On démontre un analogue hyperbolique du théorème de Bloch–Ochiai sur l’adhérence de Zariski d’une courbe holomorphe dans une variété abélienne.
We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties.
Révisé le :
Accepté le :
Publié le :
Keywords: Shimura variety, holomorphic curve, o-minimality
Mot clés : variété de Shimura, courbes holomorphiques, o-minimalité
Ullmo, Emmanuel 1 ; Yafaev, Andrei 2
@article{AIF_2018__68_2_647_0, author = {Ullmo, Emmanuel and Yafaev, Andrei}, title = {Holomorphic curves in compact {Shimura} varieties}, journal = {Annales de l'Institut Fourier}, pages = {647--659}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3174}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3174/} }
TY - JOUR AU - Ullmo, Emmanuel AU - Yafaev, Andrei TI - Holomorphic curves in compact Shimura varieties JO - Annales de l'Institut Fourier PY - 2018 SP - 647 EP - 659 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3174/ DO - 10.5802/aif.3174 LA - en ID - AIF_2018__68_2_647_0 ER -
%0 Journal Article %A Ullmo, Emmanuel %A Yafaev, Andrei %T Holomorphic curves in compact Shimura varieties %J Annales de l'Institut Fourier %D 2018 %P 647-659 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3174/ %R 10.5802/aif.3174 %G en %F AIF_2018__68_2_647_0
Ullmo, Emmanuel; Yafaev, Andrei. Holomorphic curves in compact Shimura varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 647-659. doi : 10.5802/aif.3174. https://aif.centre-mersenne.org/articles/10.5802/aif.3174/
[1] Volumes of varieties in projective space and in Grassmannians, Trans. Am. Math. Soc., Volume 289 (1974), pp. 237-249 | DOI | Zbl
[2] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and L-functions (Corvallis, 1977) (Proceedings of Symposia in pure Mathematics), Volume 33 (1979), pp. 247-289 | Zbl
[3] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | Zbl
[4] The hyperbolic Ax-Lindemann-Weierstrass conjecture, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 333-360 | DOI | Zbl
[5] Hyperbolic Complex Spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998, xiii+471 pages | Zbl
[6] Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure Mathematics, 6, World Scientific, 1989, xiv+278 pages | Zbl
[7] Linearity properties of Shimura varieties. I., J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 539-567 | Zbl
[8] The rational points of a definable set, Duke Math. J., Volume 133 (2006) no. 3, pp. 591-616 | DOI | Zbl
[9] Applications du theorème d’Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014) no. 2, pp. 175-190 | DOI | Zbl
[10] Hyperbolic Ax-Lindemann theorem in the co-compact case, Duke Math. J., Volume 163 (2014) no. 2, pp. 433-463 | DOI | Zbl
[11] o-minimal flows on abelian varieties, Q. J. Math, Volume 163 (2017) no. 2, pp. 359-367 | DOI | Zbl
Cité par Sources :