Embedding problems for open subgroups of the fundamental group
[Problèmes de plongement pour les sous-groupes ouverts du groupe fondamental]
Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2623-2649.

Soit C une courbe affine irréductible lisse sur un corps algébriquement fermé de caractéristique positive et soit π 1 (C) son groupe fondamental. Nous étudions divers problèmes de plongement pour π 1 (C) et ses sous-groupes.

Let C be a smooth irreducible affine curve over an algebraically closed field of positive characteristic and let π 1 (C) be its fundamental group. We study various embedding problems for π 1 (C) and its subgroups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3145
Classification : 14H30, 14G32, 12F10
Keywords: ramification, embedding problem, fundamental group, positive characteristic, formal patching
Mot clés : ramification, problèmes de plongement, groupe fondamental, caractéristique positive, recollement formel

Kumar, Manish 1

1 Statistics and Mathematics Unit Indian Statistical Institute Bangalore, 560059 (India)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_6_2623_0,
     author = {Kumar, Manish},
     title = {Embedding problems for open subgroups of the fundamental group},
     journal = {Annales de l'Institut Fourier},
     pages = {2623--2649},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3145},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3145/}
}
TY  - JOUR
AU  - Kumar, Manish
TI  - Embedding problems for open subgroups of the fundamental group
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2623
EP  - 2649
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3145/
DO  - 10.5802/aif.3145
LA  - en
ID  - AIF_2017__67_6_2623_0
ER  - 
%0 Journal Article
%A Kumar, Manish
%T Embedding problems for open subgroups of the fundamental group
%J Annales de l'Institut Fourier
%D 2017
%P 2623-2649
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3145/
%R 10.5802/aif.3145
%G en
%F AIF_2017__67_6_2623_0
Kumar, Manish. Embedding problems for open subgroups of the fundamental group. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2623-2649. doi : 10.5802/aif.3145. https://aif.centre-mersenne.org/articles/10.5802/aif.3145/

[1] Bary-Soroker, Lior; Kumar, Manish Subgroup structure of fundamental groups in positive characteristic, Commun. Algebra, Volume 41 (2013) no. 10, pp. 3705-3719 | DOI | MR | Zbl

[2] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages (With a view toward algebraic geometry) | DOI | MR | Zbl

[3] Revêtements étales et groupe fondamental (SGA 1) (Grothendieck, Alexander, ed.), Documents Mathématiques (Paris, 3, Société Mathématique de France, 2003, xviii+327 pages With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original (Lecture Notes in Math., 224, Springer) | MR | Zbl

[4] Harbater, David Abhyankar’s conjecture on Galois groups over curves, Invent. Math., Volume 117 (1994) no. 1, pp. 1-25 | DOI | MR | Zbl

[5] Harbater, David Embedding problems and adding branch points, Aspects of Galois theory (Gainesville, FL, 1996) (London Math. Soc. Lecture Note Ser.), Volume 256, Cambridge University Press, 1999, pp. 119-143 | MR | Zbl

[6] Harbater, David Abhyankar’s conjecture and embedding problems, J. Reine Angew. Math., Volume 559 (2003), pp. 1-24 | DOI | MR | Zbl

[7] Harbater, David Patching and Galois theory, Galois groups and fundamental groups (Math. Sci. Res. Inst. Publ.), Volume 41, Cambridge University Press, 2003, pp. 313-424 | MR | Zbl

[8] Harbater, David; Stevenson, Katherine Embedding problems and open subgroups, Proc. Am. Math. Soc., Volume 139 (2011) no. 4, pp. 1141-1154 | DOI | MR | Zbl

[9] Kumar, Manish Fundamental group in positive characteristic, J. Algebra, Volume 319 (2008) no. 12, pp. 5178-5207 | DOI | MR | Zbl

[10] Kumar, Manish The fundamental group of affine curves in positive characteristic, J. Algebra, Volume 399 (2014), pp. 323-342 | DOI | MR | Zbl

[11] Kumar, Manish On the compositum of wildly ramified extensions, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1528-1536 | DOI | MR | Zbl

[12] Pop, Florian Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math., Volume 120 (1995) no. 3, pp. 555-578 | DOI | MR | Zbl

[13] Pries, Rachel J. Families of wildly ramified covers of curves, Am. J. Math., Volume 124 (2002) no. 4, pp. 737-768 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.4pries.pdf | DOI | MR | Zbl

[14] Raynaud, Michel Revêtements de la droite affine en caractéristique p>0 et conjecture d’Abhyankar, Invent. Math., Volume 116 (1994) no. 1-3, pp. 425-462 | DOI | MR | Zbl

Cité par Sources :