Embedding problems for open subgroups of the fundamental group
[Problèmes de plongement pour les sous-groupes ouverts du groupe fondamental]
Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2623-2649.

Soit C une courbe affine irréductible lisse sur un corps algébriquement fermé de caractéristique positive et soit π1(C) son groupe fondamental. Nous étudions divers problèmes de plongement pour π1(C) et ses sous-groupes.

Let C be a smooth irreducible affine curve over an algebraically closed field of positive characteristic and let π1(C) be its fundamental group. We study various embedding problems for π1(C) and its subgroups.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3145
Classification : 14H30, 14G32, 12F10
Keywords: ramification, embedding problem, fundamental group, positive characteristic, formal patching
Mots-clés : ramification, problèmes de plongement, groupe fondamental, caractéristique positive, recollement formel

Kumar, Manish 1

1 Statistics and Mathematics Unit Indian Statistical Institute Bangalore, 560059 (India)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_6_2623_0,
     author = {Kumar, Manish},
     title = {Embedding problems for open subgroups of the fundamental group},
     journal = {Annales de l'Institut Fourier},
     pages = {2623--2649},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3145},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3145/}
}
TY  - JOUR
AU  - Kumar, Manish
TI  - Embedding problems for open subgroups of the fundamental group
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2623
EP  - 2649
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3145/
DO  - 10.5802/aif.3145
LA  - en
ID  - AIF_2017__67_6_2623_0
ER  - 
%0 Journal Article
%A Kumar, Manish
%T Embedding problems for open subgroups of the fundamental group
%J Annales de l'Institut Fourier
%D 2017
%P 2623-2649
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3145/
%R 10.5802/aif.3145
%G en
%F AIF_2017__67_6_2623_0
Kumar, Manish. Embedding problems for open subgroups of the fundamental group. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2623-2649. doi : 10.5802/aif.3145. https://aif.centre-mersenne.org/articles/10.5802/aif.3145/

[1] Bary-Soroker, Lior; Kumar, Manish Subgroup structure of fundamental groups in positive characteristic, Commun. Algebra, Volume 41 (2013) no. 10, pp. 3705-3719 | DOI | MR | Zbl

[2] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages (With a view toward algebraic geometry) | DOI | MR | Zbl

[3] Revêtements étales et groupe fondamental (SGA 1) (Grothendieck, Alexander, ed.), Documents Mathématiques (Paris, 3, Société Mathématique de France, 2003, xviii+327 pages With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original (Lecture Notes in Math., 224, Springer) | MR | Zbl

[4] Harbater, David Abhyankar’s conjecture on Galois groups over curves, Invent. Math., Volume 117 (1994) no. 1, pp. 1-25 | DOI | MR | Zbl

[5] Harbater, David Embedding problems and adding branch points, Aspects of Galois theory (Gainesville, FL, 1996) (London Math. Soc. Lecture Note Ser.), Volume 256, Cambridge University Press, 1999, pp. 119-143 | MR | Zbl

[6] Harbater, David Abhyankar’s conjecture and embedding problems, J. Reine Angew. Math., Volume 559 (2003), pp. 1-24 | DOI | MR | Zbl

[7] Harbater, David Patching and Galois theory, Galois groups and fundamental groups (Math. Sci. Res. Inst. Publ.), Volume 41, Cambridge University Press, 2003, pp. 313-424 | MR | Zbl

[8] Harbater, David; Stevenson, Katherine Embedding problems and open subgroups, Proc. Am. Math. Soc., Volume 139 (2011) no. 4, pp. 1141-1154 | DOI | MR | Zbl

[9] Kumar, Manish Fundamental group in positive characteristic, J. Algebra, Volume 319 (2008) no. 12, pp. 5178-5207 | DOI | MR | Zbl

[10] Kumar, Manish The fundamental group of affine curves in positive characteristic, J. Algebra, Volume 399 (2014), pp. 323-342 | DOI | MR | Zbl

[11] Kumar, Manish On the compositum of wildly ramified extensions, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1528-1536 | DOI | MR | Zbl

[12] Pop, Florian Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math., Volume 120 (1995) no. 3, pp. 555-578 | DOI | MR | Zbl

[13] Pries, Rachel J. Families of wildly ramified covers of curves, Am. J. Math., Volume 124 (2002) no. 4, pp. 737-768 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.4pries.pdf | DOI | MR | Zbl

[14] Raynaud, Michel Revêtements de la droite affine en caractéristique p>0 et conjecture d’Abhyankar, Invent. Math., Volume 116 (1994) no. 1-3, pp. 425-462 | DOI | MR | Zbl

Cité par Sources :