Levi-flat hypersurfaces and their complement in complex surfaces
[Hypersurfaces Levi-plates et leur complément dans les surfaces complexes]
Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2423-2462.

Dans ce travail nous étudions les hypersurfaces Levi-plates analytiques dans les surfaces algébriques complexes. Dans un premier temps nous montrons que si leur feuilletage admet une dynamique chaotique (c’est à dire, s’il n’admet pas de mesure transverse invariante) alors les composantes connexes de l’extérieur de l’hypersurface sont des modifications de domaines de Stein. Ceci permet d’étendre le feuilletage CR en un feuilletage algébrique singulier sur la surface complexe ambiante. Nous appliquons ce résultat pour montrer, par l’absurde, qu’une hypersurface Levi-plate analytique qui admet une structure affine transverse dans une surface algébrique complexe possède une mesure transverse invariante. Ceci nous amène à conjecturer que les hypersurfaces Levi-plates dans les surfaces algébriques complexes qui sont difféomorphes à un fibré hyperbolique en tores sur le cercle sont des fibrations par courbes algébriques.

In this work we study analytic Levi-flat hypersurfaces in complex algebraic surfaces. First, we show that if this foliation admits chaotic dynamics (i.e. if it does not admit a transverse invariant measure), then the connected components of the complement of the hypersurface are modifications of Stein domains. This allows us to extend the CR foliation to a singular algebraic foliation on the ambient complex surface. We apply this result to prove, by contradiction, that analytic Levi-flat hypersurfaces admitting a transverse affine structure in a complex algebraic surface have a transverse invariant measure. This leads us to conjecture that Levi-flat hypersurfaces in complex algebraic surfaces that are diffeomorphic to a hyperbolic torus bundle over the circle are fibrations by algebraic curves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3139
Classification : 32V40, 32T15, 32D15, 37F75, 37C40
Keywords: complex analysis and complex geometry, theory of foliations, Levi-flat hypersurfaces, invariant measure, Stein manifold, holomorphic convexity, analytic extension.
Mot clés : analyse et géométrie complexes, théorie des feuilletages, hypersurfaces Levi-plates, mesure transverse invariante, variété Stein, convexité holomorphe, prolongement analytique.

Canales González, Carolina 1

1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_6_2423_0,
     author = {Canales Gonz\'alez, Carolina},
     title = {Levi-flat hypersurfaces and their complement in complex surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {2423--2462},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3139},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3139/}
}
TY  - JOUR
AU  - Canales González, Carolina
TI  - Levi-flat hypersurfaces and their complement in complex surfaces
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2423
EP  - 2462
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3139/
DO  - 10.5802/aif.3139
LA  - en
ID  - AIF_2017__67_6_2423_0
ER  - 
%0 Journal Article
%A Canales González, Carolina
%T Levi-flat hypersurfaces and their complement in complex surfaces
%J Annales de l'Institut Fourier
%D 2017
%P 2423-2462
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3139/
%R 10.5802/aif.3139
%G en
%F AIF_2017__67_6_2423_0
Canales González, Carolina. Levi-flat hypersurfaces and their complement in complex surfaces. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2423-2462. doi : 10.5802/aif.3139. https://aif.centre-mersenne.org/articles/10.5802/aif.3139/

[1] Arnolʼd, Vladimir Igorevich Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow, 1984, 329 pages (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition) | MR | Zbl

[2] Beardon, Alan F. The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR | Zbl

[3] Brunella, Marco On the dynamics of codimension one holomorphic foliations with ample normal bundle, Indiana Univ. Math. J., Volume 57 (2008) no. 7, pp. 3101-3113 | DOI | MR | Zbl

[4] Camacho, César; Scárdua, Bruno Holomorphic foliations with Liouvillian first integrals, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 3, pp. 717-756 Erratum in ibid. 23 (2003), no. 3, p. 985-987 | DOI | MR | Zbl

[5] Candel, Alberto; Conlon, Lawrence Foliations. II, Graduate Studies in Mathematics, 60, American Mathematical Society, Providence, RI, 2003, xiv+545 pages | MR | Zbl

[6] Cartan, Elie Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl., Volume 11 (1933) no. 1, pp. 17-90 | DOI | MR | Zbl

[7] Colţoiu, Mihnea; Mihalache, Nicolae Strongly plurisubharmonic exhaustion functions on 1-convex spaces, Math. Ann., Volume 270 (1985) no. 1, pp. 63-68 | DOI | MR | Zbl

[8] Cousin, Gaël; Pereira, Jorge Vitório Transversely affine foliations on projective manifolds, Math. Res. Lett., Volume 21 (2014) no. 5, pp. 985-1014 | DOI | MR | Zbl

[9] Deroin, Bertrand; Dupont, Christophe Topology and dynamics of laminations in surfaces of general type, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 495-535 | DOI | MR | Zbl

[10] Deroin, Bertrand; Kleptsyn, Victor Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007) no. 4, pp. 1043-1105 | DOI | MR | Zbl

[11] Deroin, Bertrand; Kleptsyn, Victor; Navas, Andrés On the question of ergodicity for minimal group actions on the circle, Mosc. Math. J., Volume 9 (2009) no. 2, p. 263-303, back matter | MR | Zbl

[12] Deroin, Bertrand; Kleptsyn, Victor; Navas, Andrés Towards the solution of some fundamental questions concerning group actions on the circle and codimension-one foliations (2013) (https://arxiv.org/abs/1312.4133v1)

[13] Diederich, Klas; Ohsawa, Takeo Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 21 (1985) no. 4, pp. 819-833 | DOI | MR | Zbl

[14] Diederich, Klas; Ohsawa, Takeo On the displacement rigidity of Levi flat hypersurfaces—the case of boundaries of disc bundles over compact Riemann surfaces, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 1, pp. 171-180 http://projecteuclid.org/euclid.prims/1199403813 | DOI | MR | Zbl

[15] Garnett, Lucy Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983) no. 3, pp. 285-311 | DOI | MR | Zbl

[16] Ghys, Etienne Flots transversalement affines et tissus feuilletés, Mém. Soc. Math. France (1991) no. 46, pp. 123-150 Analyse globale et physique mathématique (Lyon, 1989) | DOI | MR | Zbl

[17] Ghys, Etienne; Sergiescu, Vlad Stabilité et conjugaison différentiable pour certains feuilletages, Topology, Volume 19 (1980) no. 2, pp. 179-197 | DOI | MR | Zbl

[18] Godbillon, Claude Feuilletages : Études géométriques, Progress in Mathematics, 98, Birkhäuser, Basel, 1991, xiv+474 pages | MR | Zbl

[19] Grauert, Hans On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl

[20] Grauert, Hans Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | MR | Zbl

[21] Henkin, Gennadi; Leiterer, Jürgen Theory of functions on complex manifolds, Monographs in Mathematics, 79, Birkhäuser, 1984, 226 pages | MR | Zbl

[22] Ivashkovich, Sergej Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles, Tr. Mat. Inst. Steklova, Volume 279 (2012), pp. 269-287 | MR | Zbl

[23] Ivashkovich, Sergej Extension properties of complex analytic objects, Max Planck Institüt für Mathematik, 2013

[24] Levi, Eugenio Elia Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Ann. Mat. Pura Appl., Volume 17 (1910) no. 1, pp. 61-87 http://link.springer.com/article/10.1007%2FBF02419336 | DOI | Zbl

[25] Lins Neto, Alcides A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier, Volume 49 (1999) no. 4, pp. 1369-1385 | DOI | MR | Zbl

[26] Merker, Joël; Porten, Egmont The Hartogs extension theorem on (n-1)-complete complex spaces, J. Reine Angew. Math., Volume 637 (2009), pp. 23-39 | DOI | MR | Zbl

[27] Narasimhan, Raghavan The Levi problem for complex spaces. II, Math. Ann., Volume 146 (1962), pp. 195-216 | DOI | MR | Zbl

[28] Nemirovskiĭ, S. Y. Stein domains with Levi-plane boundaries on compact complex surfaces, Mat. Zametki, Volume 66 (1999) no. 4, pp. 632-635 | DOI | MR

[29] Peternell, Thomas Martin Pseudoconvexity, the Levi problem and vanishing theorems, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 221-257 | MR | Zbl

[30] Scárdua, Bruno Transversely affine and transversely projective holomorphic foliations, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 169-204 | DOI | MR | Zbl

[31] Schoen, Richard; Yau, Shing-Tung On univalent harmonic maps between surfaces, Invent. Math., Volume 44 (1978) no. 3, pp. 265-278 | DOI | MR | Zbl

[32] Siu, Yum-Tong; Trautmann, Günther Gap-sheaves and extension of coherent analytic subsheaves, Lecture Notes in Mathematics, 172, Springer, Berlin, 1971, v+172 pages | MR | Zbl

[33] Takeuchi, A. Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, Volume 16 (1964), pp. 159-181 | DOI | MR | Zbl

[34] Troyanov, Marc Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl

Cité par Sources :