Soit une courbe affine irréductible lisse sur un corps algébriquement fermé de caractéristique positive et soit son groupe fondamental. Nous étudions divers problèmes de plongement pour et ses sous-groupes.
Let be a smooth irreducible affine curve over an algebraically closed field of positive characteristic and let be its fundamental group. We study various embedding problems for and its subgroups.
Révisé le :
Accepté le :
Publié le :
Keywords: ramification, embedding problem, fundamental group, positive characteristic, formal patching
Mot clés : ramification, problèmes de plongement, groupe fondamental, caractéristique positive, recollement formel
Kumar, Manish 1
@article{AIF_2017__67_6_2623_0, author = {Kumar, Manish}, title = {Embedding problems for open subgroups of the fundamental group}, journal = {Annales de l'Institut Fourier}, pages = {2623--2649}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3145}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3145/} }
TY - JOUR AU - Kumar, Manish TI - Embedding problems for open subgroups of the fundamental group JO - Annales de l'Institut Fourier PY - 2017 SP - 2623 EP - 2649 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3145/ DO - 10.5802/aif.3145 LA - en ID - AIF_2017__67_6_2623_0 ER -
%0 Journal Article %A Kumar, Manish %T Embedding problems for open subgroups of the fundamental group %J Annales de l'Institut Fourier %D 2017 %P 2623-2649 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3145/ %R 10.5802/aif.3145 %G en %F AIF_2017__67_6_2623_0
Kumar, Manish. Embedding problems for open subgroups of the fundamental group. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2623-2649. doi : 10.5802/aif.3145. https://aif.centre-mersenne.org/articles/10.5802/aif.3145/
[1] Subgroup structure of fundamental groups in positive characteristic, Commun. Algebra, Volume 41 (2013) no. 10, pp. 3705-3719 | DOI | MR | Zbl
[2] Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages (With a view toward algebraic geometry) | DOI | MR | Zbl
[3] Revêtements étales et groupe fondamental (SGA 1) (Grothendieck, Alexander, ed.), Documents Mathématiques (Paris, 3, Société Mathématique de France, 2003, xviii+327 pages With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original (Lecture Notes in Math., 224, Springer) | MR | Zbl
[4] Abhyankar’s conjecture on Galois groups over curves, Invent. Math., Volume 117 (1994) no. 1, pp. 1-25 | DOI | MR | Zbl
[5] Embedding problems and adding branch points, Aspects of Galois theory (Gainesville, FL, 1996) (London Math. Soc. Lecture Note Ser.), Volume 256, Cambridge University Press, 1999, pp. 119-143 | MR | Zbl
[6] Abhyankar’s conjecture and embedding problems, J. Reine Angew. Math., Volume 559 (2003), pp. 1-24 | DOI | MR | Zbl
[7] Patching and Galois theory, Galois groups and fundamental groups (Math. Sci. Res. Inst. Publ.), Volume 41, Cambridge University Press, 2003, pp. 313-424 | MR | Zbl
[8] Embedding problems and open subgroups, Proc. Am. Math. Soc., Volume 139 (2011) no. 4, pp. 1141-1154 | DOI | MR | Zbl
[9] Fundamental group in positive characteristic, J. Algebra, Volume 319 (2008) no. 12, pp. 5178-5207 | DOI | MR | Zbl
[10] The fundamental group of affine curves in positive characteristic, J. Algebra, Volume 399 (2014), pp. 323-342 | DOI | MR | Zbl
[11] On the compositum of wildly ramified extensions, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1528-1536 | DOI | MR | Zbl
[12] Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math., Volume 120 (1995) no. 3, pp. 555-578 | DOI | MR | Zbl
[13] Families of wildly ramified covers of curves, Am. J. Math., Volume 124 (2002) no. 4, pp. 737-768 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.4pries.pdf | DOI | MR | Zbl
[14] Revêtements de la droite affine en caractéristique et conjecture d’Abhyankar, Invent. Math., Volume 116 (1994) no. 1-3, pp. 425-462 | DOI | MR | Zbl
Cité par Sources :