On présente des formes normales pour les déploiements de points de contact nilpotents des systèmes lent-rapide dans le plan. Les formes normales sont utiles pour traiter des points de contact reguliers et singuliers (y compris les points tournant). Pour les points de contact reguliers, on obtient une forme normale de type Liénard, tandis que pour les points de contact singuliers, la forme normale est de type Liénard sauf une erreur exponentiellement petite. Nos techniques sont basées sur des estimations de Gevrey des séries formelles et la sommation de Gevrey. Il s’agit d’une extension des résultats connus, basée sur une version de Gevrey de la théorème de préparation de Levinson.
We present normal forms for unfoldings of nilpotent contact points of slow-fast systems in the plane. The normal forms are useful in the treatment of regular and singular contact points (including turning points). For regular contact points, we obtain a normal form of Liénard type, while for singular contact points, the normal form is of Liénard type up to exponentially small error. Our techniques are based on Gevrey estimates on formal power series and Gevrey summation. This extension of earlier results is based on a Gevrey version of Levinson’s preparation theorem.
Révisé le :
Accepté le :
Publié le :
Keywords: singular perturbations, slow-fast vector field, normal forms, Gevrey asymptotics, Liénard system
Mot clés : perturbation singulière, champs de vecteurs lent-rapide, formes normales, asymptotique Gevrey, systèmes Liénard
De Maesschalck, Peter 1 ; Doan, Thai Son 2
@article{AIF_2017__67_6_2597_0, author = {De Maesschalck, Peter and Doan, Thai Son}, title = {Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems}, journal = {Annales de l'Institut Fourier}, pages = {2597--2621}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3144}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3144/} }
TY - JOUR AU - De Maesschalck, Peter AU - Doan, Thai Son TI - Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems JO - Annales de l'Institut Fourier PY - 2017 SP - 2597 EP - 2621 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3144/ DO - 10.5802/aif.3144 LA - en ID - AIF_2017__67_6_2597_0 ER -
%0 Journal Article %A De Maesschalck, Peter %A Doan, Thai Son %T Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems %J Annales de l'Institut Fourier %D 2017 %P 2597-2621 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3144/ %R 10.5802/aif.3144 %G en %F AIF_2017__67_6_2597_0
De Maesschalck, Peter; Doan, Thai Son. Gevrey normal form for unfoldings of nilpotent contact points of planar slow-fast systems. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2597-2621. doi : 10.5802/aif.3144. https://aif.centre-mersenne.org/articles/10.5802/aif.3144/
[1] Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math., Volume 518 (2000), pp. 95-129 | DOI | MR | Zbl
[2] Gevrey normal forms for nilpotent contact points of order two, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 2, pp. 677-688 | DOI | MR | Zbl
[3] Cyclicity of common slow-fast cycles, Indag. Math., Volume 22 (2011) no. 3-4, pp. 165-206 | DOI | MR | Zbl
[4] Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, Volume 31 (1979) no. 1, pp. 53-98 | DOI | MR | Zbl
[5] Composite asymptotic expansions, Lecture Notes in Mathematics, 2066, Springer, 2013, x+161 pages | DOI | MR | Zbl
[6] Normal forms of Liénard type for analytic unfoldings of nilpotent singularities, Proc. Am. Math. Soc., Volume 145 (2017) no. 10, pp. 4325-4336 | DOI | Zbl
[7] Formal normal form of slow fast systems, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 795-800 | DOI | Zbl
[8] A canonical form for an analytic function of several variables at a critical point, Bull. Am. Math. Soc., Volume 66 (1960), pp. 68-69 | DOI | MR | Zbl
[9] The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh., Volume 48 (1984) no. 2, pp. 197-204 | DOI | MR | Zbl
[10] A note on the Weierstrass preparation theorem in quasianalytic local rings, Can. Math. Bull., Volume 57 (2014) no. 3, pp. 614-620 | DOI | MR | Zbl
[11] Gevrey separation of fast and slow variables, Nonlinearity, Volume 9 (1996) no. 2, pp. 353-384 | DOI | MR | Zbl
[12] Normal form transforms separate slow and fast modes in stochastic dynamical systems, Phys. A, Volume 387 (2008) no. 1, pp. 12-38 | DOI | MR
[13] Canards in , J. Differ. Equations, Volume 177 (2001) no. 2, pp. 419-453 | DOI | MR | Zbl
Cité par Sources :