We derive an identity for Margulis invariants of affine deformations of a complete orientable one-ended hyperbolic surface following the identities of McShane, Mirzakhani and Tan–Wong–Zhang. As a corollary, a deformation of the surface which infinitesimally lengthens all interior simple closed curves must infinitesimally lengthen the boundary.
À partir des identités de McShane, de Mirzakhani et de Tan–Wong–Zhang, nous obtenons une identité pour les invariants de Margulis associés à une déformation affine d’une surface hyperbolique complète, orientable, à un trou. Il en découle le corollaire suivant : une déformation de la surface, dont les courbes simples fermées intérieures s’allongent infinitésimalement, doit également allonger le bord de manière infinitésimale.
Accepted:
Published online:
Keywords: hyperbolic surface, Margulis spacetime, closed geodesic, McShane identity
Mot clés : surface hyperbolique, espace-temps de Margulis, géodésique fermée, identité de McShane
@article{AIF_2017__67_5_2029_0, author = {Charette, Virginie and Goldman, William M.}, title = {McShane-type identities for affine deformations}, journal = {Annales de l'Institut Fourier}, pages = {2029--2041}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3128}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3128/} }
TY - JOUR AU - Charette, Virginie AU - Goldman, William M. TI - McShane-type identities for affine deformations JO - Annales de l'Institut Fourier PY - 2017 SP - 2029 EP - 2041 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3128/ DO - 10.5802/aif.3128 LA - en ID - AIF_2017__67_5_2029_0 ER -
%0 Journal Article %A Charette, Virginie %A Goldman, William M. %T McShane-type identities for affine deformations %J Annales de l'Institut Fourier %D 2017 %P 2029-2041 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3128/ %R 10.5802/aif.3128 %G en %F AIF_2017__67_5_2029_0
Charette, Virginie; Goldman, William M. McShane-type identities for affine deformations. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2029-2041. doi : 10.5802/aif.3128. https://aif.centre-mersenne.org/articles/10.5802/aif.3128/
[1] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 309-333 | DOI | MR | Zbl
[2] The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, 820, Springer, 1980, vii+144 pages | MR | Zbl
[3] Shearing coordinates and convexity of length functions on Teichmüller space, Am. J. Math., Volume 135 (2013) no. 6, pp. 1449-1476 | DOI | MR | Zbl
[4] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser, 1992, xiv+454 pages | MR | Zbl
[5] Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) (London Mathematical Society Lecture Note Series), Volume 111, Cambridge University Press, 1987, pp. 3-92 | MR | Zbl
[6] Complete Lorentzian 3-manifolds, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 43-72 | MR | Zbl
[7] Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 225-246 | DOI | MR | Zbl
[8] On Schottky groups with applications to kleinian groups, Ann. Math., Volume 88 (1968), pp. 47-61 | DOI | MR | Zbl
[9] Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 1, pp. 1-56 | DOI | Zbl
[10] Margulis spacetimes via the arc complex, Invent. Math., Volume 204 (2016) no. 1, pp. 133-193 | DOI | MR | Zbl
[11] Lorentzian geometry, Geometry, topology and dynamics of character varieties (Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore), Volume 23, World Scientific, 2012, pp. 247-280 | DOI | MR | Zbl
[12] Three-dimensional affine crystallographic groups, Adv. Math., Volume 47 (1983) no. 1, pp. 1-49 | DOI | MR | Zbl
[13] Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) (Contemporary Mathematics), Volume 74, American Mathematical Society, 1988, pp. 169-198 | DOI | MR | Zbl
[14] Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. Math., Volume 170 (2009) no. 3, pp. 1051-1083 | DOI | MR | Zbl
[15] Geodesic Laminations and Proper Affine Actions (in preparation)
[16] Flat Lorentz 3-manifolds and cocompact Fuchsian groups, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemporary Mathematics), Volume 262, American Mathematical Society, 2000, pp. 135-145 | DOI | MR | Zbl
[17] Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math., Volume 88 (1987) no. 3, pp. 495-520 | DOI | MR | Zbl
[18] On Lorentz spacetimes of constant curvature, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 253-269 | MR | Zbl
[19] A new identity for -characters of the once punctured torus group, Math. Res. Lett., Volume 22 (2015) no. 2, pp. 485-499 | DOI | Zbl
[20] Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser, 2001, xxv+467 pages | MR | Zbl
[21] A proof of Selberg’s hypothesis, Mat. Sb., Volume 75 (117) (1968), pp. 163-168 | MR | Zbl
[22] Lectures on groups of transformations, Tata Institute of Fundamental Research Lectures on Mathematics, 32, Tata Institute of Fundamental Research, 1965, ii+97 pages | MR | Zbl
[23] Cross ratios and identities for higher Teichmüller-Thurston theory, Duke Math. J., Volume 149 (2009) no. 2, pp. 279-345 | DOI | MR | Zbl
[24] Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983) no. 4, pp. 785-788 | MR | Zbl
[25] Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 134 (1984), pp. 190-205 (Automorphic functions and number theory, II) | MR | Zbl
[26] Simple geodesics and a series constant over Teichmuller space, Invent. Math., Volume 132 (1998) no. 3, pp. 607-632 | DOI | MR | Zbl
[27] On the variation of a series on Teichmüller space, Pac. J. Math., Volume 231 (2007) no. 2, pp. 461-479 | DOI | MR | Zbl
[28] Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., Volume 167 (2007) no. 1, pp. 179-222 | DOI | MR | Zbl
[29] Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. Math., Volume 168 (2008) no. 1, pp. 97-125 | DOI | MR | Zbl
[30] Lengths of geodesics on non-orientable hyperbolic surfaces, Geom. Dedicata, Volume 134 (2008), pp. 153-176 | DOI | MR | Zbl
[31] Shortening all the simple closed geodesics on surfaces with boundary, Proc. Am. Math. Soc., Volume 138 (2010) no. 5, pp. 1775-1784 | DOI | MR | Zbl
[32] Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer, 1972, viii+227 pages | MR | Zbl
[33] Simple curves on surfaces, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 345-360 | DOI | MR | Zbl
[34] A simpler proof of Mirzakhani’s simple curve asymptotics, Geom. Dedicata, Volume 114 (2005), pp. 229-235 | DOI | MR | Zbl
[35] Principles of mathematical analysis, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., 1976, x+342 pages | MR | Zbl
[36] Generalizations of McShane’s identity to hyperbolic cone-surfaces, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 73-112 | DOI | MR | Zbl
[37] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997, x+311 pages | MR | Zbl
[38] On discrete subgroups of Lie groups I, Ann. Math., Volume 72 (1960), pp. 369-384 | DOI | MR | Zbl
[39] Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157 | DOI | MR | Zbl
[40] Families of Riemann surfaces and Weil-Petersson geometry, CBMS Regional Conference Series in Mathematics, 113, American Mathematical Society, 2010, vii+118 pages | MR | Zbl
Cited by Sources: