SRB measures for higher dimensional singular partially hyperbolic attractors
[Mesures SRB pour des attracteurs partiellement hyperboliques avec singularité(s) en dimension finie quelconque]
Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2703-2717.

Nous prouvons que tout attracteur partiellement hyperbolique de dimension finie et avec singularité(s) admet une unique mesure SRB. La preuve utilise des outils simples et généraux du formalisme thermodynamique et ne nécessite pas de recourir à une section de Poincaré.

We prove the existence and the uniqueness of the SRB measure for any singular hyperbolic attractor in dimension d3. The proof does not use Poincaré sectional maps, but uses basic properties of thermodynamical formalism.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3148
Classification : 37A35, 37A60, 37D20, 37D35, 47N10
Keywords: partially hyperbolic singular flows, thermodynamical formalism, equilibrium states, SRB and physical measures
Mot clés : flots partiellement hyperboliques, formalisme thermodynamique, état d’équilibre, mesures SRB et physiques

Leplaideur, Renaud 1 ; Yang, Dawei 2

1 LMBA, UMR6205 Université de Brest 6, avenue Victor Le Gorgeu C.S. 93837, France
2 School of Mathematical Sciences, Soochow University, No. 1, Shizi Street, Suzhou, 215006, P.R. China
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_6_2703_0,
     author = {Leplaideur, Renaud and Yang, Dawei},
     title = {SRB measures for higher dimensional singular partially hyperbolic attractors},
     journal = {Annales de l'Institut Fourier},
     pages = {2703--2717},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3148},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3148/}
}
TY  - JOUR
AU  - Leplaideur, Renaud
AU  - Yang, Dawei
TI  - SRB measures for higher dimensional singular partially hyperbolic attractors
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2703
EP  - 2717
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3148/
DO  - 10.5802/aif.3148
LA  - en
ID  - AIF_2017__67_6_2703_0
ER  - 
%0 Journal Article
%A Leplaideur, Renaud
%A Yang, Dawei
%T SRB measures for higher dimensional singular partially hyperbolic attractors
%J Annales de l'Institut Fourier
%D 2017
%P 2703-2717
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3148/
%R 10.5802/aif.3148
%G en
%F AIF_2017__67_6_2703_0
Leplaideur, Renaud; Yang, Dawei. SRB measures for higher dimensional singular partially hyperbolic attractors. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2703-2717. doi : 10.5802/aif.3148. https://aif.centre-mersenne.org/articles/10.5802/aif.3148/

[1] Araújo, Vítor; Pacifico, Maria José; Pujals, Enrique Ramiro; Viana, Marcelo Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2431-2485 | DOI | MR | Zbl

[2] Arroyo, Aubin; Pujals, Enrique R. Dynamical properties of singular-hyperbolic attractors, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 1, pp. 67-87 | DOI | MR | Zbl

[3] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 2008, viii+75 pages | MR | Zbl

[4] Bowen, Rufus; Ruelle, David The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975) no. 3, pp. 181-202 | DOI | MR | Zbl

[5] Buzzi, Jérôme No or infinitely many a.c.i.p. for piecewise expanding C r maps in higher dimensions, Commun. Math. Phys., Volume 222 (2001) no. 3, pp. 495-501 | DOI | MR | Zbl

[6] Colmenárez, W. SRB measures for singular hyperbolic attractors, Universidade Federal do Rio de Janeiro (Brazil) (2002) (Ph. D. Thesis)

[7] Cowieson, William; Young, Lai-Sang SRB measures as zero-noise limits, Ergodic Theory Dyn. Syst., Volume 25 (2005) no. 4, pp. 1115-1138 | DOI | MR | Zbl

[8] Crovisier, Sylvain; Potrie, Rafael Introduction to partially hyperbolic dynamics (2015) (www.crm.umontreal.ca/sms/2017/pdf/diapos/00-CP-Trieste-Version1.pdf)

[9] Hirsch, Morris W.; Pugh, Charles Chapman; Shub, Michael Invariant manifolds, Lecture Notes in Mathematics, 583, Springer, 1977, ii+149 pages | MR

[10] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995, xviii+802 pages (With a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl

[11] Ledrappier, François Propriétés ergodiques des mesures de Sinaï, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 59, pp. 163-188 | DOI | MR | Zbl

[12] Ledrappier, François; Young, Lai-Sang The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math., Volume 122 (1985) no. 3, pp. 509-539 | DOI | MR | Zbl

[13] Lorenz, Edward N. Deterministic non-periodic flow, J. Atmospheric Sci., Volume 20 (1963), pp. 130-141 | DOI

[14] Marsden, Jerrold Eldon; McCracken, Marjorie F. The Hopf bifurcation and its applications, Applied Mathematical Sciences, 19, Springer-Verlag, New York, 1976, xiii+408 pages | MR | Zbl

[15] Metzger, Roger J.; Morales, Carlos Arnoldo Sectional-hyperbolic systems, Ergodic Theory Dyn. Syst., Volume 28 (2008) no. 5, pp. 1587-1597 | DOI | MR | Zbl

[16] Morales, Carlos Arnoldo; Pacifico, Maria José; Pujals, Enrique Ramiro Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., Volume 160 (2004) no. 2, pp. 375-432 | DOI | MR | Zbl

[17] Pesin, Yakov B. Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2004, vi+122 pages | DOI | MR | Zbl

[18] Qiu, Hao Existence and uniqueness of SRB measure on C 1 generic hyperbolic attractors, Commun. Math. Phys., Volume 302 (2011) no. 2, pp. 345-357 | DOI | MR | Zbl

[19] Ruelle, David A measure associated with axiom-A attractors, Am. J. Math., Volume 98 (1976) no. 3, pp. 619-654 | DOI | MR | Zbl

[20] Sinaĭ, Yakov Grigor?evich Gibbs measures in ergodic theory, Usp. Mat. Nauk, Volume 27 (1972) no. 4(166), pp. 21-64 | MR | Zbl

[21] Tsujii, Masato Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dyn. Syst., Volume 20 (2000) no. 6, pp. 1851-1857 | DOI | MR | Zbl

[22] Walters, Peter An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | MR | Zbl

[23] Yang, Jiangang (Online video, http://video.impa.br/index.php?page=international-conference-on-dynamical-system)

[24] Yang, Jiangang Topological entropy of Lorenz-like flows (2014) (https://arxiv.org/abs/1412.1207)

[25] Young, Lai-Sang What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., Volume 108 (2002) no. 5-6, pp. 733-754 (Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays) | DOI | MR | Zbl

[26] Zhu, Shengzhi; Gan, Shaobo; Wen, Lan Indices of singularities of robustly transitive sets, Discrete Contin. Dyn. Syst., Volume 21 (2008) no. 3, pp. 945-957 | DOI | MR | Zbl

Cité par Sources :