Nous considérons un opérateur pseudodifférentiel semiclassique sur une surface compacte, tel que le flot Hamiltonien engendré par son symbole principal possède, à une certaine énergie, une orbite périodique hyperbolique. Pour un paramètre arbitrairement petit, nous construisons une famille de quasimodes de cet opérateur, dont la largeur en énergie est d’ordre , mais qui possèdent un poids positif (une « grosse balafre ») autour de cette orbite périodique. Notre construction procède par un contrôle de l’évolution de paquets d’onde gaussiens jusqu’au temps d’Ehrenfest.
We consider a semiclassical pseudodifferential operator on a compact surface, such that the Hamiltonian flow generated by its principal symbol admits a hyperbolic periodic orbit at some energy. For an arbitrary small , we construct semiclassical families of quasimodes of this operator, with energy widths of order , and which feature a strong scar along that hyperbolic orbit. Our construction proceeds by controlling the evolution of Gaussian wavepackets up to the Ehrenfest time.
Accepté le :
Publié le :
Keywords: semiclassical analysis, quasimode, QUE, strong scarring
Mot clés : analyse semiclassique, quasimode, unique ergodicité quantique, balafre d’orbite périodique
Eswarathasan, Suresh 1 ; Nonnenmacher, Stéphane 2, 3
@article{AIF_2017__67_6_2307_0, author = {Eswarathasan, Suresh and Nonnenmacher, St\'ephane}, title = {Strong scarring of logarithmic quasimodes}, journal = {Annales de l'Institut Fourier}, pages = {2307--2347}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3137}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3137/} }
TY - JOUR AU - Eswarathasan, Suresh AU - Nonnenmacher, Stéphane TI - Strong scarring of logarithmic quasimodes JO - Annales de l'Institut Fourier PY - 2017 SP - 2307 EP - 2347 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3137/ DO - 10.5802/aif.3137 LA - en ID - AIF_2017__67_6_2307_0 ER -
%0 Journal Article %A Eswarathasan, Suresh %A Nonnenmacher, Stéphane %T Strong scarring of logarithmic quasimodes %J Annales de l'Institut Fourier %D 2017 %P 2307-2347 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3137/ %R 10.5802/aif.3137 %G en %F AIF_2017__67_6_2307_0
Eswarathasan, Suresh; Nonnenmacher, Stéphane. Strong scarring of logarithmic quasimodes. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2307-2347. doi : 10.5802/aif.3137. https://aif.centre-mersenne.org/articles/10.5802/aif.3137/
[1] Entropy and the localization of eigenfunctions, Ann. Math., Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl
[2] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier, Volume 57 (2007) no. 7, pp. 2465-2523 http://aif.cedram.org/item?id=AIF_2007__57_7_2465_0 (Festival Yves Colin de Verdière) | DOI | MR | Zbl
[3] The eigenfunctions which are concentrated near a closed geodesic, Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1967, pp. 15-25 | MR
[4] Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1457-1488 | DOI | MR | Zbl
[5] Scars in groups of eigenfunctions, Hamiltonian mechanics (Toruń, 1993) (NATO Adv. Sci. Inst. Ser. B Phys.), Volume 331, Plenum, New York, 1994, pp. 287-294 | DOI | MR
[6] Logarithmic-scale quasimodes that do not equidistribute, Int. Math. Res. Not. (2015) no. 22, pp. 11934-11960 | MR | Zbl
[7] Eisenstein quasimodes and QUE, Ann. Henri Poincaré, Volume 17 (2016) no. 3, pp. 615-643 | DOI | MR | Zbl
[8] Joint quasimodes, positive entropy, and quantum unique ergodicity, Invent. Math., Volume 198 (2014) no. 1, pp. 219-259 | DOI | MR | Zbl
[9] Geometric control in the presence of a black box, J. Am. Math. Soc., Volume 17 (2004) no. 2, pp. 443-471 | DOI | MR | Zbl
[10] Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Volume 246 (2007) no. 2, pp. 145-195 corrigendum in ibid. 253 (2010), no. 3, p. 1060-1065 | DOI | MR | Zbl
[11] Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3373-3438 | DOI | MR | Zbl
[12] Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Volume 14 (1997) no. 4, pp. 377-404 | MR | Zbl
[13] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xii+227 pages | DOI | MR | Zbl
[14] Oscillatory integrals, Lagrange immersions and unfolding of singularities, Commun. Pure Appl. Math., Volume 27 (1974), pp. 207-281 | DOI | MR | Zbl
[15] Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 2, pp. 371-448 | DOI | MR | Zbl
[16] Semiclassical measures on hyperbolic surfaces have full support (2017) (https://arxiv.org/abs/1705.05019) | arXiv
[17] Scarring of quasimodes on hyperbolic manifolds (2016) (http://https://arxiv.org/abs/1609.04912) | arXiv
[18] On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys., Volume 245 (2004) no. 1, pp. 201-214 | DOI | MR | Zbl
[19] Scarred eigenstates for quantum cat maps of minimal periods, Commun. Math. Phys., Volume 239 (2003) no. 3, pp. 449-492 | DOI | MR | Zbl
[20] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 391-421 | DOI | MR | Zbl
[21] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl
[22] Wave-trace invariants, Duke Math. J., Volume 83 (1996) no. 2, pp. 287-352 | DOI | MR | Zbl
[23] Some remarks about semiclassical trace invariants and quantum normal forms, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 1-19 | DOI | MR | Zbl
[24] Eigenvalues associated with a closed geodesic, Bull. Am. Math. Soc., Volume 82 (1976) no. 1, pp. 92-94 corrigendum in ibid. 82 (1976), p. 966 | DOI | MR | Zbl
[25] Semiclassical quantum mechanics. I. The limit for coherent states, Commun. Math. Phys., Volume 71 (1980) no. 1, pp. 77-93 http://projecteuclid.org/euclid.cmp/1103907396 | DOI | MR
[26] Semiclassical dynamics with exponentially small error estimates, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 439-465 | DOI | MR | Zbl
[27] Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett., Volume 53 (1984) no. 16, pp. 1515-1518 | DOI | MR
[28] The analysis of linear partial differential operators. III Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR | Zbl
[29] Scars in quantum chaotic wave functions, Nonlinearity, Volume 12 (1999) no. 2, p. R1-R40 | DOI | MR | Zbl
[30] Measuring scars of periodic orbits, Phys. Rev. E, Volume 59 (1999) no. 6, pp. 6609-6628 | DOI | MR
[31] Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Phys., Volume 4 (1958), pp. 180-188 | DOI | MR | Zbl
[32] Invariant measures and arithmetic quantum unique ergodicity, Ann. Math., Volume 163 (2006) no. 1, pp. 165-219 | DOI | MR | Zbl
[33] Theory of perturbations and asymptotic methods, Études Mathématiques, Gauthier-Villars, 1972, 384 pages http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf (French translation of Russian text, available at http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf)
[34] Eigenstate structures around a hyperbolic point, J. Phys. A, Math. Gen., Volume 30 (1997) no. 1, pp. 295-315 | DOI | MR | Zbl
[35] On the construction of quasimodes associated with stable periodic orbits, Commun. Math. Phys., Volume 51 (1976) no. 3, pp. 219-242 http://projecteuclid.org/euclid.cmp/1103900389 | DOI | MR | Zbl
[36] The behaviour of eigenstates of arithmetic hyperbolic manifolds, Commun. Math. Phys., Volume 161 (1994) no. 1, pp. 195-213 http://projecteuclid.org/euclid.cmp/1104269797 | DOI | MR | Zbl
[37] How do wave packets spread? Time evolution on Ehrenfest time scales, J. Phys. A, Math. Theor., Volume 45 (2012) no. 21 (Article ID 215307, 28 pp.) | DOI | MR | Zbl
[38] Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal., Volume 36 (2003) no. 2, pp. 93-113 | MR | Zbl
[39] Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6(180), pp. 181-182 | MR | Zbl
[40] Eigenfunction localization in the quantized rigid body, J. Differ. Geom., Volume 43 (1996) no. 4, pp. 844-858 http://projecteuclid.org/euclid.jdg/1214458534 | DOI | MR | Zbl
[41] On the quantum expected values of integrable metric forms, J. Differ. Geom., Volume 52 (1999) no. 2, pp. 327-374 http://projecteuclid.org/euclid.jdg/1214425280 | DOI | MR | Zbl
[42] Quasi-modes sur les variétés Riemanniennes, Invent. Math., Volume 43 (1977) no. 1, pp. 15-52 | DOI | MR | Zbl
[43] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 http://projecteuclid.org/euclid.cmp/1104114465 | DOI | MR | Zbl
[44] Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. Partial Differ. Equations, Volume 19 (1994) no. 9-10, pp. 1535-1563 | DOI | MR | Zbl
[45] Semiclassical quantization with short periodic orbits, J. Phys. A, Math. Gen., Volume 33 (2000) no. 25, pp. 4717-4724 | DOI | MR | Zbl
[46] Semiclassical construction of resonances with hyperbolic structure: the scar function, J. Phys. A, Math. Gen., Volume 34 (2001) no. 21, pp. 4525-4552 | DOI | MR | Zbl
[47] Asymptotic behaviour of matrix elements between scar functions, J. Phys. A, Math. Gen., Volume 38 (2005) no. 3, pp. 587-616 | DOI | MR | Zbl
[48] Semi-classical approximations, Ann. Inst. Henri Poincaré Sect. A, Volume 24 (1976) no. 1, pp. 31-90 | MR
[49] On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) (Lecture Notes in Mathematics), Volume 459, Springer, 1975, pp. 341-372 | MR | Zbl
[50] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl
[51] Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., Volume 8 (1998) no. 1, pp. 179-217 | DOI | MR | Zbl
[52] Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., Volume 175 (1996) no. 3, pp. 673-682 http://projecteuclid.org/euclid.cmp/1104276097 | DOI | MR | Zbl
[53] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :