We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties.
On démontre un analogue hyperbolique du théorème de Bloch–Ochiai sur l’adhérence de Zariski d’une courbe holomorphe dans une variété abélienne.
Revised:
Accepted:
Published online:
Keywords: Shimura variety, holomorphic curve, o-minimality
Mot clés : variété de Shimura, courbes holomorphiques, o-minimalité
Ullmo, Emmanuel 1; Yafaev, Andrei 2
@article{AIF_2018__68_2_647_0, author = {Ullmo, Emmanuel and Yafaev, Andrei}, title = {Holomorphic curves in compact {Shimura} varieties}, journal = {Annales de l'Institut Fourier}, pages = {647--659}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3174}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3174/} }
TY - JOUR AU - Ullmo, Emmanuel AU - Yafaev, Andrei TI - Holomorphic curves in compact Shimura varieties JO - Annales de l'Institut Fourier PY - 2018 SP - 647 EP - 659 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3174/ DO - 10.5802/aif.3174 LA - en ID - AIF_2018__68_2_647_0 ER -
%0 Journal Article %A Ullmo, Emmanuel %A Yafaev, Andrei %T Holomorphic curves in compact Shimura varieties %J Annales de l'Institut Fourier %D 2018 %P 647-659 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3174/ %R 10.5802/aif.3174 %G en %F AIF_2018__68_2_647_0
Ullmo, Emmanuel; Yafaev, Andrei. Holomorphic curves in compact Shimura varieties. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 647-659. doi : 10.5802/aif.3174. https://aif.centre-mersenne.org/articles/10.5802/aif.3174/
[1] Volumes of varieties in projective space and in Grassmannians, Trans. Am. Math. Soc., Volume 289 (1974), pp. 237-249 | DOI | Zbl
[2] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis, 1977) (Proceedings of Symposia in pure Mathematics), Volume 33 (1979), pp. 247-289 | Zbl
[3] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | Zbl
[4] The hyperbolic Ax-Lindemann-Weierstrass conjecture, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 333-360 | DOI | Zbl
[5] Hyperbolic Complex Spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998, xiii+471 pages | Zbl
[6] Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Mathematics, 6, World Scientific, 1989, xiv+278 pages | Zbl
[7] Linearity properties of Shimura varieties. I., J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | Zbl
[8] The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | DOI | Zbl
[9] Applications du theorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014) no. 2, pp. 175-190 | DOI | Zbl
[10] Hyperbolic Ax-Lindemann theorem in the co-compact case, Duke Math. J., Volume 163 (2014) no. 2, pp. 433-463 | DOI | Zbl
[11] o-minimal flows on abelian varieties, Q. J. Math, Volume 163 (2017) no. 2, pp. 359-367 | DOI | Zbl
Cited by Sources: