˆ
B|h|/2(h)

ρε(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz

+ 2A2
ω

ˆ
B|h|/2(h)

ρε(z − h) ω
(‖∆1

z−hf‖Lp(RN )

|z − h|s

)
dz

6 4A2
ω

ˆ
RN

ρε(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz,

where

C(Ψ, δ) :=
ˆ
B|h|/2(h)

Ψε(|z − h|)dz =
ˆ
Bδ/4

Ψ(|z|)dz > 0.

Whence,

ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6

4A2
ω

C(Ψ, δ)

ˆ
RN

ρε(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz.(6.25)

Passing to the limit superior as |h| → 0 in (6.25) it follows

ω
(
[f ]Ns,p(RN )

)
6

4A2
ω

C(Ψ, δ) lim sup
ε↓0

ˆ
RN

ρε(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz,

where we used the continuity of ω. This, together with Proposition 6.1
yields

ω
(
[f ]Ns,p(RN )

)
∼ lim sup

ε↓0

ˆ
RN

ρε(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz.(6.26)

Similarly, taking the supremum over h 6= 0 in (6.25), we obtain

ω
(

[f ]Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN

ρε(h) ω
(‖∆1

hf‖Lp(RN )

|h|s

)
dh.

Remark 6.6. — Estimate (6.26) together with Proposition 5.6 and Re-
mark 6.4 prove Corollary 2.18 for 1 6 p <∞ and s ∈ (0, 1) (recall we have
assumed ω(0) = 0).

Step 2: case M > 2 and s ∈ (0,M). — The assumption s ∈ (0, 1)
being artificial (by Remark 6.5) the above still holds for general s > 0. In
particular, replacing (6.19) by the estimate of Lemma 6.2, for f ∈ Lp(RN ),
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one obtains

ω

(
‖∆2M

h f‖Lp(RN )

|h|s

)
6 C(M,ρ, ω)

ˆ
RN

ρε(z) ω
(
‖∆M

z f‖Lp(RN )

|z|sp

)
dz,

(6.27)

for any s ∈ (0,M). Taking the supremum over ε > 0 (i.e. over |h| > 0) and
recalling that ω is a continuous, non-decreasing function, we find that

ω
(

[f ]Bsp,∞(RN )

)
. sup

ε>0

ˆ
RN

ρε(z) ω
(
‖∆M

z f‖Lp(RN )

|z|s

)
dz.

This is because the space Bsp,∞(RN ) with s ∈ (0,M) is characterized by
finite differences of order M , i.e.

[f ]Bsp,∞(RN ) ∼ sup
|h|6=0

‖∆2M
h f‖Lp(RN )

|h|s
, ∀ s ∈ (0,M),

Indeed, recall Lemma 6.3 and ‖∆2M
h f‖Lp(RN ) 6 C(M)‖∆M

h f‖Lp(RN ).

Remark 6.7. — As above, we still have

ω

(
lim sup
|h|→0

‖∆M
h f‖Lp(RN )

|h|s

)
∼ lim sup

ε↓0
Dω(ρε, f).

So that Corollary 2.18 follows in that case too.

Remark 6.8. — Note that, when (ρε)ε>0 ∈M(RN ) (with corresponding
Ψ and δ), we have actually proved a stronger estimate than needed. Indeed,
we have shown that for any h ∈ RN \ {0}, s ∈ (0, 1], p ∈ [1,∞] and
(ρε)ε>0 ∈M(RN ) it holds

(6.28) ω

(‖∆1
hf‖Lp(RN )

|h|s

)
6 C(Ψ, δ, Aω)

ˆ
RN

ρε(|h|)(z) ω
(‖∆1

zf‖Lp(RN )

|z|s

)
dz,

where ε(t) = 2t
δ and Aω is as in Definition 2.1.

Step 3: proof of Remark 2.4. — Let 1 6 p <∞, ω ∈ C+
inc and Ω ∈ Cinc

satisfying (2.6). Then, we have

ω

(ˆ
RN

Ω
(
|∆M

h f(x)|
|h|s

)
dx
)
> ω

(
m1
‖∆M

h f‖
p
Lp(RN )

|h|sp

)

> K1(m1, Aω)ω
(
‖∆M

h f‖
p
Lp(RN )

|h|sp

)
,(6.29)
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where K1(m1, Aω) > 0 and Aω > 0 is a number such that ω satisfies the
condition of Definition 2.1 withA=Aω. Similarly, for someK2(m2, Aω)> 0,

ω

(ˆ
RN

Ω
(
|∆M

h f(x)|
|h|s

)
dx
)
6 K2(m2, Aω)ω

(
‖∆M

h f‖
p
Lp(RN )

|h|sp

)
.(6.30)

Now, since ω̃ = ω ◦ | · |p lies in C+
inc (by Remark 2.2) we obtain the desired

claim, i.e. that

ω
(

[f ]p
Bsp,∞(RN )

)
∼ sup

ε>0

ˆ
RN

ρε(h)ω
(ˆ

RN
Ω
(
|∆M

h f(x)|
|h|s

)
dx
)

dh.

The remaining claims of Remark 2.4 follow by a similar argument of com-
parison. �

7. Characterization of Sobolev and BV spaces

We begin with a preliminary result.

Lemma 7.1. — Let p ∈ [1,∞], f ∈ Lp(RN ) and let

A := sup
h6=0

‖∆1
hf‖Lp(RN )

|h|
.(7.1)

If A is finite, then,

A = lim sup
|h|→0

‖∆1
hf‖Lp(RN )

|h|
.(7.2)

Although our argument is much simpler, a proof of a similar result (in-
volving moduli of continuity) may be found in [32]. However, the argument
in [32] heavily rely on the continuity of ‖∆1

hf‖Lp(RN ) and, thus, does not
cover the case p = ∞. We show that, in fact, it is enough to ask only for
some kind of subadditivity.
Proof. — Let f ∈ Lp(RN ), 1 6 p 6∞. For any t ∈ R, define

F (t) := sup
σ∈SN−1

‖∆1
σtf‖Lp(RN ).(7.3)

Clearly, F is measurable. Now, let t1, t2 ∈ R. Specializing (6.19) in h =
(t1 + t2)σ and z = t1σ, for some σ ∈ SN−1, yields

‖∆1
σ(t1+t2)f‖Lp(RN ) 6 ‖∆1

σt1f‖Lp(RN ) + ‖∆1
−σt2f‖Lp(RN ) 6 F (t1) + F (t2).

Consequently,

F (t1 + t2) 6 F (t1) + F (t2) for all t1, t2 ∈ R.(7.4)
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Whence, F : R → [0,∞) is a measurable, subadditive function. Now sup-
pose that

A := sup
t>0

F (t)
t

<∞.(7.5)

Then, by the limit theorem of subadditive functions [18, Theorem 16.3.3,
p. 467],

A = lim
t↓0

F (t)
t

= lim
t↓0

sup
σ∈SN−1

‖∆1
σtf‖Lp(RN )

t
.(7.6)

This proves the lemma. �

7.1. Proofs of Theorems 2.5 and 2.6

Proof. — The proof follows from a straightforward adaptation of the
proof of Theorem 2.3 in the case M = 1 and s ∈ (0, 1) with Lemma 7.1
and the fact that, using for example [6, Theorem 2, Theorem 3′],

‖∇f‖Lp(RN ) ∼ lim sup
|h|→0

‖f( ·+ h)− f‖Lp(RN )

|h|
,(7.7)

for all 1 6 p <∞ (when p = 1 the left-hand side of (7.7) is to be understood
in the BV -sense, i.e. as the total mass of the Radon measure ∇f).

The case p =∞ follows from the arguments above and the definition of
the Lipschitz semi-norm. �

7.2. A limiting embedding between Lipschitz and Besov spaces

This subsection is devoted to the proof of Theorem 2.12. To this end,
we recall the following improvement of the Chebychev inequality due to
Bourgain, Brezis and Mironescu [6].

Lemma 7.2 (Bourgain, Brezis, Mironescu, [6]). — Let g, h : (0, δ) →
R+. Assume that g(t) 6 g(t/2) for all t ∈ (0, δ) and that h is non-increasing.
Then, for some constant C = C(N) > 0,

δ−N
ˆ δ

0
tN−1g(t)dt

ˆ δ

0
tN−1h(t)dt 6 C

ˆ δ

0
tN−1g(t)h(t)dt.(7.8)

We are now ready to prove Theorem 2.12.
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Proof of Theorem 2.12. — Let q ∈ [1,∞) and (ρε)ε∈(0,1] be the sequence
defined by

ρε(t) := 1
|B1|

ε1−ε

tN−ε
1(0,ε)(t) for all ε ∈ (0, 1] and all t > 0.(7.9)

Note that ˆ ∞
0

ρε(t) tN−1dt = 1
|B1|

for all ε ∈ (0, 1].(7.10)

In addition, we also set

ηε(h) := ε−N C2
|h|
ε
1Bε(h) for all ε ∈ (0, 1] and all h ∈ RN ,(7.11)

where C2 > 0 is a constant such that ηε has unit mass for each ε. Notice
that (ηε)ε>0 ⊂ L1(RN ) is a sequence of radial functions satisfying (1.1)
and (1.11). In particular, by Theorem 2.5 we know that

[f ]C0,1(RN ) . lim sup
ε↓0

ˆ
Bε

ηε(h)
‖∆1

hf‖L∞(RN )

|h|
dh.(7.12)

Next, for every t > 0, define

F (t) :=
ˆ
SN−1

‖∆1
σtf‖L∞(RN )dHN−1(σ).(7.13)

By the triangle inequality we have F (2t) 6 2F (t) so that if we let

g(t) := F (t)
t
,

we have g(t) 6 g(t/2). In these notations, we have the identity:
ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh =

ˆ ε

0
tN−1ρε(t)g(t)dt.(7.14)

Invoking Lemma 7.2 and (7.10) we deduce that, for every ε ∈ (0, 1],
ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh & ε−N

ˆ ε

0
tN−1ρε(t)dt

ˆ ε

0
tN−1g(t)dt

=
 
Bε

‖∆1
hf‖L∞(RN )

|h|
dh

> ε−1
 
Bε

‖∆1
hf‖L∞(RN )dh

&
ˆ
Bε

ηε(h)
‖∆1

hf‖L∞(RN )

|h|
dh.(7.15)
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Whence, using (7.12) we come up with

[f ]C0,1(RN ) . lim sup
ε↓0

ˆ
Bε

ρε(|h|)
‖∆1

hf‖L∞(RN )

|h|
dh.(7.16)

Now, use the Jensen inequality to deduce that

[f ]q
C0,1(RN ) . lim sup

ε↓0

ˆ
Bε

ρε(|h|)
‖∆1

hf‖
q
L∞(RN )

|h|q
dh

. lim sup
ε↓0

ε−ε

(
ε

ˆ
Bε

‖∆1
hf‖

q
L∞(RN )

|h|N+q−ε dh
)

. lim sup
ε↓0

ε

ˆ
RN

‖∆1
hf‖

q
L∞(RN )

|h|N+q−ε dh.(7.17)

Define σ ∈ (1− 1
q , 1) by the relation ε = q(1− σ). Then,

[f ]q
C0,1(RN ) . lim sup

σ↑1
q(1− σ)[f ]q

Bσ∞,q(RN ).(7.18)

The converse of this is covered by Proposition 6.1. �

8. A non-limiting embedding theorem

This section is devoted to the proof of Theorem 2.14. The idea of the
proof is very similar to that of Theorem 4.4(ii) on p. 36 in [28] (see in
particular pp. 39–40 there). Nevertheless, we choose to give more details in
order to make the dependence of the constants involved on s, p and q as
explicit as possible.
We will need some preliminary estimates.

Lemma 8.1. — Let (uj)j>0 be the sequence defined by

uj :=
{
k if j = 2k for some k ∈ N,
0 else.

(8.1)

Then, (uj)j>0 /∈ `∞(N) and

sup
ε>0

ε
∑
j>0

2−jεuj 6
2

e ln(2) .(8.2)

Proof. — Let ε > 0 and set

Aε :=
∑
j>0

ε2−jεuj =
∑
k>0

ε2−2kεk.(8.3)
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Using the (trivial) estimate e−x 6 1/(ex), we have 2−x 6 1/(ex ln(2)).
Thus,

Aε 6
1

e ln(2)
∑
k>0

k2−k.

Recalling the well-known identity
∑
kxk = x/(1− x)2 (for 0 6 x < 1), we

finally obtain
Aε 6

2
e ln(2) .

Since this holds for every ε > 0, we obtain the desired claim. �

Lemma 8.2. — Let M ∈ N∗ and (uk)k>1 be a sequence of non-negative
numbers. Let ψ ∈ C∞c (R) be such that ψ is not a polynomial of degree less
than or equal to M − 1, and such that

supp(ψ) ⊂ [−η, η] for some η > 1,

and set

f(x1, . . . , xN ) =
∑
k>1

uk ψ

(
x1 − 2(M + η)k

2−k

)
. . . ψ

(
xN − 2(M + η)k

2−k

)
.

Then, for any fixed j > 1 we have

sup
1

2j+1 6|h|6 1
2j

‖∆M
h f‖Lp(RN ) > c uj2−j

N
p ,

for some constant c > 0 depending only on N , p, M and ψ.

Proof. — We begin with the case N = 1. Fix any j > 1 and let |h| 6 2−j .
Let us set

xj := 2(M + η)j and Rj := 2−j(M + η).
Since supp(ψ) ⊂ [−η, η] and |h| 6 2−j , for any ` ∈ [[0,M ]], we have

x ∈ supp ψ

(
·+ `h− xj

2−j

)
⇔ x+ h` ∈ [xj − η2−j , xj + η2−j ]

⇔ x ∈ [xj −h`− η2−j , xj −h`+ η2−j ] =: B`,j .

And, clearly

supp
(

∆M
h ψ

(
· − xj
2−j

))
⊂

⋃
`∈[[0,M ]]

B`,j .

Thus,

supp
(

∆M
h ψ

(
· − xj
2−j

))
⊂ [xj −Rj , xj +Rj ] =: Bj .

Furthermore,

Rj+1 +Rj = 2−j(M + η)
(

1 + 1
2

)
< 2(M + η) = xj+1 − xj ,
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and so, the Bj ’s are mutually disjoint. Therefore, given any fixed j > 1 and
ε > 0 a small parameter less than Rj , we have

‖∆M
h f‖

p
Lp(R) =

∥∥∥∥∥∥
∑
k>1

uk∆M
h ψ

(
· − xk
2−k

)∥∥∥∥∥∥
p

Lp(R)

>
ˆ xj+ε

xj−ε

∣∣∣∣∑
k>1

uk∆M
h ψ

(
x− xk

2−k

) ∣∣∣∣pdx
= upj

ˆ xj+ε

xj−ε

∣∣∣∣∆M
h ψ

(
x− xj

2−j

)∣∣∣∣p dx

= upj2
−j

ˆ ε/2−j

−ε/2−j
|∆M

h/2−jψ(x)|pdx.(8.4)

Whence, writing Kj := B2−j \B2−(j+1) for j > 0 we have

sup
h∈Kj

‖∆M
h f‖

p
Lp(R) > u

p
j2
−j sup

h∈Kj

ˆ ε

−ε
|∆M

h/2−jψ(x)|pdx

= cpε u
p
j2
−j .(8.5)

where

cε = cε(M,p, ψ) := sup
1
26|h|61

(ˆ ε

−ε
|∆M

h ψ(x)|pdx
)1/p

.(8.6)

Since ε > 0 is an arbitrary small parameter and ψ is not a polynomial of
degree less than or equal to M −1, we may find a number ε0 > 0 such that
cε0 > 0.
The proof whenN > 2 follows by a straightforward adaptation of the case

N = 1 using the product structure ψ(x1) . . . ψ(xN ) and Fubini’s theorem
which gives the result with c = cNε0

. �

We are now ready to prove Theorem 2.14.
Proof of Theorem 2.14. — Let M ∈ N∗ such that s ∈ (0,M) and let uj

be the sequence of Lemma 8.1. Also, we let ψ ∈ C∞c (RN ) be such that

supp(ψ) ⊂ B2 and
∑
m∈ZN

ψ(x−m) = 1, for anyx ∈ RN .(8.7)

In addition, we suppose that ψ has the product structure

ψ(x) = Ψ(x1) . . . Ψ(xN ),

for some Ψ ∈ C∞c (R) different from a polynomial of degree less than or
equal to M − 1. Then, we set

mj := 2(M + 2)j 1 ∈ ZN with 1 := (1, . . . , 1) ∈ ZN ,
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and we define

f(x) :=
∑
j>1

u
1/q
j 2−j(s−

N
p )ψ(2j(x−mj))

=
∑
j>1

(
u

1/q
j 2−jε

)
2−j(s−ε−

N
p )ψ(2j(x−mj)).(8.8)

where x ∈ RN . It follows from Definition 4.1 that

2−j(s−ε−
N
p )ψ(2j(x−mj))(8.9)

can be interpreted as (s− ε, p)-0-quarks. Accordingly, by Definition 4.2 we
have that

ε‖f‖qBs−ε
p,q (RN ) 6 ε

∑
j>1

(
2−jεu1/q

j

)q
.(8.10)

Using Lemma 8.1 we obtain that

ε‖f‖qBs−ε
p,q (RN ) 6

2q−1

e ln(2) <∞, ∀ ε ∈ (0, s).(8.11)

In particular, recalling Theorem 4.3, f ∈ Lp(RN ). Also, for all j > 1, we
write

Kj := {2−(j+1) 6 |h| 6 2−j}.(8.12)

Recall that

‖f‖Bsp,∞(RN ) ∼ ‖f‖Lp(RN ) + sup
j>1

2js sup
h∈Kj

‖∆M
h f‖Lp(RN ),(8.13)

is an equivalent norm on Bsp,∞(RN ) (this is a discretized version of The-
orem 2.5.12 on p. 110 in [28]). Using this together with Lemma 8.2 we
get

‖f‖Bsp,∞(RN ) > c sup
j>1

u
1/q
j =∞.(8.14)

Here c = c(N, p,M,ψ) > 0. Thus f /∈ Bsp,∞(RN ). This completes the
proof. �

9. Non-compactness results

This section is devoted to the proofs of Theorem 2.15 and Theorem 2.17.
We begin with the former one.
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Proof of Theorem 2.15. — For simplicity, we replace ε > 0 by 1/n with
n > 1 and write ρn instead of ρ1/n. We write

x = (x1, . . . , xN ) ∈ RN ,

y = (x1, . . . , xN−1) ∈ RN−1,

and, for all n > 1, we let

fn(x) := n
M−s
Mp Φ(n

M−s
M xN )ϕ(y),

for some arbitrary Φ ∈ C∞c (R) and ϕ ∈ C∞c (RN−1) (if N = 1, replace ϕ
by 1) with

max{‖Φ‖WM,p(R), ‖ϕ‖WM,p(RN−1)} 6 C0.(9.1)

Note that

fn → 0 a.e. in RN .(9.2)

Further, from Fubini’s theorem we infer thatˆ
RN
|fn(x)|pdx =

(ˆ
RN−1

|ϕ(y)|pdy
)(

n
M−s
M

ˆ
R
|Φ(n

M−s
M xN )|pdxN

)
= ‖ϕ‖p

Lp(RN−1)‖Φ‖
p
Lp(R) = C1.

On the one hand, we observe that (9.1) gives

(9.3) ‖Dαfn‖pLp(RN ) . 1

for each α = (α1, . . . , αN−1, 0) ∈ NN with |α| 6M.

While, on the other hand, for all j ∈ [[1,M ]],∥∥∥∥∥∂jfn∂xjN

∥∥∥∥∥
p

Lp(RN )

= n
(M−s)
M jp‖ϕ‖p

Lp(RN−1) n
M−s
M

ˆ
R
|Φ(j)(n

M−s
M xN )|pdxN

= n
(M−s)
M jp‖ϕ‖p

Lp(RN−1)‖Φ
(j)‖pLp(R)

6 n(M−s)p‖ϕ‖p
Lp(RN−1) max

j∈[[1,M ]]
‖Φ(j)‖pLp(R).(9.4)

Whence, using the product structure of fn we get

sup
|α|6M

‖Dαfn‖pLp(RN ) 6 C2n
(M−s)p, for all n > 1.(9.5)

Moreover, for all h 6= 0, it holds

‖∆M
h fn‖

p
Lp(RN ) 6 |h|

Mp sup
|α|6M

‖Dαfn‖pLp(RN )

6 C2|h|Mpn(M−s)p.(9.6)
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Then,ˆ
RN

ˆ
RN

ρn(h) |∆
M
h fn(x)|p

|h|sp
dxdh .

ˆ
RN

ρn(h)|h|p(M−s)np(M−s)dh

=
ˆ
RN

ρ(h)|h|p(M−s)dh.(9.7)

We thus conclude thatˆ
RN

ˆ
RN

ρn(h) |∆
M
h fn(x)|p

|h|sp
dxdh 6 C3 for any n > 1.(9.8)

Yet, (fn)n>1 is not relatively compact in Lploc(RN ). �

The proof of Theorem 2.17 is as follows.
Proof of Theorem 2.17. — The proof in this case is very similar to that

of Theorem 2.15. We let M ∈ N∗, s ∈ (0,M) and pick a slightly different
sequence of functions, for example

fn(x) := n
γ
MpΦ(n

γ
M xN )ϕ(y),(9.9)

where 0 6 γ 6 1
q , Φ ∈ C∞c (R) and ϕ ∈ C∞c (RN−1). Also, we set

ρn(h) := 1
nσN |h|N−1/n1(0,1)(|h|).(9.10)

As before,

‖fn‖Lp(RN ) = ‖Φ‖Lp(R)‖ϕ‖Lp(RN−1).(9.11)

And

sup
|α|6M

‖Dαfn‖Lp(RN ) . n
γ .(9.12)

Whence,
ˆ
B1

ρn(h)
‖∆M

h fn‖
q
Lp(RN )

|h|sq
dh .

ˆ
B1

ρn(h)|h|(M−s)qnγqdh

=
ˆ 1

0
nγq−1 dr

r1−(q(M−s)+1/n)

= nγq

1 + (M − s)qn .
1

n1−γq .(9.13)

Since 0 6 γ 6 1
q we obtain

ˆ
B1

ρn(h)
‖∆M

h fn‖
q
Lp(RN )

|h|sq
dh 6 C for all n > 1.(9.14)

However, (fn)n>1 is not relatively compact in Lploc(RN ). �
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Appendix

In [19], Lamy and Mironescu proved the

Theorem A.1 (Lamy, Mironescu, [19]). — Let s > 0, p ∈ [1,∞) and
(ρε)ε>0 satisfying (1.1) and (1.11). Then,

‖f‖Bsp∞(RN ) . ‖f‖Lp(RN ) + sup
ε∈(0,1)

‖ρε ∗ f − f‖Lp(RN )

εs
.(A.15)

Since Theorem A.1 is not properly stated in [19] nor its proof, we shall
give a brief sketch of the proof in order to justify that their result indeed
applies to the scale Bsp,∞(RN ).

Sketch of the proof. — It is well-known that each tempered distribution
f ∈ S′(RN ) can be decomposed as

f =
∑
j>0

fj ,(A.16)

where f0 = f ∗ ζ, fj = f ∗ ϕ21−j , j > 1, and ζ, ϕ ∈ S(RN ) are functions
satisfying

(1) supp(ζ̂) ⊂ B2 and ζ̂ ≡ 1 in a neighborhood of B̄1,
(2) ϕ := ζ1/2 − ζ with ϕ̂ = ζ̂( · /2)− ζ̂ and supp(ϕ̂) ⊂ B4 \ B̄1.

where the subscript ϕk means k−Nϕ( · /k) and ϕ̂ stands for the Fourier
transform of ϕ (similarly for ζ). Formula (A.16) is called the Littlewood–
Paley decomposition of f . Furthermore, it is known that each function in
Bsp,∞(RN ) is a tempered distribution, so that this decomposition makes
sense here and may even serve to formulate an equivalent norm on this
space via the formula

‖f‖Bsp,∞(RN ) ∼ sup
j>0

2js‖fj‖Lp(RN ).

To see that Theorem A.1 holds it suffices to discretize the last term on the
right-hand side of (A.15) as

sup
ε∈(1/2,1)

sup
j>0

2js‖f − f ∗ ρ2−jε‖Lp(RN ).

At this stage, all the estimates obtained in [19] directly apply because it
is the terms ‖fj‖Lp(RN ) which are estimated there (and not their sum nor
their integral) in terms of the quantity ‖f − f ∗ ρ2−jε‖Lp(RN ). �

Using this result, Proposition 1.2 can be proved by arguing as follows.
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Proof of Proposition 1.2. — Suppose without loss of generality that the
ρε’s are compactly supported and that supp(ρ) ⊂ B1. Also, up to replace
ρε by ρε(h)+ρε(−h)

2 , we can always assume that each ρε is even. Then, by
the Jensen inequality,

‖ρε ∗ f − f‖pLp(RN )

εsp
= 1
εsp

ˆ
RN

∣∣∣∣ˆ
RN

ρε(h)[f(x− h)− f(x)]dh
∣∣∣∣p dx

6
ˆ
RN

ˆ
Bε

ρε(−h) |f(x+ h)− f(x)|p

εsp
dhdx

6
ˆ
RN

ˆ
Bε

ρε(h) |f(x+ h)− f(x)|p

|h|sp
dhdx.

Whence,

sup
ε∈(0,1)

‖ρε ∗ f − f‖pLp(RN )

εsp
. sup
ε∈(0,1)

ˆ
RN

ˆ
RN

ρε(h) |f(x+ h)− f(x)|p

|h|sp
dhdx.

And so, by Theorem A.1, f ∈ Bsp,∞(RN ). The proof when ρ is not com-
pactly supported follows by a simple comparison argument: cutting off ρ as
ρ̃ := ρ1BR for some R > 0 with |BR ∩ supp(ρ)| > 0, we clearly have ρ > ρ̃
and (1.13) implies that the same property holds for ρ̃ instead of ρ (up to
some multiplicative factor ‖ρ‖L1(BR) to make ρ̃ε a sequence of mollifiers),
i.e. that f ∈ Bsp,∞(RN ). �
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